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PREFACE

Since the publication of the first edition of this book, the application
of the theory of plates and shells in practice has widened considerably,
and some new methods have been introduced into the theory. To take
these facts into consideration, we have had to make many changes and
additions. The principal additions are (1) an article on deflection of
plates due to transverse shear, (2) an article on stress concentrations
around a circular hole in a bent plate, (3) a chapter on bending of plates
resting on an elastie foundation, (4) a chapter on bending of anisotropic
plates, and (5) a chapter reviewing certain special and approximate
methods used in plate analysis. We have also expanded the chapter on
large deflections of plates, adding several new cases of plates of variable
thickness and some numerical tables facilitating plate analysis.

In the part of the book dealing with the theory of shells, we limited
ourselves to the addition of the stress-function method in the membrane
theory of shells and some minor additions in the flexural theory of shells.

The theory of shells has been developing rapidly in recent years, and
several new books have appeared in this field. Since it was not feasible
for us to diseuss these new developments in detail, we have merely referred
to the new bibliography, in which persons specially interested in this field
will find the necessary information.

S. Timoshenko
S. Woinowsky-Krieger
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NOTATION

Rectangular coordinates

Polar coordinates

Radii of curvature of the middle surface of a plate in zz and yz planes,
respeetively

Thickness of a plate or a shell

Intensity of a continuously distributed load

Pressure

Single load

Weight per unit volume

Normal components of stress parallel to z, y, and z axes
Normal component of stress parallel to n dircction
Radial stress in polar coordinates

Tangential stress in polar coordinates

Shearing stress

Shearing stress components in recetangular coordinates
Components of displacements

Unit elongation

Unit elongations in z, y, and z dircetions

Radial unit clongation in polar coordinates

Tangential unit elongation in polar coordinates

Unit elongations of a shell in meridional direction and in the direction
of parallel cirele, respectively

Shearing strain components in rectangular coordinates
Shearing strain in polar coordinates

Modulus of elasticity in tension and compression
Modulus of elasticity in shear

, Poisson’s ratio

Strain energy

Flexural rigidity of a plate or shell

Bending moments per unit length of sections of a plate perpendicular
to z and y axes, respectively

Twisting moment per unit length of section of a plate perpendicular
to x axis

Bending and twisting moments per unit length of a section of a plate
perpendicular to n direction

Shearing forces parallel to z axis per unit length of scctions of a plate
perpendicular to z and y axes, respectively

Shearing force parallel to z axis per unit length of section of a plate
perpendicular to n direction

Normal forces per unit length of sections of a plate perpendicular to
z and y directions, respectively
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NOTATION

Shearing force in direction of y axis per unit length of section of a plate
perpendicular to z axis

Radial, tangential, and twisting moments when using polar coordinates
Radial and tangential shearing forces

Normal forces per unit length in radial and tangential directions
Radii of curvature of a shell in the form of a surface of revolution in
meridional plane and in the normal plane perpendicular to meridian,
respectively

Changes of curvature of a shell in meridional plane and in the plane
perpendicular to meridian, respectively

Twist of a shell

Components of the intensity of the external load on a shell, parallel to
z, ¥, and z axes, respectively

Membrane forees per unit length of principal normal sections of a shell
Bending moments in a shell per unit length of meridional section and a
section perpendicular to meridian, respectively

Changes of curvature of a cylindrical shell in axial planc and in a plane
perpendicular to the axis, respectively

Membrane forces per unit length of axial section and a section perpen-
dicular to the axis of a cylindrical shell

Bending moments per unit length of axial section and a section perpen-
dicular to the axis of a cylindrical shell, respectively

Twisting moment per unit length of an axial section of a cylindrical
shell

Shearing forces parallel to z axis per unit length of an axial section and
a section perpendicular to the axis of a cylindrical shell, respectively
Natural logarithm

Common logarithm



INTRODUCTION

The bending properties of a plate depend greatly on its thickness as
gompared with its other dimensions. In the following discussion, we
shall distinguish between three kinds of plates: (1) thin plates with small
deflections, (2) thin plates with large deflections, (3) thick plates.

Thin Plates with Small Deflection. If deflections w of a plate are small
in comparison with its thickness &, a very satisfactory approximate theory
of bending of the plate by lateral loads can be developed by making the
following assumptions:

1. There is no deformation in the middle plane of the plate. This
plane remains neutral during bending.

2. Points of the plate lying initially on a normal-to-the-middle plane
of the plate remain on the normal-to-the-middle surface of the plate after
bending.

3. The normal stresses in the direction transverse to the plate can be
disregarded.

Using these assumptions, all stress components can be expressed by
deflection w of the plate, which is a function of the two coordinates in
the plane of the plate. This function has to satisfy a linear partial
differential equation, which, together with the boundary conditions, com-
pletely defines w. Thus the solution of this equation gives all necessary
information for calculating stresses at any point of the plate.

The second assumption is equivalent to the disregard of the effect of
shear forces on the deflection of plates. This assumption is usually satis-
factory, but in some cases (for example, in the case of holes in a plate)
the effect of shear becomes important and some corrections in the theory
of thin plates should be infroduced (see Art. 39).

If, in addition to lateral loads, there are external forces acting in the
middle plane of the plate, the first assumption does not hold any more,
and it is necessary to take into consideration the effect on bending of the
plate of the stresses acting in the middle plane of the plate. This can be
done by introducing some additional terms into the above-mentioned
differential equation of plates (see Art. 90).

1



2 THEORY OF PLATES AND SHELLS

Thin Plates with Large Deflection. The first assumption is completely
satisfied only if a plate is bent into a developable surface. In other cases
bending of a plate is accompanied by strain in the middle plane, but
calculations show that the corresponding stresses in the middle plane are
negligible if the deflections of the plate are small in comparison with its
thicknegs. If the deflections are not small, these supplementary stresses
must be taken into consideration in deriving the differential equation of
plates. In this way we obtain nonlinear equations and the solution of the
problem beeomes much more complicated (see Art. 96). In the case of
large deflections we have also to distinguish between immovable edges
and edges free to move in the plane of the plate, which may have a con-
siderable bearing upon the magnitude of deflections and stresses of the
plate (see Arts. 99, 100). Owing to the curvature of the deformed middle
plane of the plate, the supplementary tensile stresses, which predominate,
act in opposition to the given lateral load; thus, the given load is now
transmitted partly by the flexural rigidity and partly by a membrane
action of the plate. Consequently, very thin plates with negligible
resistance to bending behave as membranes, except perhaps for a narrow
edge zone where bending may occur because of the boundary eonditions
imposed on the plate.

The case of a plate bent into a developable, in particular into a cylindri-
cal, surface should be considered as an exception. The deflections of
such a plate may be of the order of its thickness without necessarily pro-
ducing membrane stresses and without affecting the linear character of
the theory of bending. Membrane stresses would, however, arise in such
a plate if its edges are immovable in its plane and the deflections are
sufficiently large (see Art. 2). Therefore, in “plates with small deflee-
tion” membrane forces caused by edges immovable in the plane of the
plate can be practically disregarded.

Thick Plates. 'The approximate theories of thin plates, discussed
above, become unreliable in the case of plates of considerable thickness,
especially in the case of highly concentrated loads. In such a case the
thick-plate theory should be applied. This theory considers the prob-
lem of plates as a three-dimensional problem of elasticity. The stress
analysis becomes, consequently, more involved and, up to now, the prob-
lem is completely solved only for a few particular cases. Using this
analysis, the necessary corrections to the thin-plate theory at the points of
application of concentrated loads can be introduced.

The main suppositions of the theory of thin plates also form the basis
for the usual theory of thin shells. There exists, however, a substantial
difference in the behavior of plates and shells under the action of external
loading. The static equilibrium of a plate element under a lateral load
is only possible by action of bending and twisting moments, usually



INTRODUCTION 3

accompanied by shearing forces, while a shell, in general, is able to trans-
mit the surface load by ‘““membrane’ stresses which act parallel to the
tangential plane at a given point of the middle surface and are distributed
uniformly over the thickness of the shell. This property of shells makes
them, as a rule, a much more rigid and a more economical structure than
a plate would be under the same conditions.

In prineiple, the membrane forces are independent of bending and are
wholly defined by the conditions of static equilibrium. The methods of
determination of these forces represent the so-called ‘“membrane theory
of shells.” However, the reactive forces and deformation obtained by
the use of the membrane theory at the shell’s boundary usually become
incompatible with the actual boundary conditions. To remove this dis-
crepancy the bending of the shell in the edge zone has to be considered,
which may affect slightly the magnitude of initially calculated membrane
forces. This bending, however, usually has a very localized! character
and may be calculated on the basis of the same assumptions which were
used in the case of small deflections of thin plates. But there are prob-
lems, especially those concerning the elastic stability of shells, in which
the assumption of small deflections should be discontinued and the ““large-
deflection theory” should be used.

If the thickness of a shell is comparable to the radii of curvature, or
if we consider stresses near the concentrated forces, a more rigorous
theory, similar to the thick-plate theory, should be applied.

! There are some kinds of shells, especially those with a negative Gaussian curva-
ture, which provide us with a lot of exceptions. In the case of developable surfaces
such as cylinders or cones, large deflection without strain of the middle surface is
possible, and, in some cases, membrane stresses can be neglected and consideration
of the bending stresses alone may be sufficient.



CHAPTER 1

BENDING OF LONG RECTANGULAR PLATES TO A
CYLINDRICAL SURFACE

1. Differential Equation for Cylindrical Bending of Plates. We shall
begin the theory of bending of plates with the simple problem of the
bending of a long rectangular plate that is subjected to a transverse load
that does not vary along the length of the plate. The deflected surface
of a portion of such a plate at a considerable distance from the ends!
can be assumed cylindrical, with the axis of the eylinder parallel to the
length of the plate. We can therefore restriet ourselves to the investi-
gation of the bending of an elemental strip cut from the plate by two
planes perpendicular to the length of the plate and a unit distance (say
1in.) apart. The deflection of this strip is given by a differential equa-
tion which is similar to the deflection
equation of a bent beam.

To obtain the equation for the de-
flection, we consider a plate of uni-
form thickness, equal to h, and take
the zy plane as the middle plane of
the plate before loading, i.e., as the
plane midway between the faces of
the plate. Let the y axis coincide with one of the longitudinal edges
of the plate and let the positive direction of the z axis be downward,
as shown in Fig. 1. Then if the width of the plate is denoted by [, the
elemental strip may be considered as a bar of rectangular cross section
which has a length of [ and a depth of A. In calculating the bending
stresses in such a bar we assume, as in the ordinary theory of beams,
that cross sections of the bar remain plane during bending, so that they
undergo only a rotation with respect to their neutral axes. If no normal
forces are applied to the end sections of the bar, the neutral surface of
the bar coincides with the middle surface of the plate, and the unit
elongation of a fiber parallel to the z axis is proportional to its distance z

1 The relation between the length and the width of a plate in order that the maxi-
mum stress may approximate that in an infinitely long plate is discussed later; see
pp- 118 and 125.

4



BENDING TO A CYLINDRICAL SURFACE 5

from the middle surface. The curvature of the deflection curve can be
taken equal to —d?w/dx?, where w, the deflection of the bar in the 2
direction, is assumed to be small compared with the length of the bar [.
The unit elongation e, of a fiber at a distance z from the middle surface
(Fig. 2) is then —z d?w/dx2

Making use of Hooke’s law, the unit elonga-
tions ¢, and ¢, in terms of the normal stresses
o and o, acting on the element shown shaded
in Fig. 2a are

€, = Tz va,
*TEH E
o vo M
€, = —l,/ - E = 0
B E TIIIYY
. .. b
where E is the modulus of elasticity of the P (‘3
IG. £

material and » is Poisson’s ratio. The lateral
strain in the y direction must be zero in order to maintain continuity
in the plate during bending, from which it follows by the second of the
equations (1) that ¢, = vs,. Substituting this value in the first of the
equations (1), we obtain

_ (0= v,

==

FEe, Kz d*w

and A R Qe @

€

If the plate is submitted to the action of tensile or compressive forces
acting in the z direction and uniformly distributed along the longitudinal
sides of the plate, the corresponding direct stress must be added to the
stress (2) due to bending.

Having the expression for bending stress gz, we obtain by integration
the bending moment- in the elemental strip:

u h/2 d R/2 Ez? d'w Er? d*w
Tt T e T T B = a
Introducing the notation
Eh?
- - P @

we represent the equation for the deflection curve of the elemental strip
in the following form:

dtw
dx?

in which the quantity D, taking the place of the quantity ET in the case

D = —-M 4)



6 THEORY OF PLATES AND SHELLS

of beams, is called the flexural rigidity of the plate. It is seen that the
calculation of deflections of the plate reduces to the integration of Eq. (4),
which has the same form as the differential equation for deflection of
beams. If there is only a lateral load acting on the plate and the edges
are free to approach each other as deflection occurs, the expression for
the bending moment M can be readily derived, and the deflection curve
is then obtained by integrating Eq. (4). In practice the problem is more
complicated, since the plate is usually attached to the boundary and its
edges are not free to move. Such a method of support sets up tensile
reactions along the edges as soon as deflection takes place. These reac-
tions depend on the magnitude of the deflection and affect the magnitude
of the bending moment M entering in Eq. (4). The problem reduces to
the investigation of bending of an elemental strip submitted to the action
of a lateral load and also an axial force which depends on the deflection
of the strip.? In the following we consider this problem for the particular
case of uniform load acting on a plate and for various conditions along
the edges.

2. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Simply Supported Edges. Let us consider a uniformly loaded long rec-
tangular plate with longitudinal edges which are free to rotate but can-
not move toward each other during bending. An elemental strip cut out

Fi1c. 3

from this plate, as shown in Fig. 1, is in the condition of a uniformly
loaded bar submitted to the action of an axial force S (Fig. 3). The
magnitude of S is such as to prevent the ends of the bar from moving
along the x axis. Denoting by ¢ the intensity of the uniform load, the
bending moment at any cross section of the strip is

2
M——-%la:——%—Sw

! In such a form the problem was first discussed by I. G. Boobnov; see the English
translation of his work in Trans. Inst. Naval Architects, vol. 44, p. 15, 1902, and his
“Theory of Structure of Ships,” vol. 2, p. 545, St. Petersburg, 1914. See also the
paper by Stewart Way presented at the National Mecting of Applied Mechanics,
ASME, New Haven, Conn., June, 1932; from this paper are taken the curves used in
Arts. 2 and 3,



BENDING TO A CYLINDRICAL SURFACE 7
Substituting in Eq. (4), we obtain

dw  Sw qlx q .
a - + (@)

Introducing the notation

= ()

N“‘

sr
D

the general solution of Eq. (@) can be written in the following form:

AL ql3x g’z  ql*

oh D~ ip T O
The constants of integration Cy and C, will be determined from the

conditions at the ends. Since the deflections of the strip at the ends are

zero, we have

w=0 forx =0and z =1 (e)
Substituting for w its expression (b), we obtain from these two conditions

gl* 1 — cosh 2u gl*

Ci = 16u*D  sinh 2u 7 16uiD

and the expression (b) for the deflection w becomes

gl 1 — cosh 2u @ 2ux qlPz ql2x?
- l6u4D< sinh 2u inh + cosh T - 8utD  8u’D

Substituting

cosh 2u = cosh? u + sinh? u sinh 2u = 2 sinh u cosh u
cosh? 4 = 1 + sinh?

we can represent this expression in a simpler form:

— sinh % smh “UT 1 cosh u cosh Zux
4
w = ql B l o )+ gl 00
16u*D cosh u SuzD €
gl cosh u <1 — ZZ—L> ql y
or Y= Twip|  coshu - " Tgapl—a) (6)

Thus, deflections of the elemental strip depend upon the quantity wu,
which, as we see from Eq. (5), is a function of the axial force S. This
force can be determined from the condition that the ends of the strip
(Fig. 3) do not move along the x axis. Hence the extension of the strip
produced by the forces S is equal to the difference between the length of
the arc along the deflection curve and the chord length I. This difference
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for small deflections can be represented by the formula?

\ = % ﬂ (%”)2 dx )

In caleulating the extension of the strip produced by the forces S, we
assume that the lateral strain of the strip in the y direction is prevented
and use Eq. (2). Then

C8A =L [t fdw\: |

Substituting expression (6) for w and performing the integration, we
obtain the following equation for caleculating S:

SA — vl _ 92[7< 5 tanh u 1 tanh?u 5 1 )

WE T DT \256 w' T 256wt 95¢us T 384

or substituting S = 4uD/I? from Eq. (5), and the expression for D,
from Eq. (3), we finally obtain the equation

E?h® 135 tanh v | 27 tanh?uw 135 9

A= P~ 16 w0 T 16w 16w T 8w

(8)

For a given material, a given ratio /!, and a given load ¢ the left-hand
side of this equation can be readily calculated, and the value of u satis-
fying the equation can be found by a trial-and-error method. To simplify
this solution, the curves shown in IMig. 4 can be used. The abscissas of
these curves represent the values of u and the ordinates represent the
quantities logio (10% v/TUy), where U, denotes the numerical value of the
right-hand side of Eq. (8). /Uy is used because it is more easily calcu-
lated from the plate constants and the load; and the factor 104 is intro-
duced to make the logarithms positive. In each particular case we begin
by calculating the square root of the left-hand side of Eq. (8), equal to
Eh*/(1 — »%)gl4, which gives v/ U, The quantity logye (10t v/ TU,) then
gives the ordinate which must be used in Fig. 4, and the corresponding
value of u can be readily obtained from the curve. Having u, we obtain
the value of the axial force S from Eq. (5).

In calculating stresses we observe that the total stress at any cross
section of the strip consists of a bending stress propertional to the bend-
ing moment and a tensile stress of magnitude S/h which is constant along
the length of the strip. The maximum stress occurs at the middle of the
strip, where the bending moment is a maximum. From the differential
equation (4) the maximum bending moment is

d*w
Mmux = —D <W)z=l/2

1 See Timoshenko, ‘“Strength of Materials,” part 1, 3d ed., p. 178, 1955.
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Substituting expression (6) for w, we obtain
gl
Mo = 'g ‘l/ﬂ(u) (9)
1 — sech u
where Yo = ——5—— (e)
U
2

The values of Yo are given by curves in Fig. 5. It is seen that these
values diminish rapidly with increase of u, and for large « the maximum
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bending moment is several times smaller than the moment ¢/2/8 which
would be obtained if there were no tensile reactions at the ends of the
strip.

The direct tensile stress ¢, and the maximum bending stress o, are now
readily expressed in terms of u, ¢, and the plate constants as follows:

S 4u*D Eu? (h>2

oy = (10)

hTOThE T 3@ =\
6 3 [1\? ~
gs = F" ]Wmﬂ = 1(] (ﬁ) 1//0 (11)

The maximum stress in the plate is then

Omax = 01 + ao

To show how the curves in I'igs. 4 and 5 can be used in calculating
maximum stresses, let us take a numerical example and assume that a
long rectangular steel plate 50 in. wide and 4 in. thick carries a uniformly
distributed load ¢ = 20 psi. We start with a computation of +/Us:

e B (RN 30-10° 1
VU= (DY (z) T (1 =0.3920108 0.01648

Then, from tables,
logio (104 V/TUs) = 2.217

From the curve A4 in Iig. 4 we find u = 3.795, and from Fig. 5 we obtain
Yo = 0.1329.
Now, computing stresses by using FKqgs. (10) and (11), we find
30 -10-3.795% 1 .
gy = *g'(‘l”: 0‘32) - 1—671 = 15,830 pst
oo = £-20-10*- 0.1329 = 19,930 psi

Coax = 01 + 09 = 35,760 pSl

In calculating the maximum deflection we substitute x = [/2 in Eq. (6)
of the deflection curve. In this manner we obtain

_ bqlt
Wiax = 384D fo(u) (12)
sech u — 1 -+ uﬁ)
where folu) = e
24

To simplify ealeulations, values of fo(u) are given by the curve in Fig. 5.
If there were no tensile reactions at the ends of the strip, the maximum
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deflection would be 5¢1¢/384D. The effect of the tensile reactions is given
by the factor fo(u), which diminishes rapidly with increasing u.

Using Fig. 5 in the numerical example previously discussed, we find
that for u = 3.795 the value of fo(u) is 0.145. Substituting this value in
Tig. (12), we obtain

Wmex = 4.74 - 0.145 = 0.688 in.

It is seen from Eq. (8) that the tensile parameter u depends, for a
given material of the plate, upon the intensity of the load ¢ and the

60,000 l ] l
Stresses in steel plates with »
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20
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aih
=5 1]
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20
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ratio I/h of width to thickness of the plate. From Eqgs. (10) and (11)
we see that the stresses o1 and o2 are also functions of u, ¢, and I/h.
Therefore, the maximum stress in the plate depends only on the load ¢
and the ratio {/h. This means that we can plot a set of curves giving
maximum stress in terms of ¢, each curve in the set corresponding to a
particular value of I/h. Such curves are given in Fig. 6. It is seen that
because of the presence of tensile forces S, which increase with the load,
the maximum stress is not proportional to the load ¢; and for large values
of g this stress does not vary much with the thickness of the plate. By
taking the curve marked //h = 100 and assuming ¢ = 20 psi, we obtain
from the curve the value o, calculated before in the numerical example.
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3. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Built-in Edges. We assume that the longitudinal edges of the plate are
fixed in such a manner that they cannot rotate. Taking an elemental
strip of unit width in the same manner as before (Fig. 1) and denoting by
M the bending moment per unit length acting on the longitudinal edges
of the plate, the forces acting on the strip will be as shown in Fig. 7.
The bending moment at any cross section of the strip is

2
M=% st oM,

2 2
Substituting this expression in Eq. (4), we obtain
dw S qlx | gx* M,
& DY" "eptep D (@)

The general solution of this equation, using notation (5), will be repre-
sented in the following form:

_ .1 2ux Y 2ux ql gl’z*  ql* M2
w = Cysinh 1 + Csco + ~ 8D 16uiD T 4utD ®)

Observing that the deflection curve is symmetrical with respect to the
middle of the strip, we determine the constants of integration Cy, Cs, and

1
Mo Mo
s/’ Y N\ s .
I 2 3T 2 B A
1 R /
2 2
z
Fi6. 7

the moment M, from the following three conditions:

dw o o
7170_0 forx—Oandx—i ©
w =0 forx =0

Substituting expression (b) for w, we obtain from these conditions

_ ql* 3 qlt
Ci=~i6wp 2= Tgup Oth ¥
12 [2 I ;
My = £u2 i coth u == %—2 Yi(u) (13)
where ) = 3(u — tanh w)

u? tanh u
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The deflection w is therefore given by the expression

2uzr

inh =77 +

UL
16 3[) coth u cosh e

I gl ql2e? B Ar?q[”"
SulD 8wl 16u*D

w =

q
T 16w 6D "
coth u

This can be further simplified and finally put in the following form:

2x
cosh 1 — =
q[4 { ( l >j| (15 (= )¥U ,
SN . SRS S | (e S D (14)

" 16w*D tanh u cosh u

TFor calculating the parameter u we proceed as in the previous article
and use Eq. (d) of that article. Substituting in it expression (14) for w
and performing the integration, we obtain

S(l — Vz)l g o 3 o 1 L i T 1
hE - D 256u® tanh u 25611 sinh? u G4us 384t

Substituting S from Eq. (5) and expression (3) for D, the equation for
calculating u finally becomes

gws 8L 2T 27 9
(=) = 16 e smhe T g T g (1Y)

16u” tanh «  16u® sinh

To simplify the solution of this equation we use the curve in Fig. 8, in
which the parameter u is taken as abscissa and the ordinates are equal
to logr (10* A/ U;) ,where U; denotes the right-hand side of Eq. (15).
For any given plate we begin by calculating the square root of the left-
hand side of Eq. (15), equal to Ert/[(1 — »¥)ql*], which gives us VUL
The quantity logi, (10 v/U;) then gives the ordinate of the curve in
Fig. 8, and the corresponding abscissa gives the required value of wu.

Having u«, we can begin calculating the maximum stresses in the plate.
The total stress at any point of a cross section of the strip consists of the
constant tensile stress ¢; and the bending stress. The maximum bending
stress o» will act at the built-in edges where the bending moment is the
largest. Using Eq. (10) to calculate ¢, and Eq. (13) to calculate the
hending moment Mo, we obtain

Eu? h\?
(g (z“) (16)
’l/ 2
o= = O - g(—,ﬁ) i) (17)

Ouux = 01 + 02

To simplify the calculation of the stress o», the values of the function
Y1(u) are given by a curve in Fig. 5
The maximum deflection is at the middle of the strip and is obtained by
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substituting « = (/2 in Eq. (14), from which
ql* .
wmmx Y-V Y
' 384Df1(u) (18)
24 [y U u
where u) ==l +=————5
i) !t (2 + sinh v tanh u

The funection f1() is also given by a curve in Fig. 5.
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The use of the curves in Figs. 5 and 8 will now be illustrated by a
numerical example. A long rectangular steel plate has the dimensions
! =50in., h = 4in., and ¢ = 10 psi. In such a case we have

[ E__(hY 30 - 10°
R R A _
A logye 10 VU = 2.5181

From Fig. 8 we now find u = 1.894; and from Fig. 5, ¢, = 0.8212. Sub-
stituting these values in Egs. (16) and (17), we find
30 - 108 - 1.8942 .
1= 3= 039107 3,940 pst

¢y = 4-10-10%- 0.8212 = 41,060 psi
Omx = 01 + 02 = 45,000 psi

Comparing these stress values with the maximum stresses obtained for
a plate of the same size, but with twice the load, on the assumption of
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simply supported edges (see page 11), it can be concluded that, owing to
clamping of the edges, the direct tensile stress decreases considerably,
whereas the maximum bending stress increases several times, so that
finally the maximum total stress in the case of clamped edges becomes
larger than in the case of simply supported edges.
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Proceeding as in the previous article it can be shown that the maxi-
mum stress in a plate depends only on the load ¢ and the ratio I/k, and
we can plot a set of curves giving maximum stress in terms of ¢, each
curve in the set corresponding to a particular value of I/h. Such curves
are given in Fig. 9. It is seen that for small values of the intensity of
the load g, when the effect of the axial force on the deflections of the
strip is small, the maximum stress increases approximately in the same
ratio as q increases. But for larger values of ¢ the relation between the
load and the maximum stress becomes nonlinear.

In conclusion, we give in Table 1 the numerical values of all the fune-
tions plotted in Figs. 4, 5, and 8. This table can be used instead of the
curves in calculating maximum stresses and maximum deflections of long,
uniformly loaded rectangular plates.

4, Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Elastically Built-in Edges. lLet us assume that when bending occurs,
the longitudinal edges of the plate rotate through an angle proportional
to the bending moment at the edges. In such a case the forces acting on
an elemental strip will again be of the type shown in Fig. 7, and we shall
obtain expression (b) of the previous article for the deflections w. How-
ever, the conditions at the edges, from which the constants of integration
and the moment 3, are determined, are different; viz., the slope of the
deflection curve at the ends of the strip is no longer zero but is propor-
tional to the magnitude of the moment My, and we have

dw
<d_ﬂ—7>xso = —BM, (a)

where § is a factor depending on the rigidity of restraint along the edges.
If this restraint is very flexible, the quantity 8 is large, and the conditions
at the edges approach those of simply supported edges. If the restraint
is very rigid, the quantity 8 becomes small, and the edge conditions
approach those of absolutely built-in edges. The remaining two end
conditions are the same as in the previous article. Thus we have

dw dw
(I) =~ <d_> =0 ®)
(w)x=0 =0

Using these conditions, we find both the constants of integration and the
magnitude of Mg in expression (b) of the previous article. Owing to
flexibility of the boundary, the end moments M, will be smaller than
those given by Eq. (13) for absolutely built-in edges, and the final result
can be put in the form

2
Mo = =Ly (19)
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E

TaBLE 1
logio 104 A/Usg|logio 10* A/U1|logo 10* v/ Uz | folu) ?fl(u) Yo(u) | ¥i{u)
© w © 1.000“14000 1.000|1.000
0.5 3.889 3.217 3.801 0.9080.976/0.90510.984
406 331 425
1.0 3.483 2.886 3.376 0.711/0.909|0.704 | 0.939
310 223 336
1.5 3.173 2663 3.040 0.532/0.817/0.511|0.876
262 182 292
2.0 2.911 2 .481 2.748 0.3800.715/0.367 { 0.806
227 161 257
2.5 2.684 2.320 2.491 0.281)10.617|0.268{0.736
198 146 228
3.0 2.486 2.174 2.263 0.213/0.529/0.200|0.672
175 134 202
3.5 2.311 2.040 2.061 0.166/0.45310.153 1 0.614
156 124 180
4.0 2.155 1.916 1.881 0.132/0.388: 0.120 | 0.563
141 115 163
4.5 2.014 1.801 1.718 0.107|0.335/0.097 | 0.519
128 107 148
5.0 1.886 1.694 1.570 0.088(0.29110.0790.480
118 100 135
5.5 1.768 1.594 1.435 0.074/0.254/ 0.066 | 0.446
108 93 124
6.0 1.660 1.501 1.311 0.063:0.223/0.055|0.417
100 88 115
6.5 1.560 1.413 1.196 10.054‘0,197 0.047 1 0.391
93 82 107 i
7.0 1.467 1.331 1.089 0.047|0.175/0.041 | 0.367
87 E 78 100
7.5 1.380 1.2563 0.989 0.04110.156: 0.036 | 0.347
82 74 94
8.0 1.298 1.179 0.895 0.0360.141{0.0310.328
77 70 89
8.5 1.221 1.109 0.806 t0.0320.127 0.028]0.311
73 67 83 i
9.0 1.148 1.042 0.723 '0.029|0.115,0.025|0.296
69 63 80 |
9.5 1.079 0.979 0.643 10.026/0.105] 0.022 | 0.283
65 61 75
10.0 1.014 0.918 0.568 0.024(0.096] 0.020|0.270
63 58 72
10.5 0.951 0.860 0.496 0.021/0.088[0.018|0.259
59 b5 69
11.0| 0.892 0.805 0.427 0.020/0.081:0.017 10.248
57 54 65
11.5| 0.835 0.751 0.362 0.0180.0750.015|0.238
55 51 63
12.01 0.780 0.700 0.299 0.0160.069:0.01410.229

10.

10.

11.

12.

[ ]

on




BENDING TO A CYLINDRICAL SURFACE 19
where v is 2 numerical factor smaller than unity and given by the formula
tanh u

2_lﬂ Du + tanh »

Y =

It is seen that the magnitude of the moments M, at the edges depends
upon the magnitude of the coefficient 8 defining the rigidity of the
restraint. When 8 is very small, the coefficient v approaches unity,
and the moment M, approaches the value (13) calculated for absolutely
built-in edges. When 3 is very large, the coefficient v and the moment
My become small, and the edge conditions approach those of simply
supported edges.

The deflection curve in the case under consideration can be repre-
sented in the following form:

L)
_q* tanh u — y(tanh u — ) cosh | u l B

w= T

16u*D tanh u cosh u
+3z q =) (20)

For v = 1 this expression reduces to expression (14) for deflections of a
plate with absolutely built-in edges. For v = 0 we obtain expression (6)
for a plate with simply supported edges.

In caleulating the tensile parameter u we proceed as in the previous
cases and determine the tensile force S from the condition that the exten-
sion of the elemental strip is equal to the difference between the length of
the arc along the deflection curve and the chord length {. Hence

S~ 1 _ L[ (dw:
hE ﬁ (m) de

Substituting expression (20) in this equation and performing the inte-
gration, we obtain

I22h8
ZT‘_TWZS: (1 —7)(](\+'Y(]1 _'Y(l _'Y)U‘l (21)
where U and U7, denote the right-hand sides of ligs. (8) and (15), respec-
tively, and

27 (u — tanh u)*

Uz = 16« tanh® u

(v tanh? u — u + tanh u)

The values of logio (10* v/ U>) are given in Table 1. By using this table,
Eq. (21) can be readily solved by the trial-and-error method. For any
particular plate we first calculate the left-hand side of the equation and,
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by using the curves in Figs. 4 and 8, determine the values of the parame-
ter u (1) for simply supported edges and (2) for absolutely built-in edges.
Naturally « for elastically built-in edges must have a value intermediate
between these two. Assuming one such value for u, we calculate U,, U,
and U, by using Table 1 and determine the value of the right-hand side
of Eq. (21). Generally this value will be different from the value of the
left-hand side calculated previously, and a new trial calculation with a
new assumed value for w must be made. Two such trial calculations
will usually be sufficient to determine by interpolation the value of u
satisfying Iiq. (21). As soon as the parameter u is determined, the bend-
ing moments M, at the ends may be calculated from Eq. (19). We can
also calculate the moment at the middle of the strip and find the maxi-
mum stress. This stress will oceur at the ends or at the middle, depend-
ing on the degree of rigidity of the constraints at the edges.

5. The Effect on Stresses and Deflections of Small Displacements of
Longitudinal Edges in the Plane of the Plate. It was assumed in the
previous discussion that, during bending, the longitudinal edges of the
plate have no displacement in the plane of the plate. On the basis of this
assumption the tensile force S was calculated in each particular case.
Let us assume now that the edges of the plate undergo a displacement
toward each other specified by A. Owing to this displacement the
extension of the elemental strip will be diminished by the same amount,
and the equation for caleulating the tensile force S becomes

SI(1 — »? L[ (dw)? .
At the same time Eqs. (6), (14), and (20) for the deflection curve hold
true regardless of the magnitude of the tensile force S. They may be
differentiated and substituted under the integral sign in Eq. (a). After
evaluating this integral and substituting S = 4u2D/[%, we obtain for
simply supported edges

R 3lA
e YT
(1 = )78 w: = Uy (22)
and for built-in edges
. 3lA
275 u? A T2
Bh S (23)

&?(17;"';2)225 YY)
If A is made zero, Eqgs. (22) and (23) reduce to Eqs. (8) and (15), obtained
previously for immovable edges.

The simplest case is obtained by placing compression bars between the
longitudinal sides of the boundary to prevent free motion of one edge of
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the plate toward the other during bending. Tensile forces S in the plate
produce contraction of these bars, which results in a displacement A pro-
portional to S.* If k is the factor of proportionality depending on the
elasticity and cross-sectional area of the bars, we obtain

S = kA
or, substituting 8 = 4u?D/[? we obtain
A=l BwR
k3131 — »%)
3lA
2 i
. RN )
an u? o k(1 — »?)

Thus the second factor on the left-hand side of Eqs. (22) and (23) is a
constant that can be readily calculated if the dimensions and the elastic
properties of the structure are known. Having the magnitude of this
factor, the solution of Eqs. (22) and (23) can be accomplished in exactly
the same manner as used for immovable edges.

m my
3
1
1
1l }
b
t
i
1
1
X
n

Fre. 10

In the general case the second factor on the left-hand side of Eqgs. (22)
and (23) may depend on the magnitude of the load acting on the strue-
ture, and the determination of the parameter « can be accomplished only
by the trial-and-error method. This procedure will now be illustrated
by an example that is encountered in analyzing stresses in the hull of a
ship when it meets a wave. The bottom plates in the hull of a ship are
subjected to a uniformly distributed water pressure and also to forces in
the plane of the plates due to bending of the hull as a beam. Let b be
the width of the ship at a cross section mn (Fig. 10) and [ be the frame
spacing at the bottom. When the hollow of a wave is amidships (Fig.
11b), the buoyancy is decreased there and increased at the ends. The
effect of this change on the structure is that a sagging bending moment
is produced and the normal distance [ between the frames at the bottom
is increased by a certain amount. To calculate this displacement accu-
rately we must consider not only the action of the bending moment M
on the hull but also the effect on this bending of a certain change in

* The edge support is assumed to be such that A is uniform along the edges.
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tensile forces S distributed along the edges mn and mmy of the bottom
plate mnmm, (Fig. 10), which will be considered as a long rectangular

plate uniformly loaded by water pressure.

Centroid A,. \
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Owing to the fact that the
plates between the consecutive
frames are equally loaded, there
will be no rotation at the longitu-
dinal edges of the plates, and they
may be considered as absolutely
built in along these edges.

To determine the value of A,
which denotes, as before, the dis-
placement of the edge mn toward
the edge mmn; in Fig. 10 and which
is produced by the hull bending
moment M and the tensile reactions
S per unit length along the edges
mn and mny of the bottom plate, let
us imagine that the plate mnmin, is
removed and replaced by uniformly
distributed forees S so that the to-
tal force along mn and mn, is Sb
(Fig. 12a). We can then say that
the displacement A of one frame
relative to another is due to the
bending moment M and to the

eccentric load Sb applied to the hull without bottom plating.
If A, I, and ¢ are the cross-sectional area, the centroidal moment of
inertia, and the distance from the bottom plate to the neutral axis of the



BENDING TO A CYLINDRICAL SURFACE 23

complete hull section, and if A,, T4, and ¢, are the corresponding quanti-
ties for the hull section without bottom plates, the latter set of quantities
can be derived from the former by the relations

A= A — bh
_Ac
o= (b)

[1 = I —_ bh62 - A1(C1 — 6)2

The relative displacement A; produced by the eccentrically applied forces

Sb is
_ 11— ) (Sb | Sbet
A= =g (A1 1, )

in which the factor 1 — »* must be introduced if one neglects the lateral
strain. The displacement due to the bending moment M is

. M'cll
A 7 ¢
Hence the total displacement is
_ . l(] - V2) Sb R SbC1 _ MC1
A= Rk e = s [71_1 r Iy L — ) (0
Substituting in this expression
S - 4D Fu?h®
T 3k — )
we finally obtain
_utht b be? Mle,
A=y <?ﬁ zT) ~ EL @

This quantity must be substituted in Eq. (23) for determining the tensile
parameter .

Let us apply this theory to a numerical example. Assume b = 54 ft,
I = 1668 ft!, A = 13.5 ft?, ¢ = 12.87 ft, h = 0.75 in. = 0.0625 ft,
I =45in. = 3.75 ft, ¢ = 10 pst, M = 123,500 ft-tons. From Egs. (b)
we obtain

Ay = 13.5 — 0.0625 - 54 = 10.125 ft*
o= BB 2T g
I, = 1,668 — 559.0 — 10.125(17.16 — 12.87)% = 022.7 ft*

Substituting these values in expression (d), we calculate A and finally

obtain
Sh—Af — 1.410u? — 11.48
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Equation (23) then becomes
E?R® u® + 1.4100° — 1148 _

q2(1 _:' V:z)zls w2 Ui
1.552Eht  [u? — 4763
or g(l — vz)l"‘\/ u? = VU

Substituting numerical values and taking logarithms of both sides,
we obtain
e — 4.763
3597 + IOglo \/u_,_u;i@ = lOglo (104 \V U1)
Using the curve in Fig. 8, this equation can be readily solved by the
trial-and-error method, and we obtain « = 2.187 and, from Fig. 5,

Y1(u) = 0.780. The maximum stress is now calculated by using Eqgs.
(16) and (17), from which

30 - 108 - 4.783 .
oy = ’mO—Z = 14,600 ps1
oy = % - 10-60%-0.780 = 14,040 psi
Oms = 01 + 02 = 28,640 pSi

If the bending stress in the plate due to water pressure were neglected
and if the bottom plate stress were calculated from the formulae = Me/1,
we would arrive at a figure of only 13,240 psi.

6. An Approximate Method of Calculating the Parameter . In calcu-
lating the parameter u for plates in which the longitudinal edges do not
move in the plane of the plate, we used the equation

Si(1 —»%) 1 (! /dw\?
ThE T3 / (@) e (@)

which states that the extension of an elemental strip produced by the
forces § is equal to the difference between the length of the arc along the
deflection curve of the strip and the chord length {. In the particular
cases considered in the previous articles, exact expressions for the deflec-
tions w were derived, and numerical tables and curves for the right-hand
side of Iiq. (a) were given. When such tables are not at hand, the solu-
tion of the equation becomes complicated, and to simplify the problem
recourse should be had to an approximate method. From the discussion
of bending of beams it is known! that, in the case of simply supported
ends with all lateral loads acting in the same direction, the deflection
curve of an elemental strip produced by a combination of a lateral load
and an axial tensile force S (Fig. 3) can be represented with sufficient

1 See Timoshenko, “Strength of Materials,” part II, 3d ed., p. 52, 1956.
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accuracy by the equation

_ Wy . 1r_x
w——l_'_asml ()]
in which w, denotes the deflection at the middle of the strip produced by
the latcral load alone, and the quantity « is given by the equation

S Sz
S, = D ()

o =

Thus, « represents the ratio of the axial force S to the Euler critical load
for the elemental strip.
Substituting expression (b) in Eq. (@) and integrating, we obtain

Sl — »?) m2w§

TORE T A+ )2

Now, using notation (¢) and substituting for D its expression (3), we
finally obtain
3wk

a(l + o)t = e (24)
From this equation the quantity « can be calculated in each particular
case, and the parameter u is now determined from the equation
S ra .
22 = - 2 =
=5y 1 (d)
To show the application of the approximate Eq. (24) let us take a
numerical example. A long rectangular steel plate with simply sup-
ported edges and of dimensions [ = 50 in. and A = % in. is loaded with a
uniformly distributed load ¢ = 20 psi. In such a case

- o gt
T 384 D

Wy
and, after substituting numerical values, Iq. (24) becomes
a(l + «)? = 269.56
The solution of the equation can be simplified by letting

l+a==x (e)
Then r? — 22 = 269.56

1.e., the quantity z is such that the difference between its cube and its
square has a known value. Thus z can be readily determined from a
slide rule or a suitable table, and we find in our case

x = 6.8109 and o = 5.8109
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Then, from Eq. (d)
u = 3.7865

and from the formula (¢) (see page 9)
Yo = 0.13316

IFor caleulating direct stress and maximum bending stress we use Egs.
(10) and (11). 1In this way we find

o1 = 15,759 psi
oy = 19,974 psi
Omex = 01 + 02 = 35,733 psi

The calculations made in Art. 2 (page 11) give, for this example,
Omax = 35,760 psi

Thus the accuracy of the approximate Eq. (24) is in this case very high.
In general, this accuracy depends on the magnitude of w. The error
increases with increase of u. Calculations show that for v = 1.44 the
error in the maximum stress is only 0.065 of 1 per cent and that for
u = 12.29, which corresponds to very flexible plates, it is about 0.30 of
1 per cent. These values of u will cover the range ordinarily encountered
in practice, and we conclude that Eq. (24) can be used with sufficient
accuracy in all practical cases of uniformly loaded plates with simply
supported edges.

It can also be used when the load is not uniformly distributed, as in
the case of a hydrostatic pressure nonuniformly distributed along the
elemental strip. If the longitudinal force is found by using the approxi-
mate Eq. (24), the deflections may be obtained from Eq. (b), and the
bending moment at any cross section may be found as the algebraic sum
of the moment produced by the lateral load and the moment due to the
longitudinal force.!

In the case of built-in edges the approximate expression for the deflec-
tion curve of an elemental strip can be taken in the form

0= (- 7) %

in which wy is the deflection of the built-in beam under the lateral load
acting alone and o« has the same meaning as before. Substituting this
expression in Kq. (a) and integrating, we obtain for determining « the
equation

! More accurate values for the deflections and for the bending moments can be

obtained by substituting the approximate value of the longitudinal force in Eq. (4)
and integrating this equation, which gives Egs. (12) and (9).
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o (1 + %)2 gL (25)

which can be solved in each particular case by the method suggested for
solving Eq. (24).

When « is found, the parameter u is determined from Iiq. (d); the
maximum stress can be calculated by using Egs. (16) and (17); and the
maximum deflection, by using Eq. (18).

If, during bending, one edge moves toward the other by an amount A,

the equation
Si1 —»%) 1 [Hfldw\?
TRE T3 ﬁ ds) @4 @)

must be used instead of Eq. (a). Substituting expression (b) in this
equation, we obtain for determining « in the case of simply supported
edges the equation

a(l + a)? T = 200 (26)

In the case of built-in edges we use expression (f). Then for determin-
ing a we obtain

I . L (27)
“ 4 a R

If the dimensions of the plate and the load ¢ are given, and the displace-
ment A is known, Iigs. (26) and (27) can both be readily solved in the
same manner as before. If the displacement A is proportional to the
tensile force S, the second factor on the left-hand sides of Eqs. (26) and
(27) is a constant and can be determined as explained in the previous
article (see page 21). Thus again the equations can be readily solved.

7. Long Uniformly Loaded Rectangular Plates Having a Small Initial
Cylindrical Curvature. It is seen from the discussions in Arts. 2 and 3
that the tensile forces S contribute to the strength of the plates by
counteracting the bending produced by lateral load. This action
increases with an increase in deflection. A further reduction of maxi-
mum stress can be accomplished by giving a suitable initial curvature
to a plate. The effect on stresses and deflections of such an initial curva-
ture can be investigated' by using the approximate method developed in
the previous article.

Let us consider the case of a long rectangular plate with simply sup-
ported edges (Fig. 13), the initial curvature of which is given by the
equation

1 See S. Timoshenko’s paper in “Festschrift zum sicbzigsten Geburtstage August
Foppls,” p. 74, Berlin, 1923.



28 THEORY OF PLATES AND SHELLS

wy = § sin 7—2—” (a)
If tensile forces S are applied to the edges of the plate, the initial
deflections (a) will be reduced in the ratio 1/(1 4 «), where « has the
same meaning as in the previous article! (page 25). The lateral load in
combination with the forces S will produce deflections that can be
expressed approximately by Eq. () of the previous article. Thus the
total deflection of the plate, indicated in Fig. 13 by the dashed line, is
0 in T = b+ wa sin T o
T+a™7 " 1T4a™7 )
Assuming that the longitudinal edges of the plate do not move in the
plane of the plate, the tensile force S is found from the condition that
the extension of the elemental strip produced by the forces S is equal to

8 . T
w = ’1’:{_& sin -l_ —‘—

the difference between the length of the are along the deflection curve
of the elemental strip and the initial length of the strip. This difference,
in the case of small deflections, is given by the equation

L v fdwN 1 [ (dw\?
)‘—iﬁ<cﬁ)d"v—§[)(%)dx (e)

Substituting expressions (¢) and (b) for w and w,; and integrating, we

obtain
_7"_2 5+w02_ 2
G

Putting X\ equal to the extension of the strip SI(1 — »?)/hE, we finally
obtain

a(l + a)? = (28)

36 + wo)r  36°(1 + a)?
h? h?
If we take 8 = 0, this equation reduces to Eq. (24) for a plate without
initial curvature.
To show the effect of the initial curvature on the maximum stress in a
plate, let us apply Eq. (28) to a numerical example. Assume that a
steel plate having I = 45 in. and A = 2 in. is submitted to the action of

1 See Timoshenko, “Strength of Materials,” part I1, 3d ed., p. 52, 1956.
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a uniformly distributed load ¢ = 10 psi. If there is no initial deflection,
8 = 0 and Eq. (28) becomes

a(l 4+ a)? = 290
from which

= 5.97 and u Va = 3.83

-7
T2
From Eq. (10) we then obtain

o1 = 11,300 psi
and from Eq. (11)
oy = 14,200 psi

The maximum stress in the plate is
Omax = 01 + 02 = 25,500 psi

Let us now assume that there is an initial deflection in the plate such that
8 = h = 2in. In such a case Eq. (28) gives

a(l + a)? = 351.6 — 3(1 + «a)?
Letting
l+a=1z
we obtain
x® + 222 = 351.6
from which

z =645 o =545 u=gx/&=3.67

The tensile stress, from Kq. (10), is
a1 = 10,200 psi

In calculating the bending stress we must consider only the change in
deflections

. T T
S1n ——

= Wy - wd . Tr
w—w1—~—1+a ] 1~r_asml (d)

The maximum bending stress, corresponding to the first term on the
right-hand side of Eq. (d), is the same as for a flat plate with « = 3.67.
Trom Table 1 we find ¢, = 0.142 and from Iiq. (11)

ol = 15,300 psi
The bending moment corresponding to the second term in Eq. (d) is

d? _ ad . T __*CEZBD Sin-lr—x
e\ 1+ T )T T aFr™




30 THEORY OF PLATES AND SHELLS

This moment has a negative sign, and a corresponding maximum stress of
y_ 6 ar’dD
TR F i

must be subtracted from the bending stress o caleulated above. Hence
the maximum stress for the plate with the initial deflection is

Omax = 10,200 - 15,300 — 9,500 = 16,000 psi

= 9,500 psi

Comparison of this result with that obtained for the plane plate shows
that the effect of the initial curvature is to reduce the maximum stress
from 25,500 to 16,000 psi. This result is obtained assuming the initial
deflection equal to the thickness of the plate. By increasing the initial
deflection, the maximum stress can be reduced still further.

8. Cylindrical Bending of a Plate on an Elastic Foundation. Let us consider the
problem of bending of a long uniformly loaded rectangular plate supported over the
entire surface by an elastic foundation and rigidly supported along the edges (Fig. 14).

Cutting out from the plate an elemental strip, as before, we may consider it as a beam
on an elastic foundation. Assuming that the reaction of the foundation at any point
is proportional to the deflection w at that point, and using Eq. (4), we obtain by double
differentiation of that equation!

dw

D
dx!

=q - kw (29)

where ¢ is the intensity of the load acting on the plate and % is the reaction of the
foundation per unit area for a deflection equal to unity. Introducing the notation

1 [k
ﬂ—— aD (30)

the general solution of Eq. (29) can be written as follows:

2 2 2
=1 + C; sin — 262 sinh ﬂ + Cqsin ﬂ cosh —B—I- + C3 cos — 28z sinh Q_Bx
k l l l l l l
28x 2
+ C4cos f cosh L;x (a)

The four constants of integration must now be determined from the conditions at the
ends of the strip. In the case under consideration the deflection is symmetrical with
respect to the middle of the strip. Thus, taking the coordinate axes as shown in Fig,

L Ibid., p. 21.
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14, we conclude! that C; = C3 = 0. The constants C: and C, are found from the
conditions that the deflection and the bending moment of the strip are zero at the end
(x = 1/2). Hence

(w):=l/2 =0

d2w -0 ®)
dz? Joe

Substituting expression (@) for w and observing that C: = C; = 0, we obtain

g + Cysin 8sinh 8 + Cycos Beosh 8 =0
k ()

CicosBecoshB — Cysin Bsinh 8 =0
from which we find

q sin @ sinh 8 _ ¢ 2sin B sinh 8
Ci= - % sin? 8 sinh? B + cos? B cosh? 8 ~ kcos 28 4+ cosh 28

q cos 8 cosh B ¢ 2 cos B cosh B
Ci= — % sin? B8 sinh? 8 + cos? 8 cosh? g3 =~ % cos 28 + cosh 238

Substituting these values of the constants in expression (a) and using Eq. (30), we
finally represent the deflection of the strip by the equation

qlt 2sin Bsinh 8 . 28xr . 26z
W= —— — ——————— sin — sinh —
64D3* cos 28 -+ cosh 28 4 l
2 cos B cosh B 28x 28z
" cos 28 + cosh 28 cos l cosh l @

The deflection at the middle is obtained by substituting £ = 0, which gives

@)ems = 225 @)
W)eso = 70—

* 384D ° ®1)

6 2 cos B cosh 8
h =— (1 - ="
where . o (8) 534 ( cos 28 + cosh 26)
To obtain the angles of rotation of the edges of the plate, we differentiate expression
(d) with respect to z and put # = —[/2. In this way we obtain
dw ql3
( = )h_m A (32)

where () = ismh 28 — sin 28
483 cosh 28 4 cos 28

The bending moment at any cross section of the strip is obtained from the equation

20y
M= _pt®
dx?
Substituting expression (d) for w, we find for the middle of the strip
q?
(Mo = r #2(8) (33)
where oo(8) = 2  sinh Bsin g

8% cosh 28 + cos 28

1 Tt is seen that the terms with coefficients C» and C'; change sign when z is replaced
by —=z.
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To simplify the calculation of deflections and stresses, numerical values of functions
@, o1, and @ are given in Table 2. For small values of 8, that is, for a yielding founda-
tion, the functions ¢ and ¢; do not differ greatly from unity. Thus the maximum
deflection and bending stresses are close to those for a simply supported strip without
an elastic foundation. With an increase in 8, the effect of the foundation becomes
more and more important.

P z p
S SN D —
I
SRS
S N
A%
Fia. 15

Conditions similar to those represented in Fig. 14 are obtained if a long rectangular
plate of width ! is pressed into an elastic foundation by loads uniformly distributed
along the edges and of the amount P per unit length (Fig. 15). The plate will be

TABLE 2
B @ 1 2 ¢ ¢ @1 @2
0.1 1.000 1.000 1.000 1.6 0.186 0.200 0.164
0.2 0.999 0.999 0.999 1.7 0.151 0.166 0.129
0.3 0.996 0.995 0.995 1.8 0.124 0.138 0.101
0.4 0.984 0.983 0.983 1.9 0.102 0.116 0.079
0.5 0.961 0.961 0.959 2.0 0.084 0.099 0.062
0.6 0.921 0.923 0.919 2.2 0.058 0.072 0.037
0.7 0.863 0.866 0.859 2.4 0.042 0.055 0.021
0.8 0.787 0.791 0.781 2.6 0.029 0.043 0.011
0.9 0.698 0.702 0.689 2.8 0.022 0.034 0.005
1.0 0.602 0.609 0.591 3.0 0.016 0.028 0.002
1.1 0.508 0.517 0.494 3.2 0.012 0.023 0.000
1.2 0.421 0.431 0.405 3.4 0.010 0.019 —0.001
1.3 0.345 0.357 0.327 3.6 0.007 0.016 —-0.002
1.4 0.281 0.294 0.262 3.8 0.006 0.014 —0.002
1.5 0.228 0.242 0.208 4.0 0.005 0.012 —0.002

pressed into the elastic foundation and bent, as shown by the dashed line. If §denotes
the deflection at the edges of the plate, the reaction of the foundation at any point is

k(6 —w) = ks — kw

where w is given by Eq. (d) with ¢ = k8. The magnitude of 5 is then obtained from
the condition that the load is balanced by the reaction of the foundation. Hence

ksl 1/2
P=———k/ w dz
2 0

Plates on elastic foundation with other conditions at the longitudinal edges can
also be discussed in a similar manner.



CHAPTER 2

PURE BENDING OF PLATES

9. Slope and Curvature of Slightly Bent Plates. 1In discussing small
deflections of a plate we take the middle plane of the plate, before bend-
ing occurs, as the zy plane. During bending, the particles that were in
the zy plane undergo small displacements w perpendicular to the zy plane
and form the middle surface of the plate. These displacements of the
middle surface are called deflections of a plate in our further discussion.
Taking a normal section of the plate parallel
to the zz plane (Fig. 16a), we find that the
slope of the middle surface in the z direction
184, = ow/dx. Inthesame manner the slope
in the y direction is 7, = dw/dy. Taking
now any direction an in the zy plane (Fig.
16b) making an angle a with the x axis, we find
that the difference in the deflections of the two
adjacent points a and a, in the an direction is

dw Jw
dw = ﬂdx-{—@dy

and that the corresponding slope is Fre. 16

a.__w = QLU @ ?_/ILU_ .Cﬁ_/ = éfb_li cos + a_/lg 1 (

dn _ dzdn ' dydn  9x o T gy S« a)
To find the direction «; for which the slope is a maximum we equate to
zero the derivative with respect to « of expression (a). In this way we

obtain
Jw /ow
tan o = 5_9/55 ()

Substituting the corresponding values of sin a; and cos a1 in (a), we obtain
for the maximum slope the expression

ow\ \f aw)® |, (ow)
G0)... =G + () ©
By setting expression (a) equal to zero we obtain the direction for which
33
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the slope of the surface is zero. The corresponding angle «. is deter-
mined from the equation
dw /ow

tan a; = ~ %/ 5 (d)

From Eqgs. (b) and (d) we conclude that
tan a; tan ay = —1

which shows that the directions of zero slope and of maximum slope are
perpendicular to each other.

In determining the curvature of the middle surface of the plate we
observe that the deflections of the plate are very small. In such a case
the slope of the surface in any direction can be taken equal to the angle
that the tangent to the surface in that direction makes with the zy plane,
and the square of the slope may be neglected compared to unity. The
curvature of the surface in a plane parallel to the 2z plane (Fig. 16) is
then numerically equal to

1_ 9 fow)_ 9w
r.  dx\dx /)  oz? (€)

We consider a curvature positive if it is convex downward. The minus
sign is taken in Eq. (e), since for the deflection convex downward, as
shown in the figure, the second derivative 9%w/adx? is negative.

In the same manner we obtain for the curvature in a plane parallel to

the yz plane
1 a [ow 2w
oA T1¢7) R 2

These expressions are similar to those used in discussing the curvature
of a bent beam.
In considering the curvature of the middle surface in any direction an

(Fig. 16) we obtain
1__ 9 fow
rn dn\dn

Substituting expression (a) for dw/dn and observing that

c',—=icos —I—isin
an gz o F T gyt

1 3 J . dw dw .
E-— —(za—xCOSa—i—(—ﬁmna>(a~i COSa—{-Ebllla)

2, 92 . w
= - (37112} cos? a + 20951(;)3} sin @ cos « + 3_1%0 s1n2a>

1 . 1 . 1.,
Ecos a h—ysm 2a+r,, sin? @ ()
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It is seen that the curvature in any direction n at a point of the middle
surface can be caleulated if we know at that point the curvatures

i__dw 1 _ w
r.  0x? ry  0y?
and the quantity
1 2w
771__,, T oz oy (h)

which is called the twist of the surface with respect to the z and y axes.
If instead of the direction an (Fig. 16b) we take the direction at per-

pendicular to an, the curvature in this new direction will be obtained from

expression (¢g) by substituting 7/2 + « for @. Thus we obtain

1 . 1 . 1
l=~sm2a—i——s1n2oz—l—~cos2a @)
Y T Tay T,

Adding expressions (g) and (z'), we find

S =t (34)
T ’f'm Ty
which shows that at any point of the middle surface the sum of the
curvatures in two perpendicular directions such as n and ¢ is independent
of the angle . This sum is usually called the average curvature of the
surface at a point.

The twist of the surface at @ with respect to the an and at directions is

1 _d dw
Tng dt

In calculating the derivative with respect to #, we observe that the
direction at is perpendicular to an. Thus we obtain the required deriva-
tive by substituting 7/2 4+ « for « in Eq. (a). In this manner we find

1 _ —a~cos —f—-(?—sin —awil -I—aw
=\ a 3 a 35 Sin @ 3y CoS «

1 . 9w 2w 92w

_—_ @ 2 — Q —

—2bln a< 12+6J>+0052aaxay

= 1 in 2 i — — )+ cos 20 — (N
3 Sin 2o " r C 47 Tor J

In our further discussion we shall be interested in finding in terms of «
the directions in which the curvature of the surface is a maximum or a
minimum and in finding the corresponding values of the curvature. We
obtain the necessary equation for determining o by equating the deriva-
tive of expression (g) with respect to « to zero, which gives

isin2a+%0082a—%sin2a=0 (k)

Tz zy v
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whence
2

tan 2a = — T rwl (35)

Tz Ty

From this equation we find two values of «, differing by /2. Substitut-
ing these in Eq. (g) we find two values of 1/r,, one representing the
maximum and the other the minimum curvature at a point a of the sur-
face. These two curvatures are called the principal curvatures of the
surface; and the corresponding planes naz and faz, the principal planes of
curvature.

Observing that the left-hand side of Eq. (k) is equal to the doubled
value of expression (), we conclude that, if the directions an and at (Fig.
16) are in the principal planes, the corresponding twist 1/7,; is equal to
Zero.

We can use a circle, similar to Mohr’s circle representing combined
stresses, to show how the curvature and the twist of a surface vary with
the angle . To simplify the discussion we assume that the coordinate
planes zz and yz are taken parallel to the principal planes of curvature
at the point a. Then

T — =0
1 Tey
0 ‘ T and we obtain from Egs. (g) and (§)

YT for any angle o

1 1 .

o= cos? o -+ ;1-- sin? «

n z Y Al
Trt L_ 1/t 1\, (36)

Fre. 17 e 2\ 1)t

Taking the curvatures as abscissas and the twists as ordinates and con-
structing a circle on the diameter 1/r, — 1/r,, as shown in Fig. 17, we see
that the point A4 defined by the angle 2« has the abscissa
—_ i — 1 1 1/1
OB = 0C + CB =l<;‘+ >+_<— “—1>0082a
xz

2 Ty 2\r: 1,

1 1.
= —cos® o + —-sin* a
re ry

m=l<i—i>sin2a

and the ordinate

2\r, 1y
Comparing these results with formulas (36), we conclude that the coordi-
* See 8. Timoshenko, ““Strength of Materials,” part I, 3d ed., p. 40, 1955.
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nates of the point A define the curvature and the twist of the surface for
any value of the angle o. It is seen that the maximum twist, represented
by the radius of the circle, takes place when a = /4, 7.e., when we take
two perpendicular directions bisecting the angles between the principal
planes.

In our example the curvature in any direction is positive; hence the
surface is bent convex downward. If the curvatures 1/r, and 1/r, are
both negative, the curvature in any direction is also negative, and we have
a bending of the plate convex upward. Surfaces in which the eurvatures
in all planes have like signs are called synclastic. Sometimes we shall
deal with surfaces in which the two principal eurvatures have opposite
signs. A saddle is a good example. Such surfaces are called anticlastic.
The circle in I'ig. 18 represents a particular case of such surfaces when

My
4 X
My
My

A~
y/ My

"nt z

Fig. 18 Fra. 19

1/r, = —1/r.. It is seen that in this case the curvature becomes zero

for @ = #/4 and for @ = 3r/4, and the twist becomes equal to +1/7,.
10. Relations between Bending Moments and Curvature in Pure
Bending of Plates. In the case of pure bending of prismatic bars a
rigorous solution for stress distribution is obtained by assuming that
cross sections of the bar remain plane during bending and rotate only
with respect to their neutral axes so as to be always normal to the deflec-
tion curve. Combination of such bending in two perpendicular directions
brings us to pure bending of plates. Let us begin with pure bending of a
rectangular plate by moments that are uniformly distributed along the
edges of the plate, as shown in Tig. 19. We take the zy plane to coincide
with the middle plane of the plate before deflection and the 2 and y axes
along the edges of the plate as shown. The z axis, which is then per-
pendicular to the middle plane, is taken positive downward. We denote
by M. the bending moment per unit length acting on the edges parallel
to the y axis and by M, the moment per unit length acting on the edges
parallel to the z axis. These moments we consider positive when they
are directed as shown in the figure, 7.e., when they produce compression
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in the upper surface of the plate and tension in the lower. The thickness
of the plate we denote, as before, by h and consider it small in comparison
with other dimensions.

Let us consider an element cut out of the plate by two pairs of planes
parallel to the zz and yz planes, as shown in Fig. 20. Since the case shown
in Tig. 19 represents the combination of two uniform bendings, the stress
conditions are identical in all elements, as shown in I'ig. 20, and we have

a uniform bending of the plate. Assuming
_Commdi > that during bending of the plate the lateral

dy 7 3 . .
- ! i sides of the clement remain plane and rotate
= 2 about the neutral axes nn 50 as to remain nor-
A== ¢ mal to the deflected middle surface of the
S R }____n___ n plate, it can be concluded that the middle
z ~’d G 2
4 v __ bl 7 plane of the plate does not undergo any ex-
¥ syl P . . . . !
ey tension during this bending, and the middle
Fre. 20 surface is therefore the neutral surface.! Let

1/r. and 1/r, denote, as before, the curva-
tures of this neutral surface in sections parallel to the xz and yz planes,
respectively. Then the unit elongations in the x and y directions of an
elemental lamina abed (I'ig. 20), at a distance z from the neutral surface,
are found, as in the case of a beam, and are equal to

z z
€ = T & = ;; (@)

Using now Hooke’s law [Eq. (1), page 5], the corresponding stresses in
£

the lamina abed are
Ez 1 1
e T T, <r_, Vr—y>

_ B (1,1 ©
T T e\, Y

These stresses are proportional to the distance z of the lamina abed from
the neutral surface and depend on the magnitude of the curvatures of the
bent plate.

The normal stresses distributed over the lateral sides of the element in
Fig. 20 can be reduced to couples, the magnitudes of which per unit
length evidently must be equal to the external moments M. and M,. In
this way we obtain the equations

[ o dydz = M.dy
e ©
/ opzdrdz = M, dx

—h/2

ol

1 It will be shown in Art. 13 that this conclusion is accurate enough if the deflections
of the plate are small in comparison with the thickness h.
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Substituting expressions () for o, and ¢,, we obtain

1 1 92w 9w
M,=D(E+VE>_—D(6—ﬁ+u6—y§> (37)

1 1 ow %w
My:D(’I‘_y_*—VE)_—D(W_FVa—CL‘E) (38)

where D is the flexural rigidity of the plate defined by Iiq. (3), and w
denotes small deflections of the plate in the z direction.

Let us now consider the stresses acting on a section of the lamina
abed parallel to the z axis and inclined to the z and y axes.  If acd (Iig. 21)
represents a portion of the lamina cut by such a section, the stress acting
on the side ac can be found by means of the equations of statics. Resolv-
ing this stress into a normal component o, and a shearing component 7,

5]

Fra. 21

the magnitudes of these components are obtained by projecting the forees
acting on the element acd on the n and t directions respectively, which
gives the known equations

on = 05 c08% ¢ + 0, sin? «
T = 4(0, — 02) sin 2

(d)

in which « is the angle between the normal #» and the x axis or hetween
the direction ¢ and the y axis (IFig. 21a). The angle is considered positive
if measured in a clockwise direction.

Considering all laminas, such as acd in Fig. 21b, over the thickness of
the plate, the normal stresses o give the bending moment acting on the

section ac of the plate, the magnitude of which per unit length along ac
is

Mn = fh/z onl dz = Mz cos? o + MV sin? a (39)

—h/2

The shearing stresses 7., give the twisting moment acting on the section
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ac of the plate, the magnitude of which per unit length of ac is

Mu = = [" iz de = } sin 2a(M. ~ M,) (40)
The signs of M, and M,, are chosen in such a manner that the positive
values of these moments are represented by vectors in the positive direc-
tions of n and ¢ (Fig. 21a) if the rule of the right-hand screw is used.
When a is zero or =, Eq. (39) gives M, = M.. For a = x/2 or 3x/2, we
obtain M, = M,. The moments M,, become
zero for these values of «. Thus we obtain
the conditions shown in Fig. 19.

Equations (39) and (40) are similar to Egs.

0 Mn (36), and by using them the bending and

twisting moments can be readily calculated

Mo r for any value of @. We can also use the
n

graphical method for the same purpose and
find the values of M, and M, from Mohr’s
circle, which can be constructed as shown in the previous article by tak-
ing M, as abscissa and M,, as ordinate. The diameter of the circle will
be equal to M, — M, as shown in I'ig. 22.  Then the coordinates OB and
AB of a point A, defined by the angle 2«, give the moments 3, and M
respectively.

Let us now represent M, and M, as functions of the curvatures and
twist of the middle surface of the plate. Substituting in Eq. (39) for
M. and M, their expressions (37) and (38), we find

Fra. 22

nit

1 1. L. 1
M,=D <; cos? a + — sin? a> + D (— sin? o + — cos? a)
e Ty s Ty
Using the first of the equations (36) of the previous article, we conclude
that the expressions in parentheses represent the curvatures of the middle
surface in the n and ¢ directions respectively. Hence

1 9? 9w

Mn=D(rln+uE)=—D<M7§+y3ﬁ> 1)

To obtain the corresponding expression for the twisting moment M,,,
let us consider the distortion of a thin lamina abed with the sides ab and
ad parallel to the n and { directions and at a distance z from the middle
plane (Fig. 23). During bending of the plate the points a, b, ¢, and d
undergo small displacements. The components of the displacement of
the point a in the n and ¢ directions we denote by w and v respectively.
Then the displacement of the adjacent point d in the n direction is
u + (du/d¢) dt, and the displacement of the point b in the ¢ direction is
v + (8v/dn) dn. Owing to these displacements, we obtain for the shear-
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ing strain
du v

REY :6—t+% (6)

The corresponding shearing stress is

L [ ou dv
Tnt = G <87 + %) (f)

I'rom Iig. 23b, representing the section of the middle surface made by
the normal plane through the n axis, it may be seen that the angle of
rotation in the counterclockwise direction of an element pg, which
initially was perpendicular to the zy plane, about an axis perpendicular
to the nz plane is equal to —~dw/dn. Owing to this rotation a point of the

*
?\0/4"\
//\\\ % o
) // cl, \7\\\ )
K b
v /
TN g
™ b\‘ by oL
t /// ¥ 0,7\%
/
y U+%%dt
(a) €
Fra. 23

element at a distance z from the neutral surface has a displacement in the
n direction equal to
U = —z gw
an
Jonsidering the normal section through the i axis, it can be shown that
the same point has a displacement in the ¢ direction equal to
p =~ 2
B at
Substituting these values of the displacements % and » in expression (f),
we find

. 0w
Tt = — 2Gz am (42)
and expression (40) for the twisting moment becomes
h/2 Gh® 3w %w
b = — n = — = — 4‘.3
o /ﬁh/g e dz = anar — DU T g (43)
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It is seen that the twisting moment for the given perpendicular directions
n and ¢ is proportional to the twist of the middle surface corresponding to
those directions. When the n and ¢ directions coincide with the z and
y axes, there are only bending moments M, and M, acting on the sections
perpendicular to those axes (IFig. 19). Hence the corresponding twist is
zero, and the curvatures 1/r, and 1/r, are the principal curvatures of the
middle surface of the plate. They can readily be calculated from
Eqgs. (37) and (38) if the bending moments M, and M, are given. The
curvature in any other direection, defined by an angle @, can then be
calculated by using the first of the equations (36), or it can be taken from
Fig. 17.

Regarding the stresses in a plate undergoing pure bending, it can be
concluded from the first of the equations (d) that the maximum normal
stress acts on those sections parallel to the 2z or yz planes. The magni-
tudes of these stresses are obtained from Kqgs. (b) by substituting z = h/2
and by using Egs. (37) and (38). In this way we find

6, 6M
(0'::) max — h2 (G'U) max h2 Y (4.4)

If these stresses are of opposite sign, the maximum shearing stress acts in
the plane bisecting the angle between the az and yz planes and is equal to

! 3(M,— M ~
Tmax = 3 (0'35 — a'y) = _(_hTJl (40)

If the stresses (44) are of the same sign, the maximum shear acts in the
plane bisecting the angle between the 2y and zz planes or in that bisecting
the angle between the 2y and yz planes and is equal 10 3(0y) max OF 4(02) mas,
depending on which of the two principal stresses (o,)max OF (02)mex 1S
greater.

11. Particular Cases of Pure Bending. In the discussion of the previ-
ous article we started with the case of a rectangular plate with uniformly
distributed bending moments acting along the cdges. To obtain a gen-
eral case of pure bending of a plate, let us imagine that a portion of any
shape is cut out from the plate considered above (Fig. 19) by a cylindrical
or prismatic surface perpendicular to the plate. The conditions of bend-
ing of this portion will remain unchanged provided that bending and
twisting moments that satisfy Eqs. (39) and (40) are distributed along the
boundary of the isolated portion of the plate. Thus we arrive at the
case of pure bending of a plate of any shape, and we conclude that pure
bending is always produced if along the edges of the plate bending
moments M, and twisting moments M, are distributed in the manner
given by Egs. (39) and (40).

Let us take, as a first example, the particular case in which

M,=M,=M
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It can be concluded, from Egs. (39) and (40), that in this case, for a plate
of any shape, the bending moments are uniformly distributed along the
entire boundary and the twisting moments vanish. From Eqs. (37) and
(38) we conclude that

1 1 M

nrn DO (40)
1.e., the plate in this case is bent to a spherical surface the curvature of
which is given by Iiq. (46).

In the general case, when M, is different from M,, we put

M r = ZWI and M w = M [
Then, from Eqgs. (37) and (38), we find

w _ My — i,
x* D — »?)
w _ My = oM, @
3y D1 — »?)
and in addition
02w
ox oy 0 ()

Integrating these equations, we find

My, —vM, , M:—vM, ]
Tapa -t Tapa =AY T Ot Oyt G @

w =

where €, C,, and C; are constants of integration. These constants
define the plane from which the deflections w are measured. If this
plane is taken tangent to the middle surface of the plate at the origin,
the constants of integration must be equal to zero, and the deflection
surface is given by the equation

1111_1/]]12 2 ]L[g—*VMl
“apa=m* “apa =Y (@)

In the particular case where M; = M, = M, we get from Eq. (d)

M@ + )
~ 3D + v) e)

w =

i.e., a paraboloid of revolution instead of the spherical surface given by
Eq. (46). The inconsistency of these results arises merely from the use
of the approximate expressions 9%*w/8z* and 8%*w/dy? for the curvatures
1/r, and 1/r, in deriving Eq. (¢). These second derivatives of the
deflections, rather than the exact expressions for the curvatures, will be
used also in all further considerations, in accordance with the assump-
tions made in Art. 9. This procedure greatly simplifies the fundamental
equations of the theory of plates.



44 THEORY OF PLATES AND SHELLS

Returning now to Eq. (d), let us put M, = —M;. In this case the
principal curvatures, from Kqgs. (a), are

1 1 ow M,

nT T T e T DO - )
and we obtain an anticlastic surface the equation of which is
M,
ot N O SR \
w S =3 (@® = y?) (9)

Straight lines parallel to the z axis become, after bending, parabolic
curves convex downward (Fig. 24), whereas straight lines in the y direc-
tion become parabolas convex upward. Along the lines bisecting the
angles between the x and y axes we have © = y, or t = —y; thus deflec-
tions along these lines, as seen from Eq. (¢), are zero. All lines parallel
to these bisecting lines before bending remain straight during bending,
rotating only by some angle. A rectangle abed bounded by such lines

will be twisted as shown in I'ig. 24.

Imagine normal sections of the plate
x along lines ab, be, cd, and ad. Irom

Eqgs. (39) and (40) we conclude that

bending moments along these sections

are zero and that twisting moments

along sections ad and bc are equal to

M, and along sections ab and ed are
equal to —M;. Thus the portion abed of the plate is in the condition of
a plate undergoing pure bending produced by twisting moments uni-
formly distributed along the edges (Fig. 25a). These twisting moments
are formed by the horizontal shearing stresses continuously distributed
over the edge [Eq. (40)]. This horizontal stress distribution can be
replaced by vertical shearing forces which produce the same effect as
the actual distribution of stresses. To show this, let the edge ab be
divided into infinitely narrow rectangles, such as mnpq in Fig. 25b. If
A is the small width of the rectangle, the corresponding twisting couple
is M 1A and can be formed by two vertical forees equal to M, acting along
the vertical sides of the rectangle. This replacement of the distributed
horizontal forces by a statically equivalent system of two vertical forces
cannot cause any sensible disturbance in the plate, except within a distance
comparable with the thickness of the plate,’ which is assumed small.
Proceeding in the same manner with all the rectangles, we find that all
forces M, acting along the vertical sides of the rectangles balance one
another and only two forces M, at the corners a and d are left. Making

Fic. 24

t This follows from Saint Venant's principle; see 8. Timoshenko and J. N. Goodier,
“Theory of Elasticity,” 2d ed., p. 33, 1951.
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the same transformation along the other edges of the plate, we conclude
that bending of the plate to the anticlastic surface shown in Fig. 25a can
be produced by forces concentrated at the corners! (Fig. 25¢). Such an
experiment, is comparatively simple to perform, and was used for the
experimental verification of the theory of bending of plates discussed
above.z Inthese experiments the deflections of the plate along the line bod
(Fig. 24) were measured and were found to be in very satisfactory agree-
ment with the theorctical results obtained from Eq. (g). Some dis-
crepancies were found only near the edges, and they were more pro-

oM,
d

(¢

QMl
Fie. 25

nounced in the case of comparatively thick plates, as would be expected
from the foregoing discussion of the transformation of twisting couples
along the edges.

As a last example let us consider the bending of a plate (Fig. 19) to a
cylindrical surface having its generating line parallel to the y axis. In
such o case 0%w/dy? = 0, and we find, from Eqgs. (37) and (38),

2 i 2
e M= —D5h ()

dx?

M,= —D

It is seen that to produce bending of the plate to a cylindrical surface
we must apply not only the moments M, but also the moments 1/,.
Without these latter moments the plate will be bent to an anticlastic
surface.> The first of equations (h) has already been used in Chap. 1 in
discussing the bending of long rectangular plates to a cylindrical surface.
Although in that discussion we had a bending of plates by lateral loads
and there were not only bending stresses but also vertical shearing stresses

! This transformation of the force system acting along the edges was first suggested
by Lord Kelvin and P. G. Tait; see “Treatise on Natural Philosophy,” vol. 1, part 2,
p. 203, 1883.

2 Such experiments were made by A. Nddali, Forschungsarb., vols. 170, 171, Berlin,
1915; sce also his book ““Elastische Platten,” p. 42, Berlin, 1925.

3 We always assume very small deflections or else bending to a developable surface.
The case of bending to a nondevelopable surface when the deflections are not small
will be discussed later; see p. 47.
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acting on sections perpendicular to the z axis, it can be concluded from a
comparison with the usual beam theory that the effect of the shearing
forces is negligible in the case of thin plates, and the equations developed
for the case of pure bending can be used with sufficient accuracy for
lateral loading,.

12, Strain Energy in Pure Bending of Plates. If a plate is bent by
uniformly distributed bending moments M, and M, (Fig. 19) so that the
zz and yz planes are the principal planes of the deflection surface of the
plate, the strain energy stored in an element, such as shown in Fig. 20,
is obtained by caleulating the work done by the moments M. dy and M, dx
on the element during bending of the plate. Since the sides of the ele-
ment remain plane, the work done by the moments M, dy is obtained by
taking half the product of the moment and the angle between the corre-
sponding sides of the element after bending. Since - ad2w/9x? represents
the curvature of the plate in the zz plane, the angle corresponding to the
moments M, dy is — (8*w/dx?) dx, and the work done by these moments is

1 9w

- =M

5 M= 52 de dy

An analogous expression is also obtained for the work produced by the
moments M, dr. Then the total work, equal to the strain energy of the
element, is

. 1 3w a*w
dV = i(ﬂlza—gc?-i—MUW)dxdy

Substituting for the moments their expressions (37) and (38), the strain
energy of the elements is represented in the following form:

1 ?w\? J2w\? d%w 9w
Since in the case of pure bending the curvature is constant over the
entire surface of the plate, the total strain energy of the plate will be

obtained if we substitute the area A of the plate for the elementary area
dx dy in expression (@¢). Then

1 2w\ 2 92 2 2 2
v =5 D4 [(W) + <—6yi‘;> + 2 % %;i;] 47)
If the directions & and y do not coincide with the principal planes of
curvature, there will act on the sides of the element (Fig. 20) not only
the bending moments M, dy and M, dz but also the twisting moments
M., dy and M, dz. The strain energy due to bending moments is repre-
sented by expression (a). In deriving the expression for the strain energy

due to twisting moments M, dy we observe that the corresponding angle
of twist is equal to the rate of change of the slope dw/dy, as z varies,
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multiplied with dz; hence the strain energy due to M,, dy is

1 1w
§ Mzz/ Tag dl‘ dy

which, applying Eq. (43), becomes

1 2
QD(] —v)(a 6) dx dy

The same amount of energy will also be produced by the couples M. dz,
s0 that the strain energy due to both twisting couples is

D( - v)( ) dx dy (®)

Since the twist does not affect the work produced by the bending
moments, the total strain energy of an element of the plate is obtained by
adding together the energy of bending (a) and the energy of twist ().
Thus we obtain

1 A’w\? *w\? 0w 9w
—_— = —_— + — + 2 —_— ."
av 2 D [(&r?) <0y2> gy 61/2] dv dy
+ D1 — v)( ) dz dy

or

1 w | 9w\ 02w 9w 02w \?
J = = —_—9 _ DRt
d 2 D [(61‘2 + 8_1/2> 2(1 ) {6.@2 EPE <8;t ay) “ dz dy
48)

The strain energy of the entire plate is now obtained by substituting
the area A of the plate for the elemental area dx dy. Expression (48)
will be used later in more complicated cases of bending of plates.

13. Limitations on the Application of the Derived Formulas. In dis-
cussing stress distribution in the case of pure bending (Art. 10) it was
assumed that the middle surface is the neutral surface of the plate. This
condition can be rigorously satisfied only if the middle surface of the bent
plate is a developable surface. Considering, for instance, pure bending of
a plate to a cylindrical surface, the only limitation on the application of
the theory will be the requirement that the thickness of the plate be
small in comparison with the radius of curvature. In the problems of
bending of plates to a eylindrical surface by lateral loading, discussed in
the previous chapter, it is required that deflections be small in compari-
son with the width of the plate, since only under this condition will the
approximate expression used for the curvature be accurate enough.

If a plate is bent to a nondevelopable surface, the middle surface
undergoes some stretching during bending, and the theory of pure bend-
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ing developed previously will be accurate enough only if the stresses
corresponding to this stretching of the middle surface are small in com-
parison with the maximum bending stresses given by Eqs. (44) or, what
is equivalent, if the strain in the middle surface is small in comparison
with the maximum bending strain h/2r,.,. This requirement puts an
additional limitation on deflections of a plate, viz., that the deflections w
of the plate must be small in comparison with its thickness A.

To show this, let us consider the bending of a circular plate by bend-
ing couples M uniformly distributed along the edge. The deflection sur-
face, for small deflections, is spherical with radius r as defined by Eq. (46).
Let AOB (Fig. 26) represent a diametral section of the bent circular plate,
a its outer radius before bending, and 6 the deflection at the middle. We
assume at first that there is no stretching of the middle surface of the
plate in the radial direction. In such a case the are OB must be equal to
the initial outer radius a of the plate. The angle ¢ and the radius b of
the plate after bending are then given by the following equations:

a .
= b=rsinoge
It is seen that the assumed bending of the plate implies a compressive
strain of the middle surface in the circumferential direction. The magni-
tude of this strain at the edge of the plate is

a—~b re—rsine

€ = a ro (a)
For small deflections we can take
3
; =y
sin ¢ = ¢ — -
which, substituted in Eq. (a), gives
2
e =% (b)

To represent this strain as a function of the maximum deflection §, we
observe that

<le

Bzr(l—cosw)zf

2 o 20
r

i

Hence @
Substituting in Eq. (b), we obtain

8 4¢
3 (49)

€ =
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This represents an upper limit for the circumferential strain at the edge
of the plate. It was obtained by assuming that the radial strain is zero.
Under actual conditions there is some radial strain, and the circumfer-
ential compression is somewhat smaller! than that given by Eq. (49).

From this discussion it follows that the equations obtained in Art. 10,
on the assumption that the middle surface of the bent plate is its neutral
surface, are accurate provided the strain given by expression (49) is small
in comparison with the maximum bending strain h/2r, or, what is equiva-
lent, if the deflection § is small in comparison with the thickness h of the
plate. A similar conclusion can also be obtained in the more general
case of pure bending of a plate when the two principal curvatures are
not equal.? Generalizing these conclusions we can state that the equa-
tions of Art. 10 can always be applied with sufficient accuracy if the
deflections of a plate from its initial plane or from a true developable
surface are small in comparison with the thickness of the plate.

14. Thermal Stresses in Plates with Clamped Edges. KEquation (46)
for the bending of a plate to a spherical surface can be used in calculating
thermal stresses in a plate for certain cases of nonuniform heating.
Assume that the variation of the temperature through the thickness of
the plate follows a linear law and that the temperature does not vary in
planes parallel to the surfaces of the plate. In such a case, by measuring
the temperature with respect to that of the middle surface, it can be
concluded that temperature expansions and contractions are proportional
to the distance from the middle surface. Thus we have exactly the same
condition as in the pure bending of a plate to a spherical surface. If the
edges of the nonuniformly heated plate are entirely free, the plate will
bend to a spherical surface.? Let « be the coeflicient of linear expansion
of the material of the plate, and let ¢ denote the difference in temperature
of the upper and lower faces of the plate. The difference between the
maximum thermal expansion and the expansion at the middle surface is
at/2, and the curvature resulting from the nonuniform heating can be
found from the equation

t h
7% (@)
from which
1 ¢
iy (50)

This bending of the plate does not produce any stresses, provided the

t This question is discussed later; see Art. 96.

2 See Kelvin and Tait, op. cit., vol. 1, part 2, p. 172.

31t is assumed that deflections are small in comparison with the thickness of the
plate.
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edges are free and deflections are small in comparison with the thickness
of the plate.

Assume now that the middle plane of the plate is free to expand but
that the edges are clamped so that they cannot rotate. In such a case
the nonuniform heating will produce bending moments uniformly dis-
tributed along the edges of the plate. The magnitude of these moments
is such as to eliminate the curvature produced by the nonuniform heat-
ing [Eq. (50)], since only in this way can the condition at the clamped
edge be satisfied. Using Eq. (46) for the curvature produced by the
bending moments, we find for determining the magnitude M of the
moment per unit length of the boundary the equation’

M ol
D +» R
from which
M= “-”l(lh +) )

The corresponding maximum stress can be found from Eqs. (44) and is
equal to
6M _ 6atD{l + »)

Omax = h2 7h’3

Substituting for D its expression (3), we finally obtain

atl
Omax — 2‘('1‘:—;’) (5])

It is seen that the stress is proportional to the coefficient of thermal
expansion «, to the temperature difference ¢ between the two faces of
the plate, and to the modulus of elasticity £. The thickness A of the
plate does not enter into formula (51); but since the difference ¢ of tem-
peratures usually increases in proportion to the thickness of the plate, it
can be concluded that greater thermal stresses are to be expected in thick
plates than in thin ones.

! The effect of pure bending upon the curvature of the entire plate thus is equivalent
but opposite in sign to the effect of the temperature gradient. Now, if the plate
remains, in the end, perfectly plane, the conditions of a built-in edge are evidently
satisfied along any given boundary. Also, since in our case the bending moments are
equal everywhere and in any direction, the clamping moments along that given
boundary are always expressed by the same Eq. (b).



CHAPTER 3

SYMMETRICAL BENDING OF CIRCULAR PLATES

16. Differential Equation for Symmetrical Bending of Laterally Loaded
Circular Plates.! If the load acting on a circular plate is symmetrically
distributed about the axis perpendicular to the plate through its center,
the deflection surface to which the middle plane of the plate is bent will
also be symmetrical. In all points equally distant from the center of
the plate the deflections will be the same, and it is suffieient to consider
deflections in one diametral section through the axis of symmetry (Iig.
27). Let us take the origin of coordinates
0 at the center of the undeflected plate and B
denote by r the radial distances of points
in the middle plane of the plate and by w
their deflections in the downward direction.
The maximum slope of the deflection sur-
face at any point 4 is then equal to —dw/dr, Ngte
and the curvature of the middle surface of 0

the plate in the diametral section rz for r ‘—-—v\:/\
small deflections is L A
r

1 d>w deo dr pA
mo T @ (@) Fra. 27

where ¢ is the small angle between the normal to the deflection surface
at A and the axis of symmetry OB. Trom symmetry we conclude that
1/r, is one of the principal curvatures of the deflection surface at A.
The second principal curvature will be in the section through the normal
AB and perpendicular to the 7z plane.  Observing that the normals, such
as AB, for all points of the middle surface with radial distance r form a
conical surface with apex B, we conclude that the length A B is the radius
of the second principal curvature which we denote by 7. Then, from
the figure, we obtain

()

! The solution of these problems of bending of circular plates was given by Poisson;
see ‘“Memoirs of the Academy,” vol. 8, Paris, 1829,
51
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Having expressions (a) and (b) for the principal curvatures, we can obtain
the corresponding values of the bending moments assuming that relations
(37) and (38), derived for pure bending, also hold between these moments
and the curvatures.! TUsing these relations, we obtain

B dw | vdw\ _ , [de | v

M, = ‘D(}z;z ﬂa) = D(d—r +;*”> (52)
_ _pfldw v\ _ (e, de

M= =D <r dr T dr2> B D<; T Vdr) (53)

where, as before, M, and M, denote bending moments per unit length.
The moment M, acts along circumferential sections of the plate, such as
the section made by the conical surface with the apex at B, and M; acts

along the diametral section rz of the plate.
Equations (52) and (53) contain only one variable, w or ¢, which can
be determined by considering the equilibrium of an element of the plate
such as element abed in Fig. 28 cut out

v+ dM, o Q+a‘i§dr from the plate by two eylindrical sec-

T | vty M h tions ab and ¢d and by two diametral

r [ F x>0 sectionsad and bc. The couple acting
-

on the side ¢d of the element is

M.rd (e)

The corresponding couple on the side
ab is

(M, + 4L dr) (r+drnds (d)

Fic. 28

The couples on the sides ad and be of the element are each M, dr, and they
give a resultant couple in the plane rOz equal to

M, drdf ()

From symmetry it can be concluded that the shearing forces that may
act on the element must vanish on diametral sections of the plate but
that they are usually present on cylindrical sections such as sides cd and
ab of the element. Denoting by @ the shearing force per unit length of

1 The effect on deflections of shearing stresses acting on normal sections of the plate
perpendicular to meridians, such as the section cut by the conical surface with the
apex at B, is neglected here. Their effect is slight in the case of plates in which the
thickness is small in comparison with the diameter. Further discussion of this subject
will be given in Art. 20. The stresses perpendicular to the surface of the plate are
also neglected, which is justifiable in all cases when the load is not highly concentrated
(see p. 69).
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the cylindrical section of radius r, the total shearing force acting on the
side cd of the element is Qr d6, and the corresponding force on the side ab is

[Q 4 (‘fi—?) dr] r + dr) d8

Neglecting the small difference between the shearing foreces on the two
opposite sides of the element, we can state that these forces give a couple
in the rz plane equal to

Qr do dr N

Summing up the moments (¢), (d), (¢), and (f) with proper signs and
neglecting the moment due to the external load on the element as a
small quantity of higher order, we obtain the following equation of
equilibrium of the element abed:

dM,
dr

(M,—}— dr)(r—l—dr)df)—MrrdG—MtdrdB-I-Qrder:O

from which we find, by neglecting a small quantity of higher order,

dM,
dr

M, + r—M,+Qr=0 (9)

Substituting expressions (52) and (563) for M, and M, Eq. (g) becomes

de | lde o Q
@ Trar TR~ T D (54)
or, in another form,
dw | 1dw 1dw @
drt " rdrt rtdr D (55)

In any particular case of a symmetrically loaded ecircular plate the
shearing force @ can easily be calculated by dividing the load distributed
within the cirele of radius r by 2xr; then Eq. (54) or (55) can be used to
determine the slope ¢ and the deflection w of the plate. The integration
of these equations is simplified if we observe that they can be put in the
following forms:

AR

D
dl1ld dw Q
ar [m (" Wﬂ =D (57)
If Q is represented by a function of r, these equations can be integrated
without any difficulty in each particular case.
Sometimes it is advantageous to represent the right-hand side of Eq.

(57) as a function of the intensity ¢ of the load distributed over the plate.
For this purpose we multiply both sides of the equation by 2ar. Then,
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observing that
Q2rr = ﬁ'r q2wr dr

ri 1d rd—w . rdr
drirdr\' dr)| D o !

Differentiating both sides of this equation with respect to » and dividing
by r, we finally obtain

1d dlld{ dw

;ﬁ;P%[nﬁGEO“:=% (58)
This equation can easily be integrated if the intensity of the load ¢ is
given as a function of r.

16. Uniformly Loaded Circular Plates. If a circular plate of radius a
carries a load of intensity ¢ uniformly distributed over the entire surface
of the plate, the magnitude of the shearing force @ at a distance » from
the center of the plate is determined from the equation

we obtain

2rrQ) = wrig
from which
=7
Substituting in Eq. (57), we obtain
d 1d dw g b)
rar\"dr )|~ 2D b
By one integration we find
Ld( dw qr*
v ('" “d‘;) + Cy (c)

where C; is a constant of integration to be found later from the conditions
at the center and at the edge of the plate. Multiplying both sides of
Eq. (¢) by r, and making the second integration, we find

(lw
" dr ED+”ﬁ+C'
dw _ qr? Cr -
and ﬁ = m (09)
The new integration then gives
_ogr! Cur? r
w——64D+ 7 +Czlog +( (60)

Let us now calculate the constants of integration for various particular
cases.
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Circular Plate with Clamped Edges. In this case the slope of the deflec-
tion surface in the radial direction must be zero for r = 0 and r = a.
Hence, from Eq. (59),

art o G Ca)

(16D - 2 T r >,=0 =0
gr® Co | (O .

(ET) et *>ﬁ =0

From the first of these equations we conclude that €'y = 0. Substituting
this in the second equation, we obtain

_
Cr=~3p
With these values of the constants, Eq. (59) gives the following expres-
sion for the slope:

__dw _ g, .
¢~ 4 ~f6p @ ™ (61)
Equation (60) gives
_ @t qert
Y= up " 32p T O @)
At the edge of the plate the deflection is zero. Hence,
g ,
64D ~ 35D 5t (s = 0
and we obtain
L
Cs = 4D
Substituting in Eq. (d), we find
g 4 e ey .
w=gap @ ) (62)

The maximum deflection is at the center of the plate and, from Eq. (62),
is equal to
qa?
64D ©
This deflection is equal to three-eighths of the deflection of a uniformly
loaded strip with built-in ends having a flexural rigidity equal to D, a
width of unity, and a length equal to the diameter of the plate.

Having expression (61) for the slope, we obtain now the bending
moments M, and M; by using expressions (52) and (53), from which
we find

wmax =

M, = {5la* (L +v) — "3 + )] (63)

M, = [a A+ ») — 21 + 3] (64)

Sl= S
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Substituting r = @ in these expressions, we find for the bending moments

at the boundary of the plate

2 2
M) = =T MYpa = =2 (65)

At the center of the plate where r = 0,
2
M, =M. =%+ (66)

From expressions (65) and (66) it is seen that the maximum stress is at
the boundary of the plate where

6M, 3 qa?
(ar)mux = - B2 = 1Rt (f)

The variation of stresses o, and o, at the lower face of the plate along the
radius of the plate is shown in Fig. 29.

Or5 Ot
|
]
3(14v)qa?
8h?
1

(@)

0y

Fre. 29

Circular Plate with Supported Edges. In calculating deflections for this
case we apply the method of superposition. It was shown that in the
case of clamped edges there are negative bending moments M, = —qa?/8
acting along the edge (I'ig. 30a). If this case is combined with that of
pure bending shown in Fig. 305, the bending moments M, at the edge
will be eliminated, and we obtain the bending of a plate supported at the
edge. The deflection surface in the case of pure bending by the moments
qa*/8, from Eq. (46) or Eq. (¢) on page 43, is

w (a®* — r?)

- qa*
T 16D + )

Adding this to the deflections (62) of the clamped plate, we find for the
plate with a simply supported edge
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w — ala? — 17) <5 TV Tg> 67)

64D 1+

Substituting r = 0 in this expression we obtain the deflection of the plate
at the center:
_ G+ v)gat A
Wmex = 641 £ D (68)
For » = 0.3 this deflection is about four times as great as that for the
plate with clamped edge.

0,577
q0” {‘ g )_c[_al2
g L\N 8
]
-------- a NM“)W‘M_"“ a -----
(a)
R
2 2
ao’(" ) as
(b)
Fra. 30

In calculating bending moments in this case we must add the constant
bending moment ¢a?/8 to the moments (63) and (64) found above for the
case of clamped edges. Hence in the case of supported edges

M, =L@+ @ (69)
My = {5 (a3 4 ») — (1 + 3v)] (70)

The maximum bending moment is at the center of the plate where

M, =2 e
M, =M, = 6 4
The corresponding maximum stress is
B 6, 3(3 + ¥)ga?
(0)mun = (0 = g = D LN ()

To get the maximum stress at any distance r from the center we must
add to the stress calculated for the plate with clamped edges the con-
stant value
6 ga?
RS



58 THEORY OF PLATES AND SHELLS

corresponding to the pure bending shown in Fig. 30b. The same stress is
obtained also from Fig. 29 by measuring the ordinates from the horizontal
axis through 0;. It may be scen that by clamping the edge a more
favorable stress distribution in the plate is obtained.

17. Circular Plate with a Circular Hole at the Center. Let us begin
with a discussion of the bending of a plate by the moments 3 and /.

.
M M M
Mo I M Mo
(v AT

X

|
oo

Fic. 31

uniformly distributed along the inner and outer boundaries, respectively
(Irig. 31). The shearing force () vanishes in such a case, and Eq. (57)

becomes
d|Ldf dwNt _
dr{rdr\' dr)|

By integrating this equation twice we obtain

d Cy C, ;
~g7;£=<p=2lr+72 (a)

Integrating again, we find the deflection

017'2

w = 1

— (, log a’“ + C, (b)

The constants of integration are now to be determined from the condi-
tions at the edges. Substituting expression (a) into Eq. (52), we find

M,=D [Ql G N (71 + (‘ﬂ @

2 r? 7

This moment must be equal to M, for » = b and equal to 3, for r = a.
Hence equations for determining constants Cy and C» are

,D[%(1+y)—%§(1—y)]=Ml

C C;
1)[21(1-{—1/ —?(1—@]:%

from which

2(a*Ma — bMY) @ (M. — M) |
G=axap@= T T D@ — 0 (d)

To determine the constant C; in Eq. (b), the deflections at the edges
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of the plate must be considered. Assume, for example, that the plate in
Iig. 31 is supported along the outer edge. Then w = 0 for r = @, and
we find, from (b),

Cia? a*(a?M. — b2M)y)

Cs = =3 = 50 F v hia? = b9

In the particular case when M = 0 we obtain

Cowen L aeww,

T+nD@ - "7 T =D -8
Com L

P 2(1+ 1/)[)<ai 52)

Cl= -

and expressions (a) and (b) for the slope and the deflection become

dw a*h?M, i 1 —vwvr
ew o evsH,y (b, rtomer 9
dr D — »)(a? — b?) (r T 14 az> (72)
L ,,i‘”l L 5 a*h? ]l[l P
e TR 1 o S C A i ¢ ey Ty S L SR

As a second example we consider the case of bending of a plate by
shearing forces Qo uniformly distributed along the inner edge (Fig. 32).
The shearing foree per unit length of a

circumference of radius r is J‘ a ----- al
b - \
Qob P A i L
Q= "= {
r 27T7' l y
% | %

where P = 27bQ, denotes the total load
applied to the inner boundary of the
plate. Substituting this in Eq. (57) and integrating, we obtain

Fia. 32

dw  Pr (.. r Cor G

W‘&ﬁ(“"g'”)'?—v @

Pr? Cyr? . .
and w = 8D (1();, - - l> ——i* - O, Iog, + s (f}

The constants of integration will now be caleulated from the boundary
conditions. Assuming that the plate is simply supported along the outer
edge, we have

d*w d .

For the inner edge of the plate we have

D(d”'+1di”) =0 (h)

dr? r dr
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Substituting expressions (e) and (f) in Eqgs. (g) and (h), we find

oo P (L=v 2
YU amD\1l 4+ =0 Ca

C — (1 + V>I) 2,[) 1 (r?_
2T T 0 S arD ar — b B g

Pa? 11— b? b
C“@(”ém‘aﬂ_ml”ga)

(%)

With these values of the constants substituted in expressions (e) and (f),
we find the slope and the deflection at any point of the plate shown in
Fig. 32. For the slope at the inner edge, which will be needed in the
further discussion, we obtain

dw Pb b 1 -9
(Ef),_,,‘sw[mg I R

9h2
Farpel(1+E )] o

a2

In the limiting case where b is infinitely small, b? log (b/a) approaches
zero, and the constants of integration become

1—v P Pa? 11—
=y ymp 70 G- sn(“fé‘wy)

Substituting these values in expression (f), we obtain

P 3
w—lg;;—[j[ (1_:_V)(a2—r2)+r210g(;J k)

This eoincides with the deflection of a plate without a hole and loaded at
the center [see Eq. (89), page 68). Thus a very small hole at the center
does not affect the deflection of the plate.

Combining the loadings shown in ¥Figs. 31
and 32, we can obtain the solution for the
case of a plate built in along the inner edge
and uniformly loaded along the outer edge
(Fig. 33). Since the slope at the built-in
edge 18 zero in this case, using expressions
(72) and (j), we obtain the following equation for determining the bending
moment 4/ at the built-in edge:

a0, I 1—yb\_ Pb b
’JT(l‘—V)(aﬁ—b2>(5+1+u$> 8D[21 -1

1= 2b* b atl+vy
A2 ()

Fic. 33

14+ b1 —
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from which

2 2
My= L [(1 — ) (% - 1) +2(1 + ) %-Qlog%]
4#[(1+V)%§+1~ y}

(74)

Having this expression for the moment M, we obtain the deflections of
the plate by superposing expression (73) and expression (f), in which the
constants of integration are given by expressions (7).

By using the same method of superposition we can obtain also the
solution for the case shown in Fig. 34, in which the plate is supported
along the outer edge and carries a uniformly distributed load. In this
case we use the solution obtained in the previous article for the plate
without a hole at the center. Considering the section of this plate cut by
the eylindrical surface of radius b and perpendicular to the plate, we find
that along this section there act a shearing force @ = wqgb*/2nh = ¢b/2
and a bending moment of the inten-

sity [see Eq. (69)] D o [—
¥ 7 b
_ 49 .
M, =15 B + @ — b9 ?JIFH‘&H{Z/J{ %)HHJ,AI
N N
Hence to obtain the stresses and de- Fic. 34

flections for the case shown in Fig. 34,
we have to superpose on the stresses and deflections obtained for the plate
without a hole the stresses and deflections produced by the bending
moments and shearing forces shown in I'ig. 35. These latter quantities
are obtained from expressions (72), (73), (e), and (f), with due attention
being given to the sign of the applied shears and moments.

Several cases of practical importance

e b . .

________ a ------;’ !‘qb are represented in Fig. 36. In all these
[‘ Nt cases the maximum stress is given by a
N D g. -/ {ormula of the type

|
V2 (3+v) (a?-b?) 2
k
l6 Crmax = 9 or Crmax = kP (75)
Fi1c. 35 h? h?

depending on whether the applied load is uniformly distributed over the
surface or concentrated along the edge. The numerical values of the
factor k, calculated! for several values of the ratio a/b and for Poisson’s
ratio v = 0.3, are given in Table 3.

1 The calculations for cases 1 to 8 inclusive were made by A. M. Wahl and G. Lobo,
Trans. ASME, vol. 52, 1930. Further data concerning symmetrically loaded circular
plates with and without a hole may be found in K. Beyer, ‘“ Die Statik im Stahlbe-
tonbau,” 2d ed., p. 652, Berlin, 1948.



62

Case 5

TABLE
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Winax

N A

33

Cose 6

Case ©

Case 10

3. CoEFFICIENTS k& AND A IN E@s. (75) a~xp (76) ror THE TEN

Cases Smown 1N Fig. 36

n/b =

1.25 ]

Case

D

SV

/\‘1 k

k1

k k1 k k1 k ky k ko

1.10
0.66
0.135
0.122
0.090

0.115
0.592
0.227
0.194

0.105

0.341 [1.26
0.202 1.19
0.00231]0.410
0.00343|0.336
0.00077,0.273

0.00129/0.220
0.184 |0.976
0.00510]0.428
0.00504,0.320

]

0.00199,0.259

0.519
0.491
0.0183
0.0313
0.0062

0.0064
0.414

0.0249
0.0242
0.0139

1.48 {0.672
2.04 10.902
1.04 10.0938
0.74 10.1250
0.71 [0.0329

.88 10.734
.34 11.220
.15 10.293
0
0

o

17 10.724)2 .34 10,704
30 [1.30015.10 11.310
.99 10.448|3.69 [0.564
1
2

[

.21 0.291
.54 10.110

.45 (0.417{1.59 {0.492
.23 10.179/2.80 10.234

e DD D
N = O

0.405(0.0237|0.703/0.062
1.440/0.664 {1.880(0.824
1

0 .933/0.092{1.13 |0.114

0
0.753)0.0877|1.205/0.209

0

0

1
.08 10.830,2.19 [0.813
.514)0.29311.745)0.350
0.454(0.0810/0.673|0.172{1.021/0.217(1.305/0.238

(0.48010.0575/0.657/0. 130

[ R =]

.710(0.162/0.7300.175
\
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The maximum deflections in the same cases are given by formulas of
the type

at Pa?
Woax = K1 % or Waax = K1 T

(76)
The coefficients k; are also given in Table 3.

When the ratio a/b approaches unity, the values of the coefficients & and
ky in Eqs. (75) and (76) can be obtained with sufficient accuracy by con-
sidering a radial strip as a beam with end
conditions and loading as in the actual plate. i kb»l
The effect of the moments M; on bending is 1\ 1
then entirely neglected.

18. Circular Plate Concentrically Loaded. PG
We begin with the case of a simply supported l ' ' l
plate in which the load is uniformly distrib- : | C‘Tﬁ

uted along a circle of radius b (Fig. 37a). |

Dividing the plate into two parts as shown M, l lMl
in Fig. 37b and ¢, it may be seen that the C— @)
inner portion of the plate is in the condition Fio. 37

of pure bending produced by the uniformly

distributed moments M, and that the outer part is bent by the moments
My and the shearing forces Q.. Denoting by P the total load applied,
we find that

P .
Q1 = 57 (@)

The magnitude of the moment M, is found from the condition of con-
tinuity along the circle » = b, from which it follows that both portions
of the plate have, at that circle, the same slope. Using Egs. (72) and
() of the preceding article, we find the slope for the inner boundary of
the outer portion of the plate equal to

dw _ a*hiM, i_*_ 1 — vﬂ
dr )y DO = (@ —b)\b " 1+ va?

Pb b 1 —v
+8&D[210g5— L=1,
2b? b atl + v\ .
tEop 1%5(1 +b—z—:;>J ®)

The inner portion of the plate is bent to a spherical surface, the curvature
of which is given by expression (46). Therefore the corresponding slope

at the boundary is
@9 = — J!lb (¢
’/r r=h B D(l + V)
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Equating expressions (b) and (¢), we obtain

b
1 — v)P(a* — b?) 3 (14 »)P log -

My = 8ra? 47 @)

Substituting this expression for M, in Eq. (73), we obtain deflections of
the outer part of the plate due to the moments M. The deflections due
to the forces @, are obtained from Eq. (f) of the preceding article. Add-
ing together both these deflections, we obtain for the outer part of the
plate
_ P s s 11 —va* =1 N , r

’lD——gﬁ)[(d T)(1+2mT>+(b +r)loga (77)
Substituting » = b in this expression, we obtain the following deflection
under the load:

r 11— va?— b2 b
(W) = 82D [(a2 — b?) (1 + Qﬁ—-—: g_(ﬂ—) + 2b2 log E] (e)

To find the deflections of the inner portion of the plate, we add to the
deflection (e) the deflections due to pure bending of that portion of the
plate. In this manner we obtain

P s e 11— va?— b? 2 g P
w—§1r_D[(a b)<1+— - + 2b 10{55

214+ a®
b
I ) s B
2D + ») 8ra’ 4w
_ P T b 2 _ pe 2 o B+ var — (1 — »)b?
_gbl(b + ot log ot = b+ (a2 — 1Y) ST a7 }
_ P 2 L g P s oy B+ w)ar — (1 — y)r?
=5 [(b + %) log -+ (a2 — 1?) ST v (78)
If the outer edge of the plate is built
(e mmm o d---->] in, the deflections of the plate are ob-
Cé l <-b ’i ?D tained by superposing on the deflec-
To~——— tions (77) and (78) the deflections
My 7 M2 produced by the bending moments
¥re. 38 M5 uniformly distributed along the

outer edge of the plate (Fig. 38) and
of such a magnitude that the slope of the deflection surface at that edge
is equal to zero. From expression (77) the slope at the edge of a simply

supported plate is
dw P 1 a®>— 5
(W)M T 4D14+v e <2
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The slope produced by the moments M is

dw\ Ma
dar ). T DA+ 9 ()

Equating the sum of expressions (f) and (g) to zero, we obtain

I) a‘.l . b?.
Moo=

Deflections produced by this moment are

__»77%277%7'2—0,2_ P 2 — p2 p
D4y 2 C&DIFS @ me) W

Adding these deflections to the deflections (77) and (78) we obtain for the
outer portion of a plate with a built-in edge

P \ b?
=87l—)[(a2~—r)a+ —i—(bz—l—r)logf] (79)
and for the inner portion,
w= g [W + 79 log L2 — b 4 0 rﬁéa = w]
P , b a’ + %) (a* —

Having the deflections for the case of a load uniformly distributed
along a concentric circle, any case of bending of a circular plate sym-
metrically loaded with respect to the center can be solved by using the
method of superposition. Let us consider, for example, the case in which
the load is uniformly distributed over the inner portion of the plate

FI(,:. 39

bounded by a circle of radius ¢ (Fig. 39). Expression (77) is used to
obtain the deflection at any point of the unloaded portion of the plate
(@ > r>¢). The deflection produced by an clementary loading dis-
tributed over a ring surface of radius b and width db (see Fig. 39) is
obtained by substituting P = 2rbg db in that expression, where ¢ is the
intensity of the uniform load. Integrating the expression thus obtained
with respect to b, we obtain the deflection
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S [y BT e ”
w =y ‘L[lﬂ r)2(1+v)+rloga
2 r_ (1= ~-r) 1
+ b [loga 50+ na? h db
_ae 3 e ey 4 e e
“sp{’z\rw)(“ '””""a]

gt [t = af =
T 16D [1°g a T F N o J
or, denoting the total load wc?q by P,

P 34+v, . . r
— 1P TV ey 92 log
161rD{1+V(a )+ 2rtlog g

. T 1 —» at—r¥

Expression (78) is used to obtain the deflection at the center. Substi-
tuting r = 0 and P = 2rbg db in this expression and integrating, we find

4 K 2 a® — bz +
(W) o = iD [, [b l()gD + ( . )][ db

-—,,,PA, 3+V e & 7+ 3y ,2—
= [1 e R Ty et J (82)
where P = wcq.

The maximum bending moment is at the center and is found by using
expression (d). Substituting 2rbg db for P in this expression and inte-
grating, we find

L —va*—=b 1+
L omax = ]0 ( - 2T Ty log —) b db

_ 4 a _ (1 — »)e? .
= ¢ [(1 + ») log . +1 i (83)
where, as before, P denotes the total load wc?g.*
Expression (81) is used to obtain the bending moments M, and M, at
any point of the unloaded outer portion of the plate. Substituting this
expression in the general formulas (52) and (53), we find

M= LTIl a4 (4 = nbe (— - %) (84)

 4r 167 r:  a?
P ’ 1 —wpefl 1
g [(1 + ) log . +1 - V} BT (r2 + &‘2> (85)

* This expression applics only when ¢ is at least several times the thickness h. The
case of a very small ¢ is diséussed in Art. 19.

I

M,
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The maximum values of these moments are obtained at the cirele r = ¢,
where

, 4+ nP a , (1 —»P(a®— ¢?

M, === log + TGma? (86)
PR ,a 1 (1 =»Pa® 4+ ¢»

M, = i |:(1 + ») log z +1- V} T 16ma (87)

The same method of calculating deflections and moments can be used also
for any kind of symmetrical loading of a circular plate.
The deflection at the center of the plate can easily be calculated also for
any kind of unsymmetrical loading by using the following consideration.
Owing to the complete symmetry of the plate and of its boundary con-
ditions, the deflection produced at its center by an isolated load P depends
only on the magnitude of the load and on its radial distance from the
center. This deflection remains unchanged if the load P is moved to
another position provided the radial distance of the load from the center
remains the same. The deflection remains unchanged also if the load P
is replaced by several loads the sum of which is equal to P and the radial
distances of which are the same as that of the load P. From this it
follows that in calculating the deflection of the plate at the center we can
replace an isolated load P by a load P uniformly distributed along a circle
the radius of which is equal to the radial distance of the isolated load.
Yor the load uniformly distributed along a circle of radius b the deflection
at the center of a plate supported at the edges is given by Eq. (78) and is
(W), = P [‘3_*—”*
=T 8D o + )
This formula gives the deflection at the center of the plate produced by
an isolated load P at a distance b from the center of the plate. Having
this formula the deflection at the center for any other kind of loading
can be obtained by using the method of superposition.! It should be
noted that the deflections and stresses in a circular plate with or without
a hole can be efficiently reduced by reinforcing the plate with either con-
centric? or radial ribs.  In the latter case, however, the stress distribution
is no longer symmetrical with respect to the center of the plate.
19. Circular Plate Loaded at the Center. The solution for a concen-
trated load acting at the center of the plate can be obtained from the

(a> — b2) — b log ﬂ (1)

! This method of calculating deflections at the center of the plate was indicated by
Saint Venant in his translation of the ‘“Théorie de 'élasticité des corps solides,” by
Clebsch, p. 363, Paris, 1883. The result (2) can also be obtained by applying Max-
well’s reciprocal theorem to the cireular plate.

2 This case is discussed by W. A. Nash, J. Appl. Mechanics, vol. 15, p. 25, 1948.
See also C. B. Biezeno and R. Grammel, “Technische Dynamik,” 2d ed., vol. 1, p. 497,
1953.
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discussion of the preceding article by assuming that the radius ¢ of the
circle within which the load is distributed becomes infinitely small,
whereas the total load P remains finite. Using this assumption, we find
that the maximum deflection at the center of a simply supported plate,
by Lq. (82), is

3 + v)Pa?

6e(1 + »)D (88)

wmax =

The deflection at any point of the plate at a distance r from the center,
by Eq. (81), is
w = __‘EJ._ ﬁ,f
16eD 1 4+ »
The bending moment for points with r > ¢ may be found by omitting
the terms in Egs. (84) and (83) which contain ¢2.  This gives

(a*> — r¥) 4 2r% log gJ (89)

, P a
M, = i (1 + v) log g (90)

M,

i

gr[(l—}—v)log%-l-l—v} 91)

To obtain formulas for a circular plate with clamped edges we differ-
entiate Eq. (89) and find for the slope at the boundary of a simply sup-
ported plate

. P _fdw _ Pa (@)
C “\‘/@ dr ). 30 ¥+ 07D @
Mg M2 The bending moments M uniformly dis-
- 240 tributed along the clamped edge (Fig. 40)
TG,

produce a bending of the plate to a spher-
ical surface the radius of which is given by Eq. (46), and the correspond-
ing slope at the boundary is
Zl[za
T ETF D ®)
Using (a) and (b), the condition that the built-in edge does not rotate

gives
])

(M )ema = M2 = = L (c)

Deflections produced by moments M by Eq. (k) of the preceding article

are
P(r? — a?
8rD(1 4+ »)

Superposing these deflections on the deflections of a simply supported
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plate in Eq. (89), we obtain the following expression for the deflections
of a clamped plate loaded at the center:
Pt r, P,
w-—»87r~—Dloga+16WD (a r?) (92)
Adding Eq. (¢) to Eqgs. (90) and (91) for a simply supported plate, we
obtain the following equations for the bending moment at any point not
very close to the load:

ﬂlr—i—)[(l—i—v) log & - 1] 93)
m =L [(1 + ) log & — y] (94)

When r approaches zero, expressions (90), (91), (93), and (94) approach
infinity and hence are not suitable for calculating the bending moments.
Moreover, the assumptions that serve as the basis for the elementary
theory of bending of circular plates do not hold near the point of appli-
cation of a concentrated load. As the radius ¢ of the circle over which
P is distributed decreases, the intensity P/wc? of the pressure increases
till it can no longer be neglected in comparison with the bending stresses
as is done in the elementary theory. Shearing stresses which are also
disregarded in the simple theory likewise increase without limit as ¢
approaches zero, since the cylindrical surface 2mrch over which the total
shear force P is distributed approaches zero.

Discarding the assumptions on which the elementary theory is based, we may obtain
the stress distribution near the point of application of the load by considering that
portion of the plate as a body all three dimensions of which are of the same order of
magnitude. To do this imagine the central
loaded portion separated from the rest of the
plate by a cylindrical surface whose radius b is 1““
several times as large as the thickness & of the

e * A
plate, as shown in Fig. 41. It may be assumed h T e l* T
that the elementary theory of bending is accur- '
ate cnough at a distance b from the point of *r
application of the load P and that the corre- L b -
sponding stresses may be calculated by means Fia. 11

of Eq. (90). The problem of stress distribu-

tion near the center of the plate is thus reduced to the problem of a symmetrical
stress distribution in a circular cylinder of height A and radius b acted upon by a
load P distributed over a small circle of radius ¢ and by reactions along the lateral
boundary.® The solution of this problem shows that the maximum compressive

I Several examples of symmetrical stress distribution are discussed in 8. Timo-
shenko and J. N. Goodier, “Theory of Elasticity,” 2d ed., p. 384, 1951. The case
shown in Fig. 41 was studied by A. Nddai (sce his book ‘“Elastische Platten,” p. 308)
and also by 8. Woinowsky-Krieger (sce his paper in Ingr.-Arch., vol. 4, p. 305, 1933).
The results given here are from the latter paper.
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stress at the center A of the upper face of the plate can be expressed by the follow-
ing approximate formula:!

P12 )
o = 01 = oy ———q[“ - (1+V)01:I (95)

2

in which o, is the value of the compressive bending stress? obtained from the approxi-
mate theory, say, by using Eq. (83) for the case of a simply supported plate, and ais a
numerical factor depending on 2¢/k, the ratio of the diameter of the loaded area to the

04— BB
L]
TO'3 Lo . /,, L —
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Loz}l T
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Fr¢. 42

thickness of the plate. Several values of this factor are given in Table 4. Its varia-
tion with the ratio 2¢/h is shown also in Fig. 42. When ¢ approaches zero, the stress
caleulated by Eq. (95) approaches infinity.

TaBLE 4. VALUBS oF FacTor « 1IN HKq. (95)

2¢/h = 0.10 ‘025 0.50 0.75 1.00 1.50 | 2.00 | 2.50

a = 0.0106 | 0.0466 | 0.1234 | 0.200 | 0.263 | 0.348 | 0.386 | 0.398

The maximum tensile stress occurs at B, the center of the lower surface of the plate
(Fig. 41). When ¢ is very small, z.e., for a strong load concentration, this tensile
stress is practically independent of the ratio 2¢/k and for a simply supported plate is
given by the following approximate formula:3

P a
Tmax = 55 ((l + ) (().485 log y + 0.52) + 0.48] (96)
in whieh a is the outer radius.

To obtain the compressive stresses o, and o, at the center of the upper surface of a
clamped plate, we must decrease the valuc of the compressive stress o; in Eq. (95)
by an amount equal to

P 6 3 P
— — = — (d)
47 b2 2 mh?

' When ¢ is very small, the compressive stress P/xc? becomes larger than the value
of omax given by Eq. (95) (see Fig. 43).

2 This quantity should be taken with negative sign in Eq. (95).

3 See Woinowsky-Krieger, op. cil,
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on account of the action of the moments M, = —~P/4zr. The maximum tensile
stress at the center of the lower surface of a clamped plate for a strong concentration
of the load (¢ = 0) is found by subtracting Eq. (d) from Eq. (96). This stress is

P
Fane = 35 (149 <0.485 log Z + 0.52) ©7)

The stress distribution across a thick circular plate (h/a = 0.4) with built-in edges
is shown in Fig. 43. These stresses are calculated for ¢ = 0.1a and » = 0.3. For this
case the maximum compressive stress o. normal to the surface of the plate is larger than
the maximum compressive stress in bending given by Eq. (95). The maximum

r=0
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A
[
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Loy |
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Fic. 43

tensile stress is smaller than the tensile stress given by the elementary theory of bend-
ing. The value of the latter across the thickness of the plate is shown in the figure
by the dashed line. 1t was calculated from the equation for bending moment

P a (1 — ¥
Mux = — | (1 log - — ——— 98)
4 I:( + ) log ¢ 4a? ] w8
obtained by adding the moment M, = —P/4r to Kq. (83).

In determining the safe dimensions of a circular plate loaded at the center, we can
usually limit our investigations to the calculation of the maximum tensile bending
stresses at the bottom of the plate by means of Eqs. (96) and (97). Although the
compressive stresses at the top of the plate may be many times as large as the tensile
stresses at the bottom in the case of a strong concentration of the load, they do not
represent a direct danger because of their highly localized character. The local
yielding in the case of a ductile material will not affect the deformation of the plate in
general if the tensile stresses at the bottom of the plate remain within safe limits.
The compressive strength of a brittle material is usually many times greater than its
tensile strength, so that a plate of such a material will also be safe if the tensile stress
at the bottom is within the limit of safety.

The local disturbance produced by a concentrated load in the vicinity of its point of
application must also be considered if we want an exact description of the deflection
of the plate. This disturbance is mainly confined to a cylindrical region of radius
several times A, and thus its effect on the total deflection becomes of practical impor-
tance when the thickness of the plate is not very small compared with its radius. As
an illustration there are shown in Fig. 44 the deflections of eircular plates with built-in
edges and a central concentrated load for which the ratio of thickness to radius h/a
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is 0.2, 0.4, and 0.6.! The deflection given by the elementary theory [Eq. (92)] is
shown by the dashed line. It may be seen that the discrepancy between the elementary
theory and the exact solution diminishes rapidly as the ratio 2/a diminishes. In the
next article we shall show that this discrepancy is due principally to the effect of shear-
ing forces which are entircly neglected in the elementary theory.

20. Corrections to the Elementary Theory of Symmetrical Bending of
Circular Plates. The relations (37) and (38) between bending moments
and curvatures, which were derived for the case of pure bending, have
been used as the basis for the solution of the various problems of sym-
metrical bending of circular plates which have been discussed. The effect
that shearing stresses and normal pressures on planes parallel to the sur-
face of the plate have on bending has not been taken intoaccount. Hence

Fia. 44

only the solution for a plate bent to a spherical surface and the solution
for the annular plate loaded with moments uniformly distributed along
the inner and outer boundaries (Fig. 31) are rigorous. In all other cases
discussed, the formulas obtained are approximate, and their accuracy
depends on the ratio of the thickness of the plate to its outer radius.
More accurate formulas may be obtained by considering in an approxi-
mate manner? the effect of shearing stresses and lateral pressures on
deflections.

Let us consider first a circular plate without a hole supported along its
edge and uniformly loaded. The shearing force @ per unit length of arc

1 The curves in Fig. 44 are the results of the exact solution of Woinowsky-Krieger,
loc. cit.

2 A rigorous theory of plates was originated by Saint Venant in his translation of
Clebsch’s “Théorie de 1’élasticité des corps solides,” p. 337. A valuable criticism of
this work is given in “History of the Theory of Elasticity,” by I. Todhunter and
K. Pearson, vol. 2, part 1, p. 217. Further development of the theory is due to J. H.
Michell, Proc. London Math. Soc., vol. 31, p. 100, 1900, and to A. E. H. Love, “ Mathe-
matical Theory of Elasticity,” 4th cd., p. 465. A list of references on this subject is
given by Woinowsky-Krieger, op. cil., p.- 203. Some examples of rigorous theory are
given in Art. 26 (see p. 98).
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along a circle of radius r is

Q = 4gr
From the exact solution for plates whose thickness is not assumed to be
small,® it is known that the shearing stresses r.. vary across the thickness
of the plate according to the parabolic law in the same way as in beams of
narrow rectangular cross section. Hence the maximum shearing stress is
at the middle surface of the plate, and its magnitude is

3qr

(TTZ)ma.x = Q ﬁ (a)
The corresponding shearing strain is

dw, __ 3 qr

ar T 23Gh ®)

where w, is the additional deflection of the middle surface of the plate
due to the shearing stress. By integration the deflections produced by
the shearing stresses are found to be

2 2
wy = 2 4Gh (a’ r ) (C)
and at the center of the plate,
_ 349
(wl)max - §4Gh (d)

The lateral pressure acting on the plate produces a positive curvature,
convex downward, similar to that which occurs in a uniformly loaded
beam.? The pressure g per unit area produces a radial elongation of
vq/E at the upper surface of the plate. At the middle surface of the
plate this elongation is »¢/2F, and at the bottom of the plate it is zero.
Assuming a straight-line relation to hold, an approximate value of the
radius of curvature R can be found from the equation

v _ h

2F ~ 2R
from which

1 _

2R 2hE
and the negative deflection is

—_ 1 2 2 2 __ 2
Wy = 2R (a T) 2hE (a T) (e)

t Timoshenko and Goodier, op. cit., p. 351.
2 See 1bid., p. 43.
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Adding Eqs. (¢) and (e) to Eq. (67), a more exact expression for deflec-

tion is found to be
=4 2
) <?__i—_]’:a2~r2>+(’h 34 _(az_rz)
qa? <5 +v 43 +

8D 6(1 — »
6ap T 731 - ) )
The second term in Eq. (f) represents the correction for shearing stresses
and lateral pressure. This correction is seen to be small when the ratio

of the thickness of the plate to its radius is small. The value of this
correction given by the exact solution is!

(/a428+u+vh“ @
64D5 1 = @ g

For » = 0.3 the exact value is about 20 per cent less than that given by
Eq. ().

In a uniformly loaded circular plate with clamped edges the negative
deflection w, due to pressure cannot oceur, and hence only the deflection
w; due to shear need be considered. Adding this deflection to Eq. (62),
we obtain as a more accurate value of the deflection

o= g
w o= ) (a

At the center of the plate this becomes

Whiax =

N

ol e

w= gl [(a- — oy e 2>J )

It is interesting to note that this coincides with the exact solution.?
Consider next the deflections produced by shearing stresses in the
annular plate loaded with shearing forces uniformly distributed along
the inner edge of the plate as shown in Fig. 32. The maximum shearing
stress at a distance r from the center is
3 P

(7rz)mu‘x = Q m
where P denotes the total shear load. The corresponding shear strain is?

dw; 3 P

dr T T 22 @

Integrating, we obtain for the deflection produced by shear
w lo “,i)h_z_m log g ( )
: 4hG & 8r(1 — »D %7 J

Lt Sce Love, op. cit., p. 481.

2 See ibid., p. 485.

3 If the plate has no hole, the right-hand side of Eq. (¢) should be multiplied by a
factor (1 — »)/(1 + »), in accordance with the result (f) given below.
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This deflection must be added to Eq. (k) on page 60 to get a more
accurate value of the deflection of the plate shown in Fig. 32, When
the radius b of the hole is very small, the expression for the total deflec-
tion becomes

P[3—{—u Ph? a

- | 2Ty - 2 r o a
W e |21y @ T ) loe a] V& - yp 87 W

"T'he deflection at the edge of the hole is

_Pa*[ 34w 1 k. a
wmf‘@@[m1+yy+1_y@“gﬂ ®

The second term in this expression represents the correction due to shear.
It increases indefinitely as b approaches zero, as a consequence of our
assumption that the load P is always finite. Thus when b approaches
zero, the corresponding shearing stress and shearing strain become
infinitely large.

The term in Eq. (I) which represents the correction for shear cannot be applied to a
plate without a hole. The correction for a plate without a hole may be expected to be
somewhat smaller because of the wedging effect produced by the concentrated load P
applied at the center of the upper surface of the plate. Imagine that the central
portion of the plate is removed by means of a cylindrical section of small radius b and
that its action on the remainder of the plate is replaced by vertical shearing forces
equivalent to P and by radial forces S represcnting the wedging effect of the load and

S$S
~x
: i . i
’ " —
: L~~-r --JE-—- r ——a‘ ' e S o el SR o
- A M ]
-M0bre- (d) (b)
Fic. 45 F1a. 46

distributed along the upper edge of the hole as shown in Fig. 45. It is evident that the
latter forces produce stretching of the middle surface of the plate together with some
deflection of the plate in the upward direction. This indicates that we must decrease
the correction term in expression (k) to make it apply to a plate without a hole. To
get an idea of the magnitude of the radial forces S, let us consider the plate under the
two loading conditions shown in Fig. 46. In the first case the plate is compressed by
two equal and opposite forces P acting along the axis of symmetry z. In the second
case the plate is subjected to uniform compression in its plane by a pressure p uni-
formly distributed over the cylindrical surface bounding the plate. As a result of
lateral expansion these pressures produce an increase of the thickness of the plate by
the amount

2vp
Ah = —bh
E
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We can now obtain from this expression the increase Ar in the radius r of the plate due
to the action of the forces P (Fig. 46a) by applying the reciprocal theorem to the two
conditions of loading shown in Fig. 46. This gives

P Ah = 2xrhp Ar
from which
P AR 2v P

-7 0 (m)

Ar = =
2xrhp K 2mr

Let us compare this radial expansion with the radial expansion produced in a thick-
walled cylinder by an internal pressure p;. If the inner radius b of the cylinder is very
small compared with the outer radius r, the increase in the outer radius by Lamé’s
formula! ig

_ 1t rpd?
" E r

Ar (n)

Comparing expressions (m) and (n), we conclude that the radial expansion which the
forces P in Fig. 46a produce in the plate has the same magnitude as the radial expansion
produced in a plate with a small cylindrical hole at the center (Fig. 45) by internal
pressure p; whose magnitude is given by the equation

2vl _ 1 + » pb?

E2xnr E r

From this we obtain
vP

T F b (0)

y&
Returning to the case of one concentrated force at the center of the upper surface of
the plate, the action of which is illustrated by Fig. 45, we conclude that the force S per

unit length of the circumference of the hole must be equal to the pressure p:h/2.
Using the value of p; from Eq. (o), we obtain

vPh

S = ———

2(1 4 »)wb?

These forces applied in the upper plane of the plate produce upward deflections ws,
the magnitude of which is found by substituting

J he
M, = Sk PR
2 4(1 + v)abt

in Eq. (73) and neglecting b2 in comparison with «2. In this manner we obtain

vPh? a? — r? vPh? a

TBA 1D @ A0 — eD B )

w, =

Adding this to expression (k), we obtain the following more accurate formula for the
deflection of a plate without a hole and carrying a load P concentrated at the center
of the upper surface of the plate:

1 See 8. Timoshenko, “Strength of Materials,” part II, 3d ed., p. 210, 1956.
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Ph?

P 34+ . " . r a
L I S AN e 2 1g?
v 8WD[2(1+V)(“ e It e oD %

vPh? a? —r
8 (1 + »)2D a?

(@)

This equation can be used to calculate the deflection of all points of the plate that
are not very close to the point of application of the load. When r is of the same order
of magnitude as the thickness of the plate, Eq. (¢) is no longer applicable; and to
obtain a satisfactory solution the central portion of the plate must be considered, as
explained in the preceding article. We can get an approximate value of the deflection
of this central portion considered as a plate of small radius b by adding the deflection
due to local disturbance in stress distribution near the point of application of the load
to the deflection given by the elementary theory.! The deflection due to local dis-
turbance near the center is affected very little by the conditions at the edge of the
plate and hence can be evaluated approximately by means of the curves in Fig. 44.
The dashed-line curve in this figure is obtained by using Eq. (92). The additional
deflections due to local stress disturbance are equal to the differences between the
ordinates of the full lines and those of the dashed line.

As an example, consider a plate the radius of the inner portion of which is b = 5h.
The deflection of the inner portion calculated from Eq. (92) and taken as unity in
Fig. 44 is

Pp? P

= = ——— (5R)2
167D 167D (5h)

01

Using the curve h/a = 0.2 in Fig. 44, the additional deflection due to local stress
disturbance is

P
= 0.218; = 0.21 —— 2
b = 0.215, 6. ”
If we consider a plate for which b = 2.5k and use the curve for 2/a = 0.4 in Fig. 44,
we obtain

P
= 0.81 — (2.5h)?
5 = 0.81 —— (2.5%) (

which differs only slightly from that given in expression (r) for b = 5h. It will be
unsatisfactory to take b smaller than 2.5k, since for smaller radii the edge condition
of the thick plate becomes of importance and the curves in Fig. 44, calculated for a
built-in edge, may not be accurate enough for our case.

Finally, to obtain the deflection of the plate under the load we calculate the deflec-
tion by means of Eq. (g), putting r = 0 in the first term and r = b = 2.5h in both
other terms. To this deflection we add the deflection of the central portion of the
plate due to the shear forces as given by expression (s).

In the particular case of » = 0.3 the deflections of simply supported circular plates
may also be obtained by a simple superposition of the curves plotted in Fig. 44,* with
the defiection

P(a? — r?)
8rD(1 + »)
1 In the case under consideration this deflection can be calculated by using the first

term in expression (¢) and substituting b for a.
* Figure 44 was calculated for » = 0.3.
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due to the pure bending by radial moments P/4r applied along the boundary of the
plate.

It should be noted also that, for small values of the ratio r/a, the effect of the
shearing force P/2xr upon the deflection is represented mainly by the second term
on the right-hand side of Eq. (¢). To this term corresponds a slope

dw, 31 —-v P .
e _ 227 2 )
dr 21 + » 22rhG (
Comparing this result with the expression (7), we conclude that the factor
31 —v»
k==
21 v G

if introduced into Eq. (¢) instead of & = §, would give a more accurate value of the
deformation due to shear in the casc of a plate without a hole.

All preceding considerations are applicable only to circular plates bent to a surface
of revolution. A more general theory of bending taking into account the effect of the
shear forces on the deformation of the plate will be given in Arts. 26 and 39.



CHAPTER 4

SMALL DEFLECTIONS OF LATERALLY LOADED PLATES

21. The Differential Equation of the Deflection Surface. We assume
that the load acting on a plate is normal to its surface and that the
deflections are small in comparison with the thickness of the plate (see
Art. 13). At the boundary we assume that the edges of the plate are
free to move in the plane of the plate; thus the rcactive forces at the
edges are normal to the plate. With these assumptions we can neglect
any strain in the middle plane of the plate during bending. Taking, as

}j\yﬂr ————— dx ----- -
My +g—§1—;\/ dyx\k\ »Mx+%(dx
Myx + aahij dy== '-—:‘i\é “FMxy +Q8MTX¥dx
Qy+ %Cy_ d&“‘/*f—»l " Q Z‘%& ax
Fia. 47

before (see Art. 10), the coordinate axes x and y in the middle plane of
the plate and the z axis perpendicular to that plane, let us consider an
element cut out of the plate by two pairs of planes parallel to the xz and
yz planes, as shown in Fig. 47. In addition to the bending moments M.
and M, and the twisting moments M., which were considered in the pure
bending of a plate (see Art. 10), there are vertical shearing forces! acting
on the sides of the element. The magnitudes of these shearing foreces
per unit length parallel to the y and x axes we denote by . and Q,,
respectively, so that

h/2 h/2
Q. = / ' rade Q, = V/,_'h . Tue dz (a)

Since the moments and the shearing forces are functions of the coordi-
nates r and y, we must, in discussing the conditions of equilibrium of the
element, take into consideration the small changes of these quantities
when the coordinates z and y change by the small quantities dx and dy.

1 There will be no horizontal shearing forces and no forces normal to the sides of the
elerment, since the strain of the middle plane of the plate is assumed negligible.
79
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The middle plane of the element is represented in Fig. 48¢ and b, and the
directions in which the moments and forces are taken as positive are
indicated.

We must also consider the load distributed over the upper surface of
the plate. The intensity of this load we denote by ¢, so that the load
acting on the element! is ¢ dz dy.

My
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My [, oMy

( fo+ - dx
Mxy' ; \\\M +@Mxy
Xy
BM)[X

t ——0ax
My - ‘\\ : ox
My+Wdy Myx'l’ 3y - dy
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Qy
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|
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Gl :
Qy+ 3y dy
y
z
(b)
Fia. 48

Projecting all the forces acting on the element onto the 2 axis we obtain
the following equation of equilibrium:

0Qz )01 9% _
9z dz dy + 3y dyder + gdxdy =0

from which

Qs
dx

0Q, _
+ W +q¢=0 (99)
Taking moments of all the forces acting on the element with respect to
the z axis, we obtain the equation of equilibrium

M.,
ax

dxdy—a;l;ydydx+dexdy=0 ®)

! Since the stress component o. is neglected, we actually are not able to apply the
load on the upper or on the lower surface of the plate. Thus, every transverse single
load considered in the thin-plate theory is merely a discontinuity in the magnitude of
the shearing forces, which vary according to the parabolic law through the thickness
of the plate. Likewise, the weight of the plate can be included in the load ¢ without
affecting the accuracy of the result. If the effect of the surface load becomes of
special interest, thick-plate theory has to be used (see Art. 19).
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The moment of the load ¢ and the moment due to change in the force @,
are neglected in this equation, since they are small quantities of a higher
order than those retained. After simplification, Eq. (b) becomes

oM., M

oz W'*"Qy:() (C)

In the same manner, by taking moments with respect to the y axis, we
obtain
M, | M.

ay +6x

- Q.=0 (d)

Since there are no forces in the x and y directions and no moments
with respect to the z axis, the three equations (99), (c), and (d) com-
pletely define the equilibrium of the element. Let us eliminate the
shearing forces Q. and @, from these equations by determining them from
Egs. (¢) and (d) and substituting into Eq. (99). In this manner we obtain

M,  aM,. oM, a*M,,

orr Tavay Ty away ¢ @)

Observing that M,. = — M., by virtue of 7., = 7,,, we finally represent
the equation of equilibrium (e) in the following form:
M,  *M, I*M .,

—9 -
dx? T y? dx dy 4 (100)

To represent this equation in terms of the deflections w of the plate,
we make the assumption here that expressions (41) and (43), developed
for the case of pure bending, can be used also in the case of laterally
loaded plates. This assumption is equivalent to neglecting the effect on
bending of the shearing forces @, and @, and the compressive stress o,
produced by the load q. We have already used such an assumption in
the previous chapter and have seen that the errors in deflections obtained
in this way are small provided the thickness of the plate is small in com-
parison with the dimensions of the plate in its plane. An approximate
theory of bending of thin elastic plates, taking into account the effect of
shearing forces on the deformation, will be given in Art. 39, and several
examples of exact solutions of bending problems of plates will be dis-
cussed in Art. 26.

Using x and y directions instead of » and ¢, which were used in Eqgs.
(41) and (43), we obtain

2 2 2 2
M. = —D<‘9w+ u"“’) M, = —D(a—i.v-l—va@) (101)

day? ox?
02w

sz/ — '—A{yz = D(l - V) a,l. 61/

(102)
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Substituting these expressions in Eq. (100), we obtain!

9w d*w w ¢
at T 250, 07 =D (103)

This latter equation can also be written in the symbolic form

AAw = (104)

% The

; 2
where Aw = é;b‘; + g—;g— (103)
1t is seen that the problem of bending of plates by a lateral load ¢
reduces to the integration of Eq. (103). I, for a particular case, a solu-
tion of this equation is found that satisfies the conditions at the bounda-
ries of the plate, the bending and twisting moments can be calculated
from Eqgs. (101) and (102). The corresponding normal and shearing
stresses are found from Eq. (44) and the expression

6M.,
(TZ!/)max = —ﬁ_y

Equations (¢) and (d) are used to determine the shearing forces @, and
Q,, from which

oM, | oM, _ d (02w |, d%w .\
Q. = “ay + - D oy (é‘a*;g + W) (106)
_oM, oM., _ _ ,5 0 (3w  w
Qy = oy oz - ay\anz T a2 (107)
or, using the symbolic form,
Q=-DLww 0 =-p2 aw (108)
ox v Ay

The shearing stresses r., and 7y, can now be determined by assuming
that they are distributed across the thickness of the plate according to
the parabolic law.? Then

3 Qs
(TI?>maV = § "}2’{ (T]/,:')m:\x =

=&

Lol L2
)

! This equation was obtained by Lagrange in 1811, when he was examining the
memoir presented to the French Academy of Science by Sophie Germain. The
history of the development of this equation is given in I. Todhunter and K. Pearson,
‘‘History of the Theory of Elasticity,” vol. 1, pp. 147, 247, 348, and vol. 2, part 1, p.
263. See also the note by Saint Venant to Art. 73 on page 689 of the French transla-
tion of “Théorie de 1'élasticité des corps solides,”” by Clebsch, Paris, 1883.

2 It will be shown in Art. 26 that in certain cases this assumption is in agreement
with the exact theory of bending of plates.
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It is seen that the stresses in a plate can be calculated provided the
deflection surface for a given load distribution and for given boundary
conditions is determined by integration of Eq. (103).

22. Boundary Conditions. We begin the discussion of boundary con-
ditions with the case of a rectangular plate and assume that the x and
y axes are taken parallel to the sides of the plate.

Buili-in Edge. 1f the edge of a plate is built in, the deflection along
this edge is zero, and the tangent plane to the deflected middle surface
along this edge coincides with the initial position of the middle plane of
the plate. Assuming the built-in edge to be given by # = «, the bound-
ary conditions are

Jw
('w)zma = 0 (a—x—>z=a = () (]09)

Simply Supported Fdge. 1f the edge x = a of the plate is simply sup-
ported, the deflection w along this edge must be zero. At the same time
this edge can rotate freely with respect to the edge line; i.e., there are no

bending moments M, along this edge. This

kind of support is represented in Fig. 49. The ”
k-

%74

analytical expressions for the boundary condi-
Fic. 49

tions in this case are

. 92w 9w
(W)ge = 0 (W + v 3y

>‘ =0 (110)

Observing that d%w/0y? must vanish together with w along the rectilinear
edge 2 = a, we find that the second of the conditions (110) can be
rewritten as 9*w/dxr* = 0 or also Aw = 0. Equations (110) are there-
fore equivalent to the equations

(W)eea = 0 (Aw)zee = 0 a1

which do not involve Poisson’s ratio ».

Free Edge. If an edge of a plate, say the edge z = o (Fig. 50), is
entirely free, it is natural to assume that along this edge there are no
bending and twisting moments and also no vertical shearing forces, i.e.,
that

(L"‘/I;,;)Ixa = () (Zl{zy)zaa =0 ((Jr)xrra = (

The boundary conditions for a free edge were expressed by Poisson! in
this form. But later on, Kirchhoff* proved that three boundary con-
ditions are too many and that two conditions are sufficient for the com-
plete determination of the deflections w satisfying Eq. (103). He showed

! See the discussion of this subject in Todhunter and Pearson, op. ¢it., vol. 1, p. 250,

and in Saint Venant, loc. ¢il.
2 See J. Crelle, vol. 40, p. 51, 1850.
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also that the two requirements of Poisson dealing with the twisting
moment M., and with the shearing force Q. must be replaced by one
boundary condition. The physical significance of this reduction in the
number of boundary conditions has been explained by Kelvin and Tait.!
These authors point out that the bending of a plate will not be changed
if the horizontal forces giving the twisting couple M., dy acting on an
element of the length dy of the edge = @ are replaced by two vertical
forces of magnitude M., and dy apart, as shown in Fig. 50. Such a
replacement does not change the magnitude of twisting moments and
produces only local changes in the stress distribution at the edge of the
plate, leaving the stress condition of the rest of the plate unchanged.

We have already discussed a par-
Mxy

_____ P g ticular case of such a transforma-
,t‘ ~Mxy+ %Ay_xydy tion of the boundary force system
X in considering pure bending of a
plate to an anticlastic surface (sec
Art. 11). Proceeding with the

~---Mxy

foregoing replacement of twisting

Mxy + IMXY 4y couples along the edge of the plate

Fre. 50 Y and considering two adjacent ele-

ments of the edge (Fig. 50), we

find that the distribution of twisting moments M, is statically equiva-
lent to a distribution of shearing forces of the intensity

Hence the joint requirement regarding twisting moment M., and shear-
ing force Q. along the free edge x = a becomes

ML\
V.= (Qz 5 >_ =0 (@)

Substituting for Q. and M., their expressions (106) and (102), we finally
obtain for a free edge x = a:

9w . o*w _
[5]:—3 + (2 14 672: ()yz]z_a = O (112)
The condition that bending momenis along the free edge are zero requires
9w otw .
<62$2 + g 0‘7/2 )x:a N 0 (1 13)

1 Sec “Treatise of Natural Philosophy,” vol. 1, part 2, p. 188, 1883, Independ-
ently the same question was explained by Boussinesq, J. Math., ser. 2, vol. 16, pp.
125-274, 1871; ser. 3, vol. 5, pp. 329-344, Paris, 1879,
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Equations (112) and (113) represent the two necessary boundary con-
ditions along the free edge x = a of the plate.

Transforming the twisting couples as explained in the foregoing dis-
cussion and as shown in Fig. 50, we obtain not only shearing forces @, dis-
tributed along the edge & = a but

also two concentrated forces at the ,r ------- e R (Mxy)y = o;y=0
ends of that edge, as indicated in b’ X
Fig. 51. The magnitudes of these -~ (Myx)

x=oyy=b

forces are equal to the magnitudes
of the twis’Fing couple! M., at the y° (Myx) —oyy=b (Mxy)x%w:b
corresponding corners of the plate.
Making the analogous transforma-
tion of twisting couples M, along the edge y = b, we shall find that in
this case again, in addition to the distributed shearing forces @], there
will be concentrated forces M,. at the corners. This indicates that a
rectangular plate supported in some way along the edges and loaded
laterally will usually produce not only reactions distributed along the
boundary but also concentrated reactions at the corners.

Regarding the directions of these concentrated reactions, a conclusion
can be drawn if the general shape of the deflection surface is known.
Take, for example, a uniformly loaded square plate simply supported
along the edges. The general shape of the deflection surface is indicated
in Fig. 52a by dashed lines representing the section of the middle surface

of the plate by planes parallel to the zz

Fia. 51

A Q -=----- »1 and yz coordinate planes. Considering

Ja 7 V4 x these lines, it may be seen that near the
["/‘-»~_74’——~’/A corner A the derivative dw/dx, repre-
senting the slope of the deflection sur-

Y 2 (@) face in the z direction, is negative and
decreases numerically with increasing y.

/vr R /R * Hence 9%w/dx 9y is positive at the cor-
A ‘A ner A. From Eq. (102) we conclude
¥ R (%) R that M, is positive and M. is negative
Fra. 52 at that corner. From this and from

the directions of M,, and M,. in TIig.
48 it follows that both concentrated forces, indicated at the point z = a,
y = bin Fig. 51, have a downward direction. From symmetry we conclude
also that the forces have the same magnitude and direction at all corners
of the plate. Hence the conditions are as indicated in Fig. 52b, in which

d%w
R = 2(Mz)smsyms = 2D(1 = ) (aT a&)
! T=a,y=0a

1 The couple M,y is & moment per unit length and has the dimension of a force.
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It can be seen that, when a square plate is uniformly loaded, the
corners in general have a tendency to rise, and this is prevented by the
conecentrated reactions at the corners, as indicated in the figure.

Llastically Supported and Elasti-

DA @ "] cally Buili-in Edge. Iftheedgex = a

—x of arectangular plateisrigidly joined

to a supporting beam (Fig. 53), the

£ , deflection along this edge is not zero

and is equal to the deflection of the

Fre. 53 beam. Also, rotation of the edge is

equal to the twisting of the beam.

Let B be the flexural and C the torsional rigidity of the beam. The pres-

sure in the z direction transmitted from the plate to the supporting beam,
from Eq. (a), is

AN
N

- _ Jl 2y N . d*w
o= = (e =) - | e-age]
and the differential equation of the deflection curve of the beam is
d*w i) 0%w
B (@l:a =D — |:6x2 + (2 ] » (114)

This equation represents one of the two boundary conditions of the plate
along the edge z = a.

To obtain the second condition, the twisting of the beam should be
considered. The angle of rotation! of any cross section of the beam is
— (0w/8x) z—a, and the rate of change of this an-
gle along the edge is

S
0r Y Jzma

Hence the twisting moment in the beam is
—C(8%w/3x dY)z=e. This moment varies along ¥y
the edge, since the plate, rigidly connected with
the beam, transmits continuously distributed
twisting moments to the beam. The magni- (b)
tude of these applied moments per unit length Fre. 54
is equal and opposite to the bending moments

M. in the plate. Hence, from a consideration of the rotational equilib-
rium of an element of the beam, we obtain

d a*w
— C @ <£@>I=a = — (]‘[z) z=q

! The right-hand-screw rule is used for the sign of the angle.
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or, substituting for M. its expression (101),

d [ dw 9w J%w
~C @<a—-x ay)ﬂ =D (W + v a-y—g)m (115)

This is the second boundary condition at the edge x = a of the plate.

In the case of a plate with a curvilinear boundary (Fig. 54), we take
at a point A of the edge the coordinate axes in the direction of the
tangent ¢t and the normal n as shown in the figure. The bending and
twisting moments at that point are

h/2 h/2
M, = /Wz wondz M= — f o (®)

—~h/2
Using for the stress components o, and 7., the known expressions!

o, = 0, c08? a + o, sin? a + 27, sin « cos «
Tt = T(€08? @ — sin? a) + (o0, — 0,) sin « cos «

we can represent expressions (b) in the following form:

M, = M,cos?a+ M, sin? a« — 2M,, sin a cos a (
M = M., (cos? & — sin® a) & (M, — M,) sin a c0s « 2

The shearing force @, at point A of the boundary will be found from the
equation of equilibrium of an element of the plate shown in Tig. 54b,
from which

Qnds = de?/ - defl)
or Q. = Q:cos a + @, sin « (d)

Having expressions (¢) and (d), the boundary condition in each particular
case can be written without difficulty.
If the curvilinear edge of the plate is built in, we have for such an edge
ow

w=0 2-0 (e)

In the case of a simply supported edge we have
w =10 M, =0 N

Substituting for M, its expression from the first of equations (¢) and
using 1igs. (101) and (102), we can represent the boundary conditions (f)
in terms of w and its derivatives.

If the edge of a plate is free, the boundary conditions are

OMu

Mn=0 Vann—

1 The x and y directions are not the principal directions ag in the case of pure bend-
ing; hence the expressions for M, and M, will be different from those given by Eqgs.
(39) and (40).
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where the term —dM,,/ds is obtained in the manner shown in Fig. 50
and represents the portion of the edge reaction which is due to the dis-
tribution along the edge of the twisting moment M,, Substituting
expressions (¢) and (d) for M,, M, and @, and using Eqgs, (101), (102),
(106), and (107), we can represent boundary conditions (g) in the follow-
ing form:

2, 2 2
VAU)-!—(l——u)<cos2 Ow + sin? « 6w+sin2 3%):

dx? ay* * 9z oy
d . d d 9w
08 A — — —v) 20— 11
€os a o Aw + sin « 3 Aw 4+ (1 — ») 3s [cos % a5 ay (116)
1 gw  *w
+ 5 sin 2« <6y2 W)] =0

where, as before,

s = T B

Taxt T oay?

Another method of derivation of these conditions will be shown in the
next article.

23. Alternative Method of Derivation of the Boundary Conditions. The differential
equation (104) of the deflection surface of a plate and the boundary conditions can be
obtained by using the principle of virtual displacements together with the expression
for the strain energy of a bent plate.? Since the effect of shearing stress on the deflec-
tions was entirely neglected in the derivation of Eq. (104), the corresponding expres-
sion for the strain energy will contain only terms depending on the action of bending
and twisting moments as in the case of pure bending discussed in Art. 12. Using
Eq. (48) we obtain for the strain energy in an infinitesimal clement

! Pw | w\? 82w 82w e \2
AV =-D R VST R _ ) e d
2 [(W - 07/”> 4 [612 ay? (ax <’9.1/> ]} e

The total strain energy of the plate ig then obtained by integration as follows:

9% 62 % 9w 92 2
= —D IW LT o — gy |02 (0 dedy (117)
ax? c)y2 ax? 9y dx 8y

where the integration is extended over the entire surface of the plate.

Applying the principle of virtual displacements, we assume that an infinitely small
variation éw of the deflections w of the plate is produced. Then the corresponding
change in the strain energy of the plate must be equal to the work done by the external
forces during the assumed virtual displacement. In calculating this work we must
consider not only the lateral load ¢ distributed over the surface of the plate but also
the bending moments M, and transverse forces @n — (9M,;/9s) distributed along the
boundary of the plate. Hence the general equation, given by the principle of virtual
displacements, is

! This is the method by which the boundary conditions were satisfactorily estab-
lished for the first time; sce G. Kirchhoff in J. Crelle, vol. 40, 1850, and also his
Vorlesungen tiber Mathematische Physik, Mechanik, p. 450, 1877. Lord Kelvin tock
an interest in Kirchhoff’s derivations and spoke with Helmholtz about them; see the
biography of Kelvin by Sylvanus Thompson, vol. 1, p. 432.
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3V=//q6wdxdy—/Mni£z~uds+/(Qn—

The first integral on the right-hand side of this equation represents the work of the
lateral load during the displacement dw. The second, extended along the boundary
of the plate, represents the work of the bending moments due to the rotation a(éw)/on
of the edge of the plate. The minus sign follows from the directions chosen for M, and
the normal = indicated in Fig. 54. The third integral represents the work of the
transverse forces applied along the edge of the plate.

In the calculation of the variation 8V of the strain energy of the plate we use certain
transformations which will be shown in detail for the first term of expression (117).
The small variation of this term is

3w 62w 42 6w
b) — d dy = 2 xd
3w 9 & a3 &

-2 O (Fwohw) Fwdwl gy
dx \dx® oz or% oz
ad [ d%w 9 dw d [ PBw d*w

= 2 — —_— )=\ — — dxd

// [ax <6x2 ax > oz <6x3 6w) - azt Bw] wdy ()

In the first two terms after the last equality sign in expression (c) the double integra-
tion can be replaced by simple integrals if we remember that for any function F of =
and y the following formulas hold:

oF
/ —/d:cdy=/Fcos:xds
(d)
//—dzdy /Fsinads
Y

In these expressions the simple integrals are extended along the boundary, and « is the
angle between the outer normal and the z axis, as shown in Fig. 54. Using the first
of formulas (d), we can represent expression (c¢) as follows:

w9 dw  dw
dedy = 2 ———6 dz d 2 —_—— - — :
//( ) x dy / w dx dy +- /(axz o 0 Bw)wSads (e)

Advancing along the boundary in the direction shown in Fig. 54, we have

oM "’)‘aw,ds ®)
as

3 sw Gawdn déw ds 9w ddw
—— e = —— (0S¢ — — Si0 «
Tor  on dz ds dx on s

With this transformation, expression (e) becomes

aw\’ 9w
6/[(9—132) dxdy=2/ g;l—éwd:cdy

0%w [ 9 dw d dw
+2 —COSa——a—sma)cos;ads—2/—8w005ads N
s

61:2 an
o f 02w
- — | —sin « cos « ) sw ds
s \dx?

Integrating by parts, we have

8% 3 dw
~—qmacoslxa— ds

S

0w
S S @ €08 o dw
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The first term on the right-hand side of this expression is zero, since we are integrating
along the closed houndary of the plate. Thus we obtain

o%w J dw 3 [ o%w
—— 8in « cos « ds = — — { — sin « cos o } Sw ds
dx? as ads \dx*

Substituting this result in Iq. (f), we finally obtain the variation of the first term in the
axpression for the strain encrgy in the following form:

CETAY
b) — ) dedy =2 —6wdxdy+2 —cosza———~d
dx?
d.’i
+ 2 5; Esmacos(x —:;ITCOSO( swds (g)

Transforming in a similar manner the variations of the other terms of expression (117),

we obtain
[ o\ L EX)
b — | dx dy —6wdde 4 2 Y sin? o =2 dg
dy? dy? an
d [ o*w Pw
-2 / [&; <6y sin o« cos a) + gy—asin a] swds (h)
dw 9w d4w
b — —drdy = 2 dw dx dy
. dx? 9yt dx? 9y?
a*w *w 3 dw 3w 3w
7 cos? ~Z qin® ds — 3 —
-+ / <6y2 cos® a + Py Sir a) Pl / {aﬂ o sin « + P cos o
& a2 tw . d .
+5; ] ;‘E—E/; S0 @ COS o ow ds (Z)
2w \’ 4w
8 dedy =2 *Ewdxdy
dx dy ax? 9y*
o a ow a o%w
+ 2 sin « c0s o —— ds — sin? e — cos?
/ dz dy « “ on + s 6xay< o~ cos* a)

P dBw sw d o
———— 08 @ — sin o
dzx 9y? ¢ 0 a9y « s

By using these formulas the variation of the potential energy will be represented in the
following form:

=D<//AAw6wdxdy
9?2 . w
(1—u)<~—cos’a+2 wsmacOSa+—sm2a “+ v Aw 2—@ds
dx dy ay? an
3 ow  Jw\ . 9% . .
+ (1—»)— Ec;_s;? smacos:x—a P (cos? @ — sin? &)

Pw 93 P*w 9%
- + e cos ¢ — { — + ol sin o ¢ Sw ds (118)
03 | oz y*? ay®  Ix? ay

Substituting this expression in Eq. (b) and remembering that sw and 3(5w)/an are
arbitrary small quantities satisfying the boundary conditions, we conclude that Eq. (b)
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will be satisfied only if the following three equations are satisfied:

// (DAAw — q) Swdxdy =0 (k)
62 62
/ [ [(1 — ) (ﬂcosza + 2 axlgysin @ oS o 4 E;i;sinz a) -+ vAw:I
+ Mn] —‘ds =0 ()
9% 9% a3
/(D {(1 —v)ili<~£) —~l)>sinozcost—— w (cOSza—Sinza)]
ds ar? ay? dz oy
3Bw PPw Pw 93w OM ..
—\ == COS & = i n dwds = :
(8953 -+ P 6y2> cos a (ay3 + py 6y)s } (Q s >> dwds =0 (m)

The first of these equations will be satisfied only if in every point of the middle surface
of the plate we have

DAAw —q =0

i.e., the differential equation (104) of the deflection surface of the plate. Equations
(1) and (m) give the boundary conditions.

If the plate is built in along the edge, éw and a(éw)/9n are zero along the edge; and
Eqgs. () and (m) arc satisfed. In the case of a simply supported edge, dw = 0 and
M, = 0. Hence Eq. (m) is satisfied, and Eq. (I) will be satisfied if
Pw %

1 — ) ——cosza—t—2 sin ¢ cos @ + —sin?a } +vaw =0 (n)
dx Iy y?

In the particular case of a rectilinear edge parallel to the y axis, @ = 0; and we obtain
from Eq. (n)
3%w w

v =
az? Jy?

as it should be for a simply supported edge.

If the edge of a plate is entirely free, the quantity éw and 9(sw)/dn in Egs. (I) and
(m) are arbitrary; furthermore, M, = 0 and Q. — (8M.;/9s) = 0. Hence, from
Egs. (I) and (m), for a free edge we have
I 2

. 0w
SlnaCOSa'{'-—FSln':a)-l-vAw =0
Yy

2
— —_— <2 2
a-r» ( - cos? o + 3% 7

o 0w 0w
a - v) —|{— — — }sinacos a — —— (cos? @ — sin’ a)
dx2 dy? dx dy

FBw Iy By Fw .
— -+ ———Jcos @ — + — sin e =0
azd  dx oy? dyd  dx? oy

These conditions are in agreement with Eqgs. (116) which were obtained previously
(see page 88). In the particular case of a free rectilinear edge parallel to the y axis,
a = 0, and we obtain

02w 2w _

oz oyt
Fw w
—+2-v—=0
oz 9z Iy*

These equations coincide with Eqs. (112} and (113) obtained previously.
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In the case when given moments M, and transverse forces Q. — (3M.:/3s) are dis-
tributed along the edge of a plate, the corresponding boundary conditions again can
be easily obtained by using Eqs. () and (m).

24. Reduction of the Problem of Bending of a Plate to That of Deflec-
tion of a Membrane. There are cases in which it is advantageous to
replace the differential equation (103) of the fourth order devcloped for

a plate by two equations of the second order which represent the deflee-
tions of a membrane.! For this purpose we use form (104) of this

equation:
9% %\ (o*w , w\ ¢
<6x2 + 6y2> <3x2 + 6{/2> D (@)

and observe that by adding together the two expressions (101) for bend-
ing moments (see page 81) we have

_ w | dw
M.+ M,=—-D(1+v) (6’72 +6y2> (b)
Introducing a new notation
o M. M, L (w | dw
M= = D(ax2 +W> (119)
the two Egs. (a) and (b) can be represented in the following form:
»®M | M
ox? ay®:
Pw_ ow_ _ M 120
dx* ' dy* D

Both these equations are of the same kind as that obtained for a uni-
formly stretched and laterally loaded membrane.?
The solution of these equations is very much simplified in the case of
a simply supported plate of polygonal shape, in which case along each
rectilinear portion of the boundary we have 9%w/ds*> = 0 since w = 0 at
the boundary. Observing that M, = 0 at a simply supported edge, we
conclude also that 8%w/én? = 0 at the boundary. Hence we have [see
Eq. (34)]
w |, w _ w

dw M
a5 T am T 50

Tar =D @
at the boundary in accordance with the second of the equations (111).
It is seen that the solution of the plate problem reduces in this case to

the integration of the two equations (120) in succession. We begin with

1 This method of investigating the bending of plates was introduced by H. Marcus
in his book “Die Theorie elastischer Gewebe,”” 2d ed., p. 12, Berlin, 1932.
2 See S. Timoshenko and J. N. Goodier, ‘““Theory of Elasticity,” 2d ed., p. 269, 1951.
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the first of these equations and find a solution satisfying the condition
M = 0 at the boundary.! Substituting this solution in the second equa-
tion and integrating it, we find the deflections w. Both problems are of
the same kind as the problem of the deflection of a uniformly stretched
and laterally loaded membrane having zero deflection at the boundary.
This latter problem is much simpler than the plate problem, and it can
always be solved with sufficient accuracy by using an approximate
method of integration such as Ritz’s or the method of finite differences.
Some examples of the application of these latter methods will be dis-
cussed later (see Arts. 80 and 83). Several applications of Ritz’s method
are given in disecussing torsional problems.2

A simply supported plate of polygonal shape, bent by moments M,
uniformly distributed along the boundary, is another simple case of the
application of Eqs. (120). Equations (120) in such a case become

SEM | M

¢ . = ()
dux* dy?
w | 0w M (121)
w tap = "D

Along a rectilinear edge we have again 6%w/ds? = 0. Hence

*w
M= =D
and we have at the boundary
Yw  ow _ow M. M
9r? ' 9y an® D~ D

This boundary condition and the first of the equations (121) will be
satisfied if we take for the quantity M the constant value M = M,
at all points of the plate, which means that the sum of the bending
moments M, and M, remains constant over the entire surface of the
plate. The deflections of the plate will then be found from the second
of the equations (121),% which becomes

w | w M,
o Tor T T D @

It may be concluded from this that, in the case of bending of a simply
supported polygonal plate by moments M, uniformly distributed along
the boundary, the deflection surface of the plate is the same as that of

1 Note that if the plate is not of a polygonal shape, M generally does not vanish at
the boundary when M, = 0.

2 See Timoshenko and Goodier, op. cit., p. 280.

3 This was shown first by 8. Woinowsky-Krieger, Ingr.-Arch., vol. 4, p. 254, 1933.
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a uniformly stretched membrane with a uniformly distributed load.

There are many cases for which the solutions of the membrane problem

are known. These can be immediately applied in discussing the corre-

sponding plate problems.

I< --------- Q - Take, for example, a simply sup-

A ported equilateral triangular plate

(Fig. 55) bent by moments M,

uniformly distributed along the

boundary. The deflection surface

C of the plate is the same as that of

a uniformly stretched and uni-

formly loaded membrane. The

(a) latter can be easily obtained ex-

R perimentally by stretching a soap

() gy film on the triangular boundary

F1g. 55 and loading it uniformly by air
pressure.!

The analytical expression of the deflection surface is also comparatively

simple in this case. We take the product of the left-hand sides of the

equations of the three sides of the triangle:

R

* — 3y*r _ a(x® + ) n 4a?
3 3 3-27

This expression evidently becomes zero at the boundary. Hence the
boundary condition w = 0 for the membrane is satisfied if we take for
deflections the expression

]2t =8y e 49y 4q8
w“Nl 3 5 Tioar

(e)
where N is a constant factor the magnitude of which we choose in such a
manner as to satisfy Eq. (d). In this way we obtain the required solution:

_ﬂ[” 8 ol D2 2 22 ia

Substituting x = y = 0 in this expression, we obtain the deflection at the
centroid of the triangle

M@ @
Wo = 57D g

1 Such experiments are used in solving torsional problems; see Timoshenko and
Goodier, op. cit., p. 289.
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The expressions for the bending and twisting moments, from Egs. (101)
and (102), are

Mz=4£—"[l+v—(1—V)%§]

My:%f[1+y+(1—p)§f] )
a
3(1 — v)2.
M, = ~ i__m’z’_)*‘/
Shearing forces, from Eqs. (106) and (107), are
Q:=0Q,=0

Along the boundary, from Eq. (d) of Art. 22, the shearing force @, = 0,
and the bending moment is equal to M,. The twisting moment along
the side BC (Fig. 55) from LEgs. (c) of Art. 22 is

3(1 — M,

M = 4q

(y — \/gm)

The vertical reactions acting on the plate along the side 8C (Fig. 55) are

M. 31— ) .
Vo= Qn ds 2a A ()

From symmetry we conclude that the same uniformly distributed reac-
tions also act along the two other sides of the plate. These forces are
balanced by the concentrated reactions at the corners of the triangular
plate, the magnitude of which can be found as explained on page 85 and
is equal to

R = 2(M.)emiaymo = (1 — ») V3 M, ()

The distribution of the reactive forces along the boundary is shown in
Fig. 556. The maximum bending stresses are at the corners and act on
the planes bisecting the angles. The magnitude of the corresponding
bending moment, from Eqgs. (h), is
(M) max = (M) za = g’%—l) (k)
This method of determining the bending of simply supported polygonal
plates by moments uniformly distributed along the boundary can be
applied to the calculation of the thermal stresses produced in such plates
by nonuniform heating. In discussing thermal stresses in clamped plates,
it was shown in Art. 14 [Eq. (b)] that nonuniform heating produces uni-
formly distributed bending moments along the boundary of the plate
which prevent any bending of the plate. The magnitude of these
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moments is!

M, = DU+ ) o

To obtain thermal stresses in the case of a simply supported plate we
need only to superpose on the stresses produced in pure bending by the
moments (I) the stresses that are produced in a plate with simply sup-
ported edges by the bending moments —afD(1 4+ »)/h uniformly dis-
tributed along the boundary. The solution of the latter problem, as was
already explained, can be obtained without much difficulty in the case of
a plate of polygonal shape.?

Mx
N\
//MY ) :
x, atEh?
4 ‘ X aten?
Y 24
(a)
Frc. 56

Take again, as an example, the equilateral triangular plate. If the
edges of the plate are clamped, the bending moments due to nonuniform
heating are

M, =M, = ‘itg(hL”) (m)

To find the bending moments M. and M, for a simply supported plate
we must superpose on the moments (m) the moments that will be obtained

from Egs. (h) by letting M, = —atD(1 + »)/h. In this way we finally
obtain
tD(1 + tD(1 + 3:
M, =2 (h N_@ (2h ”)[1+u—(1—u)7”]
atEh? 3x
= U T 7)
atD(1 + » oftD(1 + » 3
M, = (h ) _ (2h 2[1+v+(1— V)-af}
. ozIfE'_}L2 1 - 3x
24 a
_ 1 atBR%y
Mo =3

! 1t is assumed that the upper surface of the plate is kept at a higher temperature
than the lower one and that the plate thus has the tendency to bend convexly upward.
2 See dissertation by J. L. Maulbetsch, J. Appl. Mechanics, vol. 2, p. 141, 1935.
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The reactive forces can now be obtained from Egs. (¢) and () by substi-
tution of M, = —atD(1 + »)/h. Hence we find

OMu _ otER o /3 atER

Vo=@ - ds  8a - 12

The results obtained for moments and reactive forces due to nonuniform
heating are represented in Fig. 56¢ and b, respectively.

26. Effect of Elastic Constants on the Magnitude of Bending Moments. It is seen
from Egs. (101) and (102) that the magnitude of the bending and twisting moments
in a plate is considerably affected by the numerical value of Poisson’s ratio ». On the
other hand, it can be easily shown that in the case of a transverse load the magnitude
of the quantity Dw is independent of both constants £ and » if the plate is either
simply supported at rectilinear edges or clamped along some edges, whether rectilinear
or not.

Assuming such boundary conditions in any combination, let us consider the follow-
ing problem. Some values of the bending moments M, and M, being given numeri-
cally for an assumed numerical value of », these moments must be computed for a new
value, say »', of the same clastic constant. Let M. and M ; be the new values of the
bending moments. Writing Eqs. (101) first for v, then for v/, eliminating from them
the curvatures 9%w/dx?* and 9%w/dy? and solving the resulting equations for M ; and
M ;, we obtain

1
M = = (1 = ») M + (& = »)M)
(122)
MI

Yool — 2

[

(A= M, + (& — »)M,)

Thus M’ and M ; can be readily calculated if M, and M, arc known.

If the constant » is implied in some of the given boundary conditions, as in the casc
of a free edge [Eq. (112)], Egs. (122) do not hold any more.

If the plate is clastically supported or elastically clamped, the moments also depend
on the flexural rigidity D of the plate with respect to the stiffness of its restraint.

The thermal stresses, finally, are affected not only by all the above-mentioned
factors, but also by the absolute value of the rigidity D of the plate.

Average values of » for some materials are given in Table 5. The last value of the
table varies widely, depending on the age of the concrete, on the type of aggregate,
and on other factors.!

TABLE 5. AVERAGE VALUES OF Poisson’s Ratio »

Material v
Steel............... 0.30
Aluminum. ......... 0.30
Glass.............. 0.25
Concerete........... 0.150.25

1 The German Code (DIN 4227) gives values of » which approximately can be
expressed by » = V4 f—L/350, f} being the compressive strength of concrete at 28 days
in pounds per square inch. See also J. C. Simmons, Mag. of Concrete Research, vol.
8, p. 39, 1956.
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26. Exact Theory of Plates. The differential equation (103), which, together with
the boundary conditions, defines the deflections of plates, was derived (see Art. 21) by
neglecting the effect on bending of normal stresses . and shearing stresses rz. and r4..
This means that in the derivation each thin layer of the plate parallel to the middle
plane was considered to be in a state of plane stress in which only the stress components
o5, 0y, and 7., may be different from zero. One of the simplest cascs of this kind is that
of pure bending. The deflection surface in this case is a second-degree function in x
and y [see Eq. (¢), Art. 11] that satisfies Eq. (103). The stress components o;, oy,
and 7., are proportional to z and independent of z and .

There are other cases of bending in which a plane stress distribution takes place and
Eq. (103) holds rigorously. Take, for example, a circular plate with a central circular
hole bent by moments M, uniformly distributed along the boundary of the hole (Fig.
57). Each thin layer of the plate cut out by two adjacent plancs parallel to the middle
plane is in the same stress condition as a thick-walled cylinder subjected to a uniform
internal pressure or tension (Fig. 57b). The sum ¢, 4 o of the two principal stresses
is constant in such a case,! and it can be concluded that the deformation of the layer in
the z direction is also constant and does not interfere with the deformation of adjacent
layers. Hence we have again a planar stress distribution, and Eq. (103) holds.

Let us discuss now the general question regarding the shape of the deflection surface
of a plate when bending results in a planar stress distribution. To answer this ques-
tion it is necessary to consider the three differential equations of equilibrium together
with the six compatibility conditions. If body forces arc neglected, these equations
are?

do I7zy 0Tz 0
x| By dz
Jo, Tz, OTyz
Y YL (@)
ay ox dz
do, Tz 87Ty, _
dz ax ay B
1 %0
14 » dx2
N = 1 a% »
b 1+ v oy
1 %
.’.\10;; = — -
1 4 » 922
1 520
Aﬂ';y = —
1 4 » 3z 9y
A 1 aJ20 (
Ty = = - c
! 1+ v dx a2 )
1 d29
Airys = — =
1+ » 9y a9z
in which
9 = o, -+ ay + o
92 a2 9?
zmd A1 = —

T oy e

1 See Timoshenko and Goodier, op. cit., p. 60.
2 See bid., pp. 229, 232.
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Adding Eqs. (b), we find that

2 2 2
9_0 0_{? + a_g = A0 = (d)
ax?  9y?  92?
i.e., the sum of the three normal stress components represents a harmonie funetion.
In the case of a planar stress r.. = 7y; = 0. = 0, and it can be concluded from the last
two of the equations (¢) and the last of the equations (b) that 98/62 must be a constant,
say 8. Hence the general expression for 6 in the case of planar stress is

0 = 6y + B2 (e)

where 6 is a plane harmonic function, 7.e.,
%, 0%,

— A

- L = A6y =0
dx? ay? ’

We see that in the case of planar stress the function 6 consists of two parts: 6,
independent of z and 8z proportional to 2. The first part does not vary through the
thickness of the plate. It depends on deformation of the plate in its own plane and
can be omitted if we are interested only in hending of plates.  Thus we can take in our
further discussion

¢ = Bz N
[Equations of equilibrium (a) will be satisfied in the case of a planar stress distribution
if we take
% d%p 9%p
oz oz dy

(]

where ¢ is the stregs function. Let us consider now the general form of this function.
Substituting expressions (g) in Eq. (f), we obtain
3%p %

(')_x2 —l— a—y—z = Bz (h)

Furthermore, from the first of the equations (b) we conclude that

32¢ 92
Ay — = 0 or -
ay* ay?

Algo = ()

which, by using kq. (4), can be put in the following form:

az (92
R AL I (0
ay? \ 9=2

In the same manner, from the second and the third of the equatiens (b), we find

0t [ 3% a? 92 .
= (2£) =0 =£) -0 )
dx? \ 922 dx Iy \ 922

From Egs. (¢) and (J) it follows that 92¢/d22ig a linear function of x and . This funec-
tion may be taken to be zero without affecting the magnitudes of the stress components
given by expressions (g). In such a case the general expression of the stress function is

o = @y + p12
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where ¢ is & plane harmonic function and ¢ satisfies the equation

dter 0%
oz? ay?

=8 (&)

Since we are not interested in the deformations of plates in their plane, we can omit

@0 in our further discussion and take as a general expression for the stress function
P = Q12 )

Substituting this in Eqgs. (g), the stress components can now be calculated, and the
displacements can be found from the equations

ou 1 9 1 dw v
= e £=E(¢u—va1) % - T pleeta) :
du v 1 6u+6w_ Ov+8w_0 (m
ay ez G 8z ' dxr oz | oy
For the displacements w perpendicular to the plate we obtain in this way!
B 14
= — (g2 2 22
W op @ty )+ L
and the deflection of the middle surface of the plate is
= B 2 2 1 + i
Y (x® +y?) + T (n)
The corresponding stress components, from Eqs. (g) and (1), are
3% 31 921
z =2 = 2 = —z
7 ayr VT Papr T az ay
and the bending and twisting moments are
h/2 h3 92 h/2 XY
M, = gozde = = S8 M, = oade = — 2
—h/2 12 oy? —h/2 12 ox?
h/2 B 0% (0)
M,W = - Try2 dz = = =
—h/2 12 9z dy
For the curvatures and the twist of a plate, we find, from Eq. (n)
M _ E 4 1+ v 32 I _ B8 1 4 » 32 ) _ 1+ v 32,
Jx? E E  ox? ay? E E oy ar oy T E o dy
from which, by using Eqs. (%) and (o), we obtain
9w 2w _ 1 — »? 0% _ M,
ozr ay? B E Gy N D
2w O 1 — »? 92 M, R
ety = = - (p)
ay* dx? E o2 D
% _ 14 3% M.y

oxdy E ax6y= 1 —»D

1 8everal examples of caleulating w, v, and w from Kqs. (m) are given in 7bid.
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From this analysis it may be concluded that, in the case of bending of plates resulting
in a planar stress distribution, the deflections w [see Eq. (n)] rigorously satisfy Eq.
(103) and also Yqs. (101) and (102) representing bending and twisting moments. Ifa
solution of Lq. (k) is taken in the form of a function of the second degree in x and y, the
deflection surface (n) is algo of the second degree which represents the deflection for

-~ .
VA ) A7

Z <
(o)

X

®:
/é

or

(b)
Fia. 57

pure bending. Generally we can conclude, from Eq. (k), that the deflection of the
plate in the case of a planar stress distribution is the same as that of a uniformly
stretched and uniformly loaded membrane. The plate shown in Fig. 57 represents a
particular case of such bending, viz., the case for which the solution of Eq. (k), given
in polar coordinates, is

e1=Ar?+ Blogr 4 C

where A, B, and C are constants that must be chosen so as to satisfy the boundary
conditions.

Plates of a polygonal shape simply supported and bent by moments uniformly
distributed along the boundary (see Art. 24) represent another example of bending in

Fia. 58

which the deflection surface has a form satisfying Bq. (n), and Eqgs. (101), (102), and
(103) hold rigorously. In all these cases, as we may see from Iqs. (k) and (o), we have

h3 %1 %01 ﬁh3
My, +M, = —[|— +—1="0"
My 12(ax2 + ay2> 12

i.e., the sum of the bending moments in two perpendicular directions remains constant
over the entire plate.
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Let us consider now the case in which bending of a plate results in a generalized
planar stress distribution, 7.¢., one in which the normal stress comporent o, is zero at
all points of the plate and the shearing stress components 7., and r,. are zero on the
surfaces z = +h/2 of the plate. The deflection of a rectangular plate clamped along
onc edge and uniformly loaded along the opposite edge (Fig. 58) represents an example
of such bending. From the theory of bending of rectangular beams we know that
in this casc o. = 0 at all points of the plate and 7.. is zero on the surfaces of the plate
and varies along the depth of the plate according to the parabolic law

60 [ h? )
’rxz=z3— —4'—2

Using again the general equations (a), (), and (¢) and proceeding as in the preceding
case of a planar stress distribution, we find! that the general expression for the deflec-
tion surface in this case has the form

h2ep

1
W=z [T + (1 + V)‘Pl] (¢)

in which ¢ is a planar harmonic function of z and y, and ¢, satisfies the equation

dtp1 | ey -

az? oy?

| <

¢

r—al bt

A

It can be concluded that in this case again the differential equation (103) holds with
g = 0.

The equations for the bending and twisting moments and for the shearing forces in
this case are

I*w 9w 84w a2
M;,=—-D|— — Dh2 Aw
(c’):v2 + yay‘l> + 40 ay? "
a%*w O 8 4 » 9?
M,=—-D|— — - Dh? — Aw
v (ay2 M aﬁ) R 2 2 (123)
% 8+ » a2
M., = D1 - h? A
¢ ( ») dx 40 adx oy v

2}
Q: = —D— Aw Q, = —D— Aw
ax ay

Hence the expressions for the shearing forces coincide with expressions (108) given by
the approximate theory, but the expressions for moments are different, the second
terms of those expressions representing the effect of the shearing forces.

These correction terms can be obtained in an elementary way by using the same
reasoning as in the case of bending of beams. Considering the curvature in the zz
plane, we can state that the total curvature is produced by two factors, the bending
moments M., M, and the shearing force ¢,. The curvature produced by the bending

1 The rigorous solution for this case was given by Saint Venant; see his translation
of Clebsch’s “Théorie de 'élasticité des corps solides,”” p. 337. A general discussion
of the rigorous theory of bending of plates was given by J. H. Michell, Proc. London
Math. Soc., vol. 31, p. 100, 1900. Secalso A. E. H. Love, “The Mathematical Theory
of Elasticity,” p. 473. 1927. The results given in our further discussion are taken
from the latter book.
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moments is obtained by subtracting from the total curvature —a%w/6z? the portion
—3(kQ,/hG)/dx produced by the shearing force.! Substituting

kQ.
d%w o (?G‘)
-+

dzr? ox

and - (8%w/dy?) + a(kQ,/hG)/oy for —o%w/dz* and —o%w/dy? in Eqgs. (101) and
using the last two equations of the system (123), we find for the bending moments the

expressions
&2 %w kDh? 92
M, = —D —;L-v+v—~ + — —Aw
dx? Jy? 6  ay?
2w 3% kDh? a2
M,=-D{— — — A
v <6y2 + v&aﬂ) + 6 oz? @
These equations coincide with the first two equations of the system (123) if we take
k _ 8 -+ »
6 40

For v = 0.3 this gives k = 1.245.

From the theory of bending of beams we know that the correction due to the action
of the shearing force is small and can be neglected if the depth kb is small in comparison
with the span of the beam. The same conclusion also holds in the case of plates.

The exact expressions for stress components are

_ ¥7F:'z 9‘2"1} + %W . E h2z 2~ 3 92 A
e 1 -2 \azr ' Coay -\ 4 6 <)oyt
_ Ez o2 n 2w + E h% 2 —y . a2 A
vz 1 — »2\ay? e 1 — 2\ 4 6 - ox?
Ez ow E Rz 2 —» [\ 8% &
Tay = = e e [ ) — aw
Il +wvoroy 1 —»2\ 4 6 dx Ay
E(h? — 422) 9 E(h? — 422) 5
Tpe = — —————— — Ay Tye = — ————————— — Awp o, =0

- A
8(1 — »¥) Jz 8(1 — »?) a9y

The second terms on the right-hand sides of the equations for o;, oy, and 7., are the
corrections due to the effect of shearing forces on bending. It is seen that the stresses
o4, 0y, and 7., are no longer proportional to the distance z from the middle plane but
contain a term proportional to 2%, Shearing stresses 7.. and r,. vary according to the
same parabolic law as for rectangular beams. In the case of a plane stress distribu-
tion, Aw is a constant, and formulas (r) coincide with those given by the approximate
theory.

The problem of a uniformly loaded plate can also be treated rigorously in the same
way. Thus it can be shown that the general expression for deflections in this case is
obtained by adding to expression {g) the term

28 ey (o g - 2 ®
64D " 1—»

1% is a numerical factor that in the case of beams depends on the shape of the cross
section.
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which again satisfies Eq. (103) of the approximate theory. The equations for bending
moments do not coincide with Eqs. (101) of the approximate theory but contain some
additional correction terms. If the thickness of the plate is small in comparison with
the other dimensions, these terms are small and can be neglected.

In all previous cases general solutions of plate bending problems were discussed
without considering the boundary conditions. There are also rigorous solutions of
several problems in which boundary conditions are considered.! These solutions
indicate that, provided the plate can be considered “thin,”’ the customary theory is
accurate enough for practical purposes except (1) in the vicinity of a highly con-
centrated transverse load and (2) in narrow edge zones, especially near the corners of
plates and around holes with a diameter of the order of magnitude of the plate thick-
ness itself.

In the first of these two cases the stress components o, and the trangverse shearing
stresses must be considered equally important in their effect on the deformation of the
plate. In obtaining the necessary correction to the stresses given by the approximate
theory (see page 70) the boundary conditions can be eliminated from consideration.
In such circumstances the thick-plate theory proves most convenient for the solution
of the problem.

In the second case the effect of the stress components ¢, on the deformation becomes
sccondary as compared with the effect of the transverse shearing stresses 7. and ..
Primarily taking into account this latter effect, several modified thin-plate theories
have been developed recently (see Art. 39). These theories are better suited for the
analysis of the stress distribution in the edge zone of the plates than the more rigorous
thick-plate theory.

t In recent times the rigorous theory of plates has attracted the interest of engineers,
and several important papers in this field have been published. We shall mention
here the following: 8. Woinowsky-Krieger, Ingr.-Arch., vol. 4, pp. 203 and 305, 1933.
B. Galerkin, Compt. rend., vol. 190, p. 1047; vol. 193, p. 568; vol. 194, p. 1440. G. D.
Birkhoff, Phil. Mag., vol. 43, p. 953, 1922. C. A. Garabedian, Trans. Am. Muath. Soc.,
vol. 25, p. 343, 1923; Compt. rend., vols. 178 (1924), 180 (1925), 186 (1928), 195 (1932).
R. Archie Higdon and D. L. Holl, Duke Math. J., vol. 3, p. 18, 1937. A. C. Stevenson,
Phil. Mag., ser. 7, vol. 33, p. 639, 1942; R. Ohlig, Ingr.-Arch., vol. 13, p. 155, 1942;
1. N. Bneddon, Proc. Cambridge Phil. Soc., vol. 42, p. 260, 1946; L. Leibenson, ** Works,”’
vol. 1, p. 111, Moscow, 1951; H. Jung, Z. angew. Math. Mech., vol. 32, p. 57, 1952;
E. Koppe, Z. angew. Math. Mech., vol. 37, p. 38, 1957. For thermal stresses see K.
Margucrre, Z. angew. Math. Mech., vol. 15, p. 369, 1935; and I. S. Sokolnikoff and
E. 8. Sokolnikoff, Trans. Am. Math. Soc., vol. 45, p. 235, 1939.



CHAPTER 5

SIMPLY SUPPORTED RECTANGULAR PLATES

27. Simply Supported Rectangular Plates under Sinusoidal Load.
Taking the coordinate axes as shown in Fig. 59, we assume that the load
distributed over the surface of the plate is given by the expression

= ™ in ™

= ¢y sin 4 sin b (a)
in which ¢ represents the intensity of the load at the center of the plate.
The differential equation (103) for the deflection

. L T B a —————— )‘
surface in this case becomes - %
atw 9w d'w _ qo Ty |
IHX Lo W L O0W G0 T
dxt T dx? 9y? + dy* D sin § a ; sin N ) t;J
The boundary conditions for simply supported Y
edges are

w =0 M,=0 forr =0andz = a Yy
w =0 M, =0 fory =0andy =10 Fic. 59

Using expression (101) for bending moments and observing that, since
w = 0 at the edges, 9°w/dx* = 0 and 9*w/dy® = 0 for the edges parallel
to the » and y axes, respectively, we can represent the boundary condi-
tions in the following form:
*w

1 w=20 (2)%?:0 forr =0and z = @

. o*w (e)

B)w=20 (4)—67=0 fory=0andy =b

¥

It may be scen that all boundary conditions are satisfied if we take for
deflections the expression

ki’
w = C sin 7 sin b/ (d)

in which the constant €' must be chosen so as to satisfy Eq. (b). Substi-
tuting expression (d) into Eq. (b), we find

1 1\ q
”4<az+w> ¢=5
105
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and we conclude that the deflection surface satisfying Eq. (b) and bound-
ary conditions (¢) is

. qL .
W= —— L sin ™% gin ™Y (e)

1 1\ a b
4 Bl
wD(a2—|—b2>

Having this expression and using Eqs. (101) and (102), we find

R (0 SR WP A
M, = /1 | 2<a2—i—b2>bmabmb
~\& 5
- (1N T, ™Y
o <1 1)2 <a2 i b“) ST )
ol + = |
a’ b?
M.y = ol = V)—rw cos == cos Y

1 1 a b
= 4 =
(2+b2) ab

It is seen that the maximum deflection and the maximum bending
moments arc at the center of the plate. Substituting « = a/2, y = b/2
in Egs. (e) and (f), we obtain

Wnax = ”’"*'_-]iq;o’ 1 2 (124)
™D (a + 5@)
/ S LI U T
(Mx)max - \ 1 1 2 (a2 + b3>
FER
9o v 1 (125)
(My)nmx = ,M.‘,_,,._rw-—l.——‘:, (E_) + F)
"\ T3

In the particular case of a square plate, ¢ = b, and the foregoing
formulas become

_ qat _ _ (I + v)go?
Wmax = 47F4D (Z‘[:c)mnx - (ﬂ[y)max - T

We use Eqs. (106) and (107) to calculate the shearing forces and obtain

(126)

e v—\_qi,_v <7_r£ 1 7r_‘l'l
Q- ! ; cos o sin b
e T @
, g
Q, = B Gin ™ eos ™Y

1 1 a b
b <a—2 =+ ﬁ)
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To find the reactive forces at the supported edges of the plate we pro-
ceed as was explained in Art. 22. For the edge + = a we find

M., 1, 2=\ .
T

PR

In the same manner, for the edge y = b,
_ a[l[xl/ _ do 1 2 — vV . T .
b -+

Hence the pressure distribution follows a sinusoidal law. The minus sign
indicates that the reactions on the plate act upward. From symmetry
it may be concluded that formulas (h) and (¢) also represent pressure dis-
tributions along the sides # = 0 and y = 0, respectively. The resultant
of distributed pressures is

2(]0 1 1 2 — b
<#1 ; >Tz [& <G7 * 7762%7) [) sin —[- dy
™

a* ' b2
1/1 2 e . 4qoab 1 — .
+ i ([_q + b'f> /(; sin ‘%7; dx] = ﬂgl_ + 801 — ) ()

‘ 1, 1Y
T2ab (52 + b_2>

4qoab / / o sin = T sin T dy (k)

it can be concluded that the sum of the distributed reactions is larger
than the total load on the plate given by expression (k). This result ean
be easily explained if we note that, proceeding as described in Art. 22,
we obtain not only the distributed reactions

but also reactions concentrated at the cor- B A o .

ners of the plate. These concentrated re- b
actions are equal, from symmetry; and their

magnitude, as may be seen from Fig. 51, is [{JtIIIILL}T R
R

Observing that

R =2(Mu)sayy = —22L=0)

1, 1Y R
nab + bz Fia. 60

The positive sign indicates that the reactions act downward. Their sum
is exactly equal to the second term in expression (). The distributed
and the concentrated reactions which act on the plate and keep the load,
defined by Eq. (a), in equilibrium are shown graphically in Fig. 60. It
may be seen that the corners of the plate have a tendeney to rise up
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under the action of the applied load and that the concentrated forces R
must be applied to prevent this.

The maximum bending stress is at the center of the plate. Assuming
that @ > b, we find that at the center M, > M,. Hence the maximum
bending stress is

_ B(My)max . 6qO 14 1
(O-U)max - h2 — 1 1 9 &—2 + B—Q
mh gt g
a b
The maximum shearing stress will be at the middle of the longer sides of
the plate. Observing that the total transverse force V, = @, — agif’f

is distributed along the thickness of the plate according to the parabolic
law and using Eq. (7), we obtain

- B (1 27
(Tyz)max - 1 1 9 (bl + az )

If the sinusoidal load distribution ig given by the equation
g = qo sin %@ sin n%y (m)
where m and n are integer numbers, we can proceed as before, and we
shall obtain for the deflection surface the following expression:

0 . o Mmrx . N
q sm—sm——y

m* | n2\’ a b
D (a- * F)

w = (127)

from which the expressions for bending and twisting moments can be
readily obtained by differentiation.

28. Navier Solution for Simply Supported Rectangular Plates. The
solution of the preceding article can be used in calculating deflections
produced in a simply supported rectangular plate by any kind of loading
given by the equation

g = flz,y) (a)

For this purpose we represent the function f(z,y) in the form of a double
trigonometric series:?

fzy) = 2 2 Qon, SIT n_z? sin 7—%1/ (128)

m=1n=1

1 The first solution of the problem of bending of simply supported rectangular plates
and the use for this purpose of double trigonometric serics are due to Navier, who
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To caleulate any particular coefficient @, of this series we multiply both
sides of Eq. (128) by sin (n'ry/b) dy and integrate from 0 to b. Observing
that

=0 when n = »’/
b . 7
/ sin 7Y sin 1Y dy = g when n = n’
0

we find in this way

b /
A flz,y) sin ’l_g,?i dy = g E Oy’ SIN1 ? ®)

m=1

Multiplying both sides of Eiq. (b) by sin (m'wx/a) da and integrating from
0 to a, we obtain

//f(vz,y) sin 7 gin de xdy = 4bam»nr

from which

4 e fr . mmr . n'my ,
am'n'—%ﬁ Af(x,y) sin — = sin dedy (129)

Performing the integration indicated in expression (129) for a given load
distribution, i.e., for a given f(x,y), we find the coefficients of series (128)
and represent in this way the given load as a sum of partial sinusoidal
loadings. The deflection produced by each partial loading was discussed
in the preceding article, and the total deflection will be obtained by sum-
mation of such terms as are given by lq. (127). Hence we find

®

1 - Gmn . MEL . Ny
w=—p E 2 YT sin —-= sin —= (130)
T

m=1 n=1

Take the case of a load uniformly distributed over the entire surface
of the plate as an example of the application of the general solution (130).
In such a case

f@y) =
where ¢o is the intensity of the uniformly distributed load. From formula
(129) we obtain
O 4q0 / / sin ™ gin bJ dx dy 1bq0 (e)

wimn

presented a paper on this subject to the French Academy in 1820. The abstract of the
paper was published in Bull. soc. phil.-inath., Paris, 1823. The manuseript is in the
library of ’Ecole des Ponts et Chaussées.
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where m and n are odd integers. If m or n or both of them are even
numbers, @, = 0. Substituting in Eq. (130), we find

mmwx . nwy

“4 v Sin —= sin —¢
_ 16qo0 E : E : a b .
W=D <m2 n2)2 (131
mn

m=1 n=1 '(72 +7b‘2

wherem = 1,3,5, . . .andn=1,3,5, .. ..

In the case of a uniform load we have a deflection surface symmetrical
with respect to the axes ¢ = a/2, y = b/2; and quite naturally all terms
with even numbers for m or n in series (131) vanish, since they are
unsymmetrical with respect to the above-mentioned axes. The maxi-
mum deflection of the plate is at its center and is found by substituting
r=a/2, y = b/2in formula (131), giving

. ———1
, _16(102: E: (=1 2 o
Wiy = Tﬁj) *'(;n_?‘n;>2 (152)
=y &~ mn + =
1 n= a

This is a rapidly converging series, and a satisfactory approximation is
obtained by taking only the first term of the series, which, for example,
in the case of a square plate gives

_ Aqoa?

w UaAi
max 7['6D

— 00041 70
= 0.00416 %

or, by substituting expression (3) for D and assuming » = 0.3,

0 — 0.0451 1%
Waes = 0.0451 L5
This result is about 21 per cent in error (see Table 8).

From expression (132) it may be seen that the deflections of two plates
that have the same thickness and the same value of the ratio a/bincrease
as the fourth power of the length of the sides.

The expressions for bending and twisting moments can be obtained
from the general solution (131) by using Eqs. (101) and (102). The
series obtained in this way are not so rapidly convergent as series (131),
and in the further discussion (see Art. 30) another form of solution will be
given, more suitable for numerical calculations. Since the moments are
expressed by the second derivatives of series (131), their maximum values,
if we keep go and D the same, are proportional to the square of linear
dimensions. Since the total load on the plate, equal to goad, is also pro-
portional to the square of the lincar dimensions, we conclude that, for
two plates of equal thickness and of the same value of the ratio a/b, the



SIMPLY SUPPORTED RECTANGULAR PLATES 111

maximum bending moments and hence the maximum stresses are equal
if the total loads on the two plates are equal.l

29. Further Applications of the Navier Solution. Irom the discussion
in the preceding article it is seen that the deflection of a simply supported
rectangular plate (Fig. 59) can always be represented in the form of a
double trigonometric series (130), the coeflicients a.. being given by
Eq. (129).

Let us apply this result in the case of a single load P uniformly dis-
tributed over the area of the rectangle shown in Fig. 61. By virtue of
Eq. (129) we have

§+u/2 [y4v/2 . N
== sin 7% sin Y gy dy
abuv E—u/2  fn—v/2 b

or a 16 sin mr sin 27 gin T ip Y (a)
L = i e nary mrit . Ny a
"t rimnuw a b 2a 20

If, in particular, £ = a/2,9 = b/2, u = @, and

0

v = b, Eq. (a) yields the expression (¢) obtained TV *
in Art. 28 for the uniformly loaded plate. - u = 7

Another case of practical interest is a single . | :
load concentrated at any given pointz = £,y = g v i p
of the plate. TUsing Eq. (@) and letting » and v r
tend to zero we arrive at the expression e £ ==

_ 4P mw§ . nwy
O = sin —— PR ) gl

and, by Eq. (130), at the deflection J

Fia. 61
w« » . mmwf . nay

o sin == sin == - -
= E § . . nwy
S D ’ oy sin —= sin — (133)

m? 2
m=1 n=1 <aT+F)

The series converges rapidly, and we can obtain the deflection at any
point of the plate with sufficient accuracy by taking only the first few
terms of the series. Let us, for example, calculate the deflection at the
middle when the load is applied at the middle as well. Then we have
E=2x=a/2,y =y = b/2, and the series (133) yields

@« ©

o = 1 .
max T ‘n’4(LbD _-7;722 (C)
n=1 ; + b2

bZ

! This conclusion was established by Mariotte in the paper “Traité du mouvement
des eaux,” published in 1686. See Mariotte’s scientific papers, new ed., vol. 2, p. 467,
1740.
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wherem = 1,3,5, . . .andn =1,3,5, . . .. Inthecaseofasquare
plate, expression (¢) becomes

_ 4P0L2 E
Wmax = (mz + n2)2

m=1 n=1
Taking the first four terms of the series we find that
0.01121Paq?

max ~

which is about 3} per cent less than the correct value (see Table 23,
page 143).

As for the series (128) representing the intensity of the concentrated
load it is divergent at x = £, ¥y = 5, and so also are the series expressing
the bending moments and shearing forces at the point of application of
the load.

Let us consider now the expression

nmn mmy nmn

§1n —_— Sln 7)— sin T sin T
w = K(x7y7 717) 4abD n2\z2
2 2 ")

b2

(134)

which, by virtue of Eq. (132), represents the deflection due to a unit load
P = 1 and for which the notation K(x,y,£,1) is introduced for brevity.

Regarding x and y as the variables, w = K(z,y,£,7) is the equation of
the elastic surface of the plate submitted to a unit load at a fixed point

= § y = 9. Now considering ¢ and 5 as variable, Eq. (134) defines
the influence surface for the deflection of the plate at a fixed point z, ¥,
the position of the traveling unit load being given by £ and 9. If, there-
fore, some load of intensity f(£,1) distributed over an area A is given, the
corresponding deflection at any point of the plate may easily be obtained.
In fact, applying an elementary load f(&7) dédn at « = £, y = 4 and
using the principle of superposition, we arrive at the deflection

w= [4 [ 1EmK@y,en) e dy (135)

the double integral being extended over the loaded area and K(z,y,&n)
being given by Eq. (134).

The function K(z,y,£,n) is sometimes called Green’s function of the plate. When
given as by Eq. (134), this function is associated with the boundary conditions of the
simply supported rectangular plate. Many properties of Green’s function, however,
are independent of those restrictions. An cxample is the property of symmetry,
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expressed by the relation
K(%?/;E;"l) = K(Eyn:xyy)

which follows from the well-known reciprocal theorem of Maxwell! and is easy to
verify in the particular case of the function (134).

As the last example in the application of Navier’s solution let us consider the case of
as ingle load P uniformly distributed over the area of a circle with radius ¢ and with
center at r = §, y = . Introducing polar coordinates p, 6 with the origin at the
center of the loaded area and replacing the elementary area dx dy in Eq. (129) by the
area p dp d8, we have, by this latter equation,

4 P ¢ [2r 0 in 0
am=———/ / sin Tkt pcos®) o i Fesin0 L )
0 0

ab wc? a b

Provided that the circle p = ¢ remains entirely inside the boundary of the plate the
evaluation of the integral (d) gives the expression?

8P . .
Amn = J1(ymac) Sin mrt gin i (e)
abcymn a b

in which v,, = = \/(m/a)"’ + (n/b)_é and J1(vmac) 1s the Bessel function of order one,
with the argument v,.,.c. The required deflection now is obtainable by substitution
of the expression (e) into Eq. (130).

It is seen that the form of the Navier solution remains simple even in
relatively complex cases of load distribution. On the other hand, the
double series of this solution are not convenient for numerical computa-
tion especially if higher derivatives of the function w are involved. So,
another form of solution for the bending of the rectangular plate, more
suitable for this purpose, will be discussed below.

30. Alternate Solution for Simply Supported and Uniformly Loaded
Rectangular Plates. In discussing problems of bending of rectangular
plates that have two opposite edges simply supported, M. Lévy? sug-
gested taking the solution in the form of a series

o

mnx

Ym S T (136)

g
il

m=1

where Y, is a function of y only. It is assumed that the sides z = 0 and
v = a (Fig. 62) are simply supported. Hence each term of series (136)
satisfies the boundary conditions w = 0 and d*w/dx® = 0 on these two
sides. It remains to determine Y, in such a form as to satisfy the bound-

! See, for instance, 5. Timoshenko and D. H. Young, “Theory of Structures,” p.
250, 1945.

2 See 8. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 240, 1932.

3 See Compt. rend., vol. 129, pp. 535-539, 1899. The solution was applied to several
particular cases of bending of rectangular plates by E. Estanave, “Théses,”” Paris,
1900; in this paper the transformation of the double series of the Navier solution to the
simple series of M. Lévy is shown.
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ary conditions on the sides y = 1b/2 and also the equation of the deflec-
tion surface
d'w a*w
dzt +2 dx? dy?

+W:% (@)

In applying this method to uniformly loaded and simply supported
rectangular plates, a further simplification can be

. }‘ ‘‘‘‘‘ ¢ made by taking the solution of Eq. (@) in the form’
;h w = Wy + W, (b)
and letting

Y

73 %

i 4 _ 3 3 .
g wy = 241) (x 2ax® + a’x) (e)
¥

i.e., wy represents the deflection of a uniformly
loaded strip parallel to the x axis. It satisfies Eq.
(a) and also the boundary conditions at the edges
z =0and z = a.

The expression w» evidently has to satisfy the equation

Y
Fig. 62

*w, 04w, 0*w,
— + 9 R 4 Gt =90 (137)

and must be chosen in such a manner as to make the sum (b) satisfy all
boundary conditions of the plate. Taking w. in the form of the series
(136) in which, from symmetry, m = 1, 3, 5, . . . and substituting it
into Eq. (137), we obtain

Z(YIV”QmW

m=1

mirt ., . mwx
m + i } m> sin -—— = O
a a

This equation can be satisfied for all values of z only if the function Y,
satisfies the equation

mirt

m T P V,=0 (d)

Y}nV _—
The general integral of this equation can be taken in the form?
4
v, =& <Am m’” + B, ’—””y sinh L’;’y

. mry mry Y
-+ C,, sinh o + D, —2 a cosh - a) (138)

1 This form of solution was used by A. Niddai, Forschungsarb., nos. 170 and 171,
Berlin, 1915; see also his book “Elastische Platten,” Berlin, 1925.

2 A somewhat different form for Y,, morc convenient to satisfy some particular
boundary conditions, has been suggested by P. F. Papkovitch, Priklad. Mat. Mekh.,
vol. 5, 1941.
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Observing that the deflection surface of the plate is symmetrical with
respect to the z axis (Iig. 62), we keep in the expression (138) only even
functions of y and let the integration constants ¢, = D,, =

The deflection surface (b) is then represented by the following
expression:

= 1 3 3
w 24D (z 2axt + a’z)

o0

+ i) E<Amcosh A + B, a sinh p >sm p (e)

m=1
which satisfies Eq. (@) and also the boundary conditions at the sides
v = 0and 2 = a. It remains now to adjust the constants of integration
A, and B,, in such a manner as to satisfy the boundary conditions
a*w

w=0  FE=0 o)
on the sides y = +b/2. We begin by developing expression (¢) in a
trigonometric series, which gives'

4qat 1 . mrx
4 __ 3 3. - - -
24D(x 2az3 4 a’x) = 5D2m5sm a
m=1
where m = 1, 3,5, . . . . The deflection surface (¢) will now be repre-

sented in the form

w0

4 .
w flza)_ E < 4 + A, co m1ry + B, m7ry sinh m__;ry) sin Z’_Zﬂ (9)

w5m?®
o

where m = 1, 3,5, . . . . Substituting this expression in the boundary
conditions (f) and using the notation

mrb

20 ®)

we obtain the following equations for determining the constants 4,, and
B,:
4
womd
(A,, -+ 2B,,) cosh o, + @nB,, sinh a,, = 0

+ A,. cosh a, + anB,. sinh a,, = 0

from which
2(a,, tanh ap + 2) 2

hias B, = ———— 7
5md cosh a,, ™ 7 w5mb5 cosh an, (@)

A m =

t 8ee 8. Timoshenko, “Strength of Materials,”” 3d ed., part II, p. 50, 1956,
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Substituting these values of the constants in Eq. (g), we obtain the
deflection surface of the plate, satisfying Eq. (a) and the boundary con-
ditions, in the following form:

w0

4 « $13 2 m
w = 4qa E 1 (1 _ On tanh «, + cosh 20tmy

T D mb 2 cosh an b
m=123,5,...

wa’—”.,_zﬁ - Qamy . mTx .
+ 2 cosh a,, b sinh b )bm 0 (139)

from which the deflection at any point can be calculated by using tables
of hyperbolic functions.! The maximum deflection is obtained at the
middle of the plate (x = a/2, y = 0), where

4qat (—1)m=0i2 o tanh o, + 2 .
Wimax = r%D E ) (1 - < ) )

mb 2 cosh an,

Disregarding the second term in the parentheses, this series represents the
deflection of the middle of a uniformly loaded strip. Hence we can
represent expression (j) in the following form:

0

W, = 5 ga* _ 4qa’ S‘ (—1)=D12 o tanh oy, + 2
max 384 D D 2y mb 3 cosh a.,

m=13,5....

(140)

The series in this expression converges very rapidly,? and sufficient accu-
racy is obtained by taking only the first term. Taking a square plate as
an example, we know from Eq. (h) that

_T 3
oy = 5 ag = )
and Eq. (140) gives
o = 2 9999 68560 0.00025 + - - ) = 0.00406 1%
mox T 3D T D OO DA =0 D

It is seen that the second term of the series in parentheses is negligible

1 See, for example, ““Tables of Circular and Hyperbolic Sines and Cosines,” 1939,
and “Table of Circular and Hyperbolic Tangents and Cotangents,” 1943, Columbia
University Press, New York; also British Association for the Advancement of Science,
“ Mathematical Tables,”” 3d ed., vol. 1, Cambridge University Press, 1951; finally,
F. Losch, “Siebenstellige Tafeln der clementaren transzendenten Funktionen,”’
Berlin, 1954.

® We assume that b = a, as in Fig. 62.
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and that by taking only the first term the formula for deflection is
obtained correct to three significant figures.

Making use of the formula (140), we can represent the maximum
deflection of a plate in the form

qa’

*D

Winax = (141)
where « is a numerical factor depending on the ratio b/a of the sides of
the plate. Values of « are given in Table 8 (page 120).

The bending moments M, and M, are calculated by means of expres-
sion (). Substituting the algebraic portion of this expression in Egs.
(101), we find that

MI qb<a2_ CE) le/ = qx(a’2_ x) (k)

The substitution of the series of expression (e¢) in the same equations gives

™

MY = (1 — v)ga*n> E m? [Am cosh 22Y

m=1
+ B, <m7ry sinh 7Y _ i 2_” cosh mvry):l sin 7L
y a a v a a
M = —(1 — v)qa’r? E m? [Am cosh %
m=1
+ B, (1’%:11 Sir 7_4n7r1/ —i— ———— cosh %>] sin m___;rx

The total bending moments are obtained by summation of expressions
(k) and (I). Along the z axis the expression for the bending moments
becomes

0

(M) o = ﬂ“{—x) — ga’r? E mA20By — (1 — ») A, sin 7L
m=1,3,5,...
(M) ymo = ﬂ““‘%x) — gar? E m22B, + (1 — ») An] sin ?

m=1,3,5,...

Both series converge rapidly and the moments can readily be computed
and represented in the form

(M2)ymo = B'qa®  (M,)y=0 = B1g0® (m)

The numerical values of the factors 8’ and 8; are given in Table 6.
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The bending moments acting along the middle line z = a/2 can be
computed in a similar manner and represented in the form

(Mz)xaaﬂ = B”qai (Mu):c=a/2 = Bll,qa2 (n)

Values of 8"/ and 8 are given in Table 7.
The maximum values of these moments,

(M) nax = Bqa? (M) nax = B1ga® (0)

are at the center of the plate (z = a/2, y = 0), and the corresponding
factors 8 and 8; are found in Table 8. The distribution of the moments
in the particular case of a square plate is shown in Fig. 63.

, .
TasLeE 6. NumericaL Factors 8’ anp 8, ¥or BeEnpING MoMENTS oF SmMpPLY
SuPPORTED RECTANGULAR PLATEs UNDER UNIFORM PRESSURE ¢

»=03,b>a
M. = g'qa,y =0 M, = Bat,y =0
b/a
r = xr = T = r = r = r = T = Tr = T = T =
0.1a | 0.2a | 0.3a | 04a | 0.5a | O.la | 0.2a | 0.3¢ | 0.4a | 0.5a

1.0 0.0209[0.0343]0.0424/0.0466(0.0479/0.0168|0.0303;0.0400i0.0459/0.0479
1.1 0.0234/0.0389,0.0486|0.0541|0.0554,0.0172/0.0311(0.0412,0.0475{0.0493
1.2 0.0256(0.0432/0.0545|0.0607/0.0627:0.0174/0.0315|0.0417/0.0480:0.0501
1.3 0.0277(0.0472{0.0599{0.0671 0.0694,0.01750.0316/0.0419{0.0482{0.0503
1.4 0.0297/0.0509]0.0649/0.0730/0.0755.0.0175/0.0315/0.0418/0.0481|0.0502
1.5 0.0314/0.0544(0.0695/0.078310.0812:0.0173/0.0312[0.0415|0.0478/0.049%
1.6 0.0330|0.0572|0.0736{0.083110.0862i0.0171|0.0309/0.0411/0.0472(0.0492
1.7 0.0344/0.0599(0.0773/0.0874/0.0908[0.0169/0.0306|0.0405/0.0466[0.0486
1.8 0.0357{0.0623]0.0806{0.0913!0.0948(0.0167,0.0301|0.0399|0.04590.0479
1.9 0.0368|0.0644|0.0835(0.0948/0.09850.0165/0.0297|0.0393/0.0451/0.0471
2.0 0.0378|0.0663/0.086110.0978.0.1017|0.0162{0.0292/0.0387|0.0444/0.0464
2.5 0.0413/0.0729;0.0952|0.1085|0.1129,0.0152/0.0272|0.0359|0.0412:0.0430
3.0 0.0431|0.0763/0.1000/0.1142/0.1189,0.0145/0.0258/0.0340[0.0390,0.0406
4.0 0.0445|0.079110.1038j0.118510.1235.0.0138|0.0246|0.0322 0.0369}0.0384
© 0.045010.0800/0.1050]0.1200]0.1250/0.0135 0.0240;0.03150.03600.0375

From Table 8 it is seen that, as the ratio b/a increases, the maximum
deflection and the maximum moments of the plate rapidly approach the
values calculated for a uniformly loaded strip or for a plate bent to a
cylindrical surface obtained by making 6/a = «. For b/a = 3 the dif-
ference between the deflection of the strip and the plate is about 61 per
cent. For b/a = 5 this difference is less than ] per cent. The differ-
ences between the maximum bending moments for the same ratios of
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TasLE 7. NumericaL FacTors 8 anp 8; FOR BENDING MOMENTS OF SIMPLY
SupPPORTED RECTANGULAR PrLATES UNDER UNIFORM PRESSURE ¢
v=03,b>a

M, =g"qa% z = a/2 M, =8lqa% z = a/2

b/a y =

0.3a

Yy =
0.2a

y=
0.1a

Y =

! y =
0.3a

0.2a

Yy =

y=0 0.1a

y=0

—
W = O

[
[}

L e
[Nolie RN Be e ]

e OB

ocoCcoCCC

cCcoCc o

.0168
.0197
10225
.0252
L0275

.0302
L0324
.0348
.0371
.0392

.0413
.0505
.0586
.0723

.0303
0353
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b/a are 5 and } per cent, respectively. It may be concluded from this
comparison that for b/a > 3 the calculations for a plate can be replaced
by those for a strip without substantial error.

TABLE 8. NUMERICAL FACTORS «, 3, v, 8, n FOR UNIFORMLY LOADED AND
SivrLy SUPPORTED RECTANGULAR PLATES

v =03
Wmax
ot | M | M) mas | @omas | @dmax | (Vidmax | (Vidwae | R
bla | =« o= Bga® | = Bwqa*| = vyqga | = yiga | = dga | = diqa | = nqa?
a 8 B1 Y Y1 8 o1 n

1.0 { 0.00406 | 0.0479 | 0.0479 | 0.338 | 0.338 | 0.420 | 0.420 | 0.065
1.1 1 0.00485 | 0.0554¢ | 0.0493 | 0.360 0.347 0.440 0.440 0.070
1.2 | 0.00564 | 0.0627 | 0.0501 { 0.380 0.353 0.455 0.453 0.074
1.3 | 0.00638 | 0.0694 | 0.0503 | 0.397 | 0.357 | 0.468 | 0.464 | 0.079
1.4 | 0.00705 | 0.0755 | 0.0502 | 0.411 | 0.361 | 0.478 | 0.471 | 0.083
1.5 | 0.00772 | 0.0812 | 0.0498 | 0.424 | 0.363 | 0.486 | 0.480 | 0.085
1.6 | 0.00830 | 0.0862 | 0.0492 | 0.435 | 0.365 | 0.491 | 0.485 | 0.086
1.7 | 0.00883 | 0.0908 | 0.0486 | 0.444 | 0.367 | 0.496 | 0.483 | 0.088
1.8 | 0.00931 | 0.0948 | 0.0479 | 0.452 0.368 0.499 0.491 0.090
1.9 | 0.00974 | 0.0985 | 0.0471 | 0.459 | 0.369 | 0.502 | 0.494 | 0.091
2.0 { 0.01013 { 0.1017 | 0.0464 | 0.465 0.370 0.503 0.486 0.092
3.0 | 0.01223 | 0.1189 | 0.0406 | 0.493 | 0.372 | 0.505 | 0.498 | 0.093
4.0 [ 0.01282 | 0.1235 | 0.0384 | 0.498 0.372 0.502 0.500 0.094
5.0 | 0.01297 | 0.1246 | 0.0375 | 0.500 | 0.372 | 0.501 | 0.500 | 0.095

© 0.01302 | 0.1250 | 0.0375 | 0.500 0.372 0.500 0.500 0.095

Expression (¢) can be used also for calculating shearing forces and
reactions at the boundary. Forming the second derivatives of this
expression, we find .

2 2 — 2 2
Aw:w_i_aw__qx(a»x) 2n%qa

i;w mwrx
ox? ay? 2D D

mry .
m?B,, cosh —ay sin

m=1

Substituting this in Eqs. (106) and (107), we obtain

_a—2v) 5 mry  mrx
Q. 5 2 %qa m3B,, cosh o % o
=1

w0

Q

. mry . wL
—2r%a z m?®B,, sinh —(—1—1 sin T8

m=1


WIN
Rectangle
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For the sides z = 0 and y = —b/2 we find

©

(Q2)zm0 = q2_a — 2mr3qa méB,, cosh %
m=1
mry
g@ _ 4qa cosh
2 w? m? cosh ay,
m=134,...
(@) ym—v2 = 2w%qa m3B,, sinh a, sin ?
m=1

tanh o, . mmz
———— sin ——
m a

_ 4qa
w2
m=135,...

These shearing forces have their numerical maximum value at the middle

of the sides, where
_ 18 _ 4 S
(Qe)emvivmo = 5 = 5 E m? cosh ay T
m=1,35,...
- ()
4qa —1)m=Diz
(Qy)z=a/2,y=—bl2 = % (#_' tanh Ay = Y190
m=135,...

The numerical factors v and v, are also given in Table 8.
The reactive forces along the side x = 0 are given by the expression

mry

v.—(q L, g 4ga cosh—a

YT Y Jimo 2 w2 m? cosh ay,
m=135,...

©

2(1 — v)qa 1
+ 2 z m? cosh? a,,

kg
m=13,5, ...

. mry mar} ., mr
(am sinh a,, cosh TJ _ mmy cosh «,, sinh Ty)

The maximum numerical value of this pressure is at the middle of the
side (y = 0), at which point we find

o

1 4 1
(Vz)z=0.u=0 = qa [§ - 7,-—2 2 m

m=1,3,5,...
2(1 — ») am sinh o |
T Z m? cosh? am] = dqa (@

m=13,5,...
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where § is a numerical factor depending on » and on the ratio b/a, which
can readily be obtained by summing up the rapidly converging series
that occur in expression (g). Numerical values of § and of 8, which
corresponds to the middle of the sides parallel to the x axis, are given in
Table 8. The distribution of the pressures (¢) along the sides of a square
plate is shown in Fig. 63. The portion of the pressures produced by the

0.15
B
=P
010
4
Vi -
cosy. S— =
P” \ .Bi
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Rotio %
Fia. 64

twisting moments M., is also shown. These latter pressures are bal-
anced by reactive forces concentrated at the corners of the plate. The
magnitude of these forces is given by the expression

R=2 "
= (Mxy)r=avy=b/2 = 2D — V) oz oy o2
T, Y=

©

—_ 2
= 40 = e’ z 1 {1 + a tanh &) sinh e

T m? cosh a,,
m=1,3,8 ...
— ay cosh ay] = nga® ()

The forces are directed downward and prevent the corners of a plate
from rising up during bending. The values of the coefficient n are given
in the last column of Table 8,
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The values of the factors «, 8, 81, § as functions of the ratio b/a are
represented by the curves in Fig. 64.

In the presence of the forces R, which act downward and are by no means small,
anchorage must be provided at the corners of the plate if the plate is not solidly joined
with the supporting beamns.

In order to determine the moments arising at the corner let us consider the equi-
librium of the element abe of the plate next to its corner (Fig. 65) and let us introduce,
for the same purpose, new coordinates 1, 2 at an angle of 45° to the coordinates z, ¥ in
Fig. 59. We can then readily verify that the bending moments acling at the sides ab
and cb of the element are 3/, = —R/2 and M, = +R/2, respectively, and that the
corresponding twisting moments are zero. In fact, using Eq. (39), we obtain for the
side ac, that is, for the element of the edge,

given by @ = —45° the bending moment R
M, = Micos?a + M.sin2aq =0 /2/7 M,
in accordance with the boundary condi- ; D& /2
tions of a simply supported plate. The /452 by =__x
magnitude of the twisting moment applied - e
at the same edge elemnent is obtained in like
manner by means of Fq. (40). Putting
« = —45° we have b \
1. B
M = 5 sin 2a(M: — M) = 3 Fic. 65

according to Lq. (r). Thus, the portion of the plate in the vicinity of the corner is
bent to an anticlastic surface, the moments +R/2 at the corner itsclf being of the
same order of magnitude as the bending moments at the middie of the plate (sce
Table 8).

The clamping effect of the corners of a simply supported plate is plainly illustrated
by the distribution of the bending moments M; and M, of a square plate (Fig. 63).
If the corners of the rectangular plate are not properly secured against lifting, the
clamping becomes ineffective and the bending moments in the center portion of the
plate increasc accordingly. The values of (M.)max and (M ).z given in Table 8
must then be multiplied by some factor & > 1. The approximate expression!

at — T%_a‘zbz + b4

k =
at — %azb'l + b4

may be used for that purpose.

It should be noted that in the case of a polygonal plate with simply supported edges
no single reactive forces arise at a corner point provided the angle between both
adjacent sides of the plate is other than a right angle.?

Even in rectangular plates, however, no corner reactions are obtained if the trans-
verse shear deformation is taken into account. In view of the strongly concentrated

! Recommended by the German Code for Reinforced Conecrete (1943) and basod
on a simplified theory of thin plates due to H. Marcus; see his book ‘‘ Die vereinfachte
Berechnung biegsamer Platten,” 2d ed., Berlin, 1925.

2 For a simple proof see, for example, H. Marcus, *“ Die Theoric elastischer Gewebe,”’
2d ed., p. 46, Berlin, 1932,
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reactive forces this shear deformation obviously is no longer negligible, and the
customary thin-plate theory disregarding it completely must be replaced by a more
exact theory. The latter, which will be discussed in Art. 39, actually leads to a dis-
tribution of reactive pressures which include no forces concentrated at the corners of
the plate (see Fig. 81).

31. Simply Supported Rectangular Plates under Hydrostatic Pressure.
Assume that a simply supported rectangular plate is loaded as shown in
Fig. 66. Proceeding as in the case of a uniformly distributed load, we
take the deflection of the plate in the form!?

W = Wi + W (a)
in which
o3z _ 3 sp ) = 290 (=Dt e :
wy = 360D< 10ax? + 7a’x Dt P (b)
m=1,23...
- o . . .
q, epresents the deflection of a strip under the tri-
iy angular load. This expression satisfies the differ-
aoX ential equation
2l qg
py 0w dtw d'w _q g
b dxt +2c’)x28y2+8y4 ~ D aD ()
z and the boundary conditions
Y
K * 62
i0 w =20 —Z):O forx =0andz = a
b ox
2
; The part w, is taken in the form of a series
Y
PRSP
v wy = E Y sin T0% d)
F1a. 66 @

m=1

where the functions Y, have the same form as in the preceding article,
and m = 1, 2, 3, . . .. Substituting expressions (b) and (d) into Eq.
(@), we obtain

o

4 — 1ym+1 »
w=Mz [2( D + Ancosh ™Y 4 B, m7rJ mh@]sin%

D T m?s
m=1
(e)
where the constants A,, and B,, are to be determined from the conditions
o%w b
p—t —m—— T p— + —
w=0 3 0 fory = + 9

! This problem was discussed by E. Estanave, op. ¢if. The numerical tables of
deflections and moments were calculated by B. G. Galerkin, Bull. Polytech. Inst., St.
Petersburg, vols. 26 and 27, 1918.
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From these conditions we find

g&;_r'%];z:;“ + A'm COSh A + Bmﬂlm Sinh Oy = 0

(2B, + An) cosh an + Buo, sinh o, = 0
In these equations we use, as before, the notation

_ mwb
“m = Tog

Solving them, we find

(2 + am tanh an) (=1 (— 1)+

A = B =
m wm® cosh o, ™ 75m® cosh an

)

The deflection of the plate along the z axis is

©

j— m+ .

1r5,m5

m=1

For a square plate a = b, and we find

27
a

4 e
(W)yeo = 22 (0.002055 sin = — 0.000177 sin
D a

+ 0.000025 sin 3’% . ) @

The deflection at the center of the plate is

4
(W)smapzmo = 0.00203 L7 (h)

which is one-half the deflection of a uniformly loaded plate (see page 116)
as it should be. By equating the derivative of expression (g) to zero, we
find that the maximum deflection is at the point # = 0.557a. This maxi-
mum deflection, which is 0.00206 ¢t/ D, differs only very little from the
deflection at the middle as given by formula (k). The point of maximum
deflection approaches the center of the plate as the ratio b/a increases.
For b/a = =, as for g strip [see expression (b)], the maximum deflection
is at the point z = 0.5193¢. When b/a < 1, the point of maximum
deflection moves away from the center of the plate as the ratio b/a
decreases. The deflections at several points along the x axis (Fig. 66)
are given in Table 9. It is seen that, as the ratio b/a increases, the
deflections approach the values calculated for a strip. For b/a = 4 the
differences in these values are about 11 per cent. We can always calcu-
late the deflection of a plate for which b/a > 4 with satisfactory accu-
racy by using formula (b) for the deflection of a strip under triangular
load. The bending moments M, and M, are found by substituting
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TasLE 9. NuMeRICAL FACTOR « FOR DEFLECTIONS OF A SIMPLY SUPPORTED
RECTANGULAR PLATE UNDER HyprosTaTIC PRESSURE ¢ = qoz/a
b>a
w = agea®/D,y =0

b/a | x =025a | 2 =0.500 | z =0.60a | 2 =0.75a
1 0.00131 0.00203 0.00201 0.00162
1.1 0.00158 0.00243 0.00242 0.00192
1.2 0.00186 0.00282 0.00279 0.00221
1.3 0.00212 0.00319 0.00315 0.00248
1.4 0.00235 0.00353 0.00348 0.00273
1.5 0.00257 0.00386 0.00379 0.00296
1.6 0.00277 0.00415 0.00407 0.00317
1.7 0.00296 0.00441 0.00432 0.00335
1.8 0.00313 0.00465 0.00455 0.00353
1.9 0.00328 0.00487 0.00475 0.00368
2.0 0.00342 0.00506 0.00494 0.00382
3.0 0.00116 0.00612 0.00592 0.00456
4.0 0.00437 0.00641 0.00622 0.00477
5.0 0.00441 0.00648 0.00629 0.00483
w | 0.00443 0.00651 0.00632 0.00484
I

expression (e) for deflections in Eqgs. (101). Along the z axis (y = 0)
the expression for M, becomes

£

2(—1)m+1 | mrx
(A[x)1/=0 = (IO(lZ z 777;!'73772?777 sin T
m=1
+ qoa’nx? z m2(1 — »)A, — 2vB,]|sin ?? (2)

m=1

The first sum on the right-hand side of this expression represents the
bending moment for a strip under the action of a triangular load and is
cqual to (qo/6)(ax — 2*/a). Using expressions (f) for the constants 4.,
and B, in the second sum, we obtain

a’r — x?

(M) yo = ﬂﬁ__)
_qe N (=D _ e
= i oosh an 24+ (1 — »)a,, tanh a,] sin a )

m=1

The series thus obtained converges rapidly, and a sufficiently accurate
value of M, can be realized by taking only the first few terms. In this
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Tapre 10. NuMmERICAL FACTORS 8 AND B8; FOR BENDING MOMENTS OF SiMPLY
SuPPORTED RECTANGULAR PrateEs uxpER HyDpRostaTiC PRESSURE ¢ = ¢oz/a

y=03,b >0
M, = Ba%o, ¥ =20 M, = ga%s y=0

b/a

z = T = z = z = x = z = z = z =

0.25a 0.50a 0.60a 0.75a 0.25a 0.50a 0.60a 0.75a
1.0 0.0132 | 0.0239 | 0.0261 | 0.0259 | 0.0149 | 0.0239 | 0.0245 | 0.0207
1.1 ] 0.0156 | 0.0276 | 0.0302 | 0.0289 | 0.0155 ] 0.0247 | 0.0251 | 0.0211
1.2 0.0179 { 0.0313 | 0.0338 { 0.0318 | 0.0158 | 0.0250 | 0.0254 | 0.0213
1.3 0.0200 | 0.0346 | 0.0371 | 0.0344 | 0.0160 | 0.0252 | 0.0255 | 0.0213
1.4 0.0221 |{ 0.0376 | 0.0402 | 0.0367 | 0.0160 | 0.0253 | 0.0254 | 0.0212
1.5 0.0239 | 0.0406 | 0.0429 | 0.03838 | 0.0159 | 0.0249 | 0.0252 | 0.0210
1.6 0.0256 | 0.0431 | 0.0154 | 0.0407 | 0.0158 | 0.0246 | 0.0249 | 0.0207
1.7 0.0272 | 0.0454 | 0.0476 | 0.0424 | 0.0155 | 0.0243 | 0.0246 | 0.0205
1.8 0.0286 | 0.0474 | 0.0496 | 0.0439 | 0.0153 | 0.0239 | 0.0242 | 0.0202
1.9 0.0298 | 0.0492 | 0.0513 | 0.0452 | 0.0150 | 0.0235 | 0.0238 | 0.0199
2.0 |{0.0309 | 0.0508 | 0.0529 | 0.0463 | 0.0148 | 0.0232 | 0.0234 | 0.0197
3.0 0.0369 | 0.0594 | 0.0611 | 0.0525 | 0.0128 | 0.0202 | 0.0207 | 0.0176
1.0 0.0385 | 0.0617 | 0.0632 | 0.0541 | 0.0120 | 0.0192 | 0.0196 | 0.0168
3.0 0.0389 1 0.0623 | 0.0638 | 0.0546 | 0.0118 | 0.0187 | 0.0193 | 0.0166
) 0.0391 | 0.0625 | 0.0640 | 0.0347 | 0.0117 | 0.0187 | 0.0192 | 0.0165

way the bending moment at any point of the z axis can be represented
by the equation

(ﬂlx)u=0 = Bquz (/C)

where 8 is a numerical factor depending on the abseissa z of the point,
In a similar manner we get

(M y)y=o = Bargoa’ 0

The numerical values of the factors 8 and 8; in formulas (k) and (I) are
given in Table 10. It is seen that for b S 4a the moments are very close
to the values of the moments in a strip under a triangular load.

Equations (106) and (107) are used to calculate shearing forces. From
the first of these equations, by using expression (j), we obtain for points
on the x axis

d (d*w 9w
(Qx)y=0 - —'D 55 (555 + W)y=0

_ @@’ — 3279 2 NP (=Dt omwz
- 6a 7 m? cosh o, a
m=1
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The general expressions for shearing forces @, and Q, are

L

m mry
_qola@® — 32?)  2qea (=1)m** cosh a mwx
Q= 6a T mcosh am " a4 (m)
m=1
®« (= 1)+ sinh 7Y
2q.0 a . mmx
Q= - E m? cosh am Sy (n)
m=1

The magnitude of the vertical reactions V. and V, along the boundary
is obtained by combining the shearing forces with the derivatives of the
twisting moments. Along the sides x = 0 and x = a these reactions can
be represented in the form

(M., B
Ve = (Q" 3y >x=o,z=a = g (0)

TaBLE 11. NUMERICAL FacToRs 8 AND 4, FOR REACTIONS OF SiMPLY
SupPORTED RECTANGULAR PraTEs UNDER HyprosTaTic PRESSURE ¢ = ¢oz/a

v =03,b>a
Reactions 8goa Reactions 3qeb
b/a z =0 B r=aq y = +£b/2
- y = - Yy = xr = x = T = r =
v=0 1 go5 | ¥ =0 | 025 | 0250 | 0.50a | 0.60a | 0.75a
1.0 0.126 0.098 0.294 0.256 0.115 0.210 0.234 0.239
1.1 0.136 0.107 0.304 0.267 0.110 0.199 0.221 0.224
1.2 0.144 0.114 0.312 0.276 0.105 0.189 0.208 0.209
1.3 0.150 0.121 0.318 0.284 0.100 0.178 0.196 0.196
1.4 0.155 | 0.126 | 0.323 | 0.292 | 0.095 | 0.169 ; 0.185 | 0.184
1.5 0.159 | 0.132 | 0.327 | 0.297 | 0.090 | 0.160 | 0.175 | 0.174
1.6 0.162 0.136 0.330 0.302 0.086 0.151 0.166 0.164
1.7 0.164 0.140 0.332 0.306 0.082 0.144 0.157 0.155
1.8 0.166 0.143 0.333 0.310 0.078 0.136 0.149 0.147
1.9 0.167 0.146 0.334 0.313 0.074 0.130 0.142 0.140
2.0 0.168 0.149 0.335 0.316 0.071 0.124 0.135 0.134
3.0 0.169 | 0.163 | 0.336 | 0.331 | 0.048 | 0.083 | 0.091 | 0.089
4.0 0.168 0.167 0.334 0.334 0.036 0.063 0.068 0.067
5.0 0.167 0.167 0.334 0.335 0.029 0.050 0.055 0.054
© 0.167 | 0.167 | 0.333 | 0.333
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and along the sides y = +b/2 in the form

oM., o
y = (Qy ~ >HW = F81q0b (p)

in which § and 8, are numerical factors depending on the ratio b/a and
on the coordinates of the points taken on the boundary. Several values
of these factors are given in Table 11.

The magnitude of concentrated forces that must be applied to prevent
the corners of the plate rising up during bending can be found from the
values of the twisting moments M., at the corners. Since the load is not
symmetrical, the reactions Ry at z = 0 and y = +b/2 are different from
the reactions Ry at ¢ = aand y = +b/2. These reactions can be repre-
sented in the following form:

R, = nlqub Rs = ’7L2Q0ab (q)
The values of the numerical factors n; and n, are given in Table 12.
TaBLE 12. NUMERICAL FACTORS 7, AND 7y IN Kqs. (¢) ForR REAcTIVE FORCES

Ry anD 2 AT THE CORNERS or SivpLY SUPPORTED RECTANGULAR PLATES
uNDER HyproOsTaATIC PRESSURE ¢ = quz/a

vy =03,b >a

] T ]

b/a 1.0} 1.1 | 1.2 | 1.3 ‘ 14 {15 116 | 1.7 1.8 19|20 30| 40| 50
- S I N NS N S R P

N | o \ e
ny 0.026 0. omo 026,0.026 0.0250.024 0. o>3ooz_>oo 021 ‘o 014 0.010,0.008
na 0. ozq‘o ozs‘o 037.0.036 0 030‘0 033‘0 0320. osolo 029,0.028 \o 0130 0140 011

1

Since a uniform load ¢ is obtained by superposing the two triangular
loads ¢ = gov/a and gela — x)/a, it can be concluded that for correspond-
ing values of b/a the sum n; + ny of the factors given in Table 12 multi-
plied by b/a must equal the corresponding value of n, the last column in
Table 8.

If the relative dimensions of the plate are such that @ in Fig. 66 is
greater than b, then more rapidly converging series will be obtained by
representing w; and w, by the following expressions:

— g0t 1 _ 9
wy = L8 (16 — 24b2 4+ 5 ("
— 1
Wy = Xom_1 €COS .(_ZIE_biU (S)
m=1

The first of these expressions is the deflection of a narrow strip parallel to
the y axis, supported at y = +b/2 and carrying a uniformly distributed
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TapLe 13. NUMERICAL FACTORS a FOR DEFLECTIONS OF SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER HYDROsTATIC PRESSURE ¢ = ¢ox/a

b<a
w = aqib?/D,y =0

a/b =028 | £ =050a | z =060a | =0.75a

0 0.00325 0.00651 0.00781 0.00976
5 0.00325 0.00648 0.00778 0.00965
4 0.00325 0.00641 0.00751 0.00832
3 0.00321 0.00630 0.00692 0.00707
2 0.00288 0.00506 0.00542 0.00492
1.9 0.00281 0.00487 0.00518 0.00465
1.8 0.00270 0.00465 0.00491 0.00434
1.7 0.00261 0.00441 0.00463 0.00404
1.6 0.00249 0.00415 0.00432 0.00372
1.5 0.00234 0.00386 0.00399 0.00339
1.4 0.00218 0.00353 0.00363 0.00304
1.3 0.00199 0.00319 0.00325 0.00269
1.2 0.00179 0.00282 0.00286 i 0.00234
1.1 0.00153 0.00243 0.00245 0.00199
1.0 0.00131 0.00202 0.00201 0.00162

load of intensity

gor/a. This expression satisfies the differential equa-
tion (¢) and also the boundary conditions w = 0 and 9*w/dy* = 0 at

d
.AIW. |i
EEF do
—%
z (a)
d_,l
EeR{a}
7o *
Qjen
Y
- ——-a ——>
!
Fra. 67

y = +b/2. Expression (s) represents an in-
finite series each term of which also satisfies
the conditions at the edgesy = +b/2. The
functions Xsn,_1 of = are chosen in such a
manner that each of them satisfies the homo-
geneous equation (137) of the preceding arti-
cle (see page 114) and so that expression (a)
satisfies the boundary conditions at the edges
z = 0and z = a. Since the method of de-
termining the functions Xs,—; is similar to
that already used in determining the func-
tions Y,,, we shall limit ourselves to giving
only the final numerical results, which are
represented by Tables 13, 14, 15, and 16.
The notation in these tables is the same as

in the foregoing tables for the hydrostatie pressure.
32. Simply Supported Rectangular Plate under a Load in the Form of

a Triangular Prism.

Assume that the intensity of the load is represented
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TaBLE 14. Numericau Factors 8 AND B; FOR BENDING MOMENTS IN SIMPLY
SupPORTED RECTANGULAR PrLaTEs unpeEr Hyprostaric PrESSURE ¢ = quz/a

vy =03,b <a
M, = QCwQS y = 0 K._N,c = m_?m«\cu y =0
a/b
T = r = r = T = &r = &€ = r = =
0.25a 0.50 0.60 0.75a 0.25a 0.50a 0.60a 0.75a

% 0.0094 | 0.0187 | 0.0225 | 0.0281 | 0.0312 | 0.0625 ; 0.0750 | 0.0937
5.0 0.0094 | 0.0187 | 0.0230 | 0.0309 | 0.0312 | 0.0623 | 0.0742 | 0.0877
4.0 | 0.0094 | 0.0192 } 0.0237 | 0.0326 | 0.0312 | 0.0617 | 0.0727 | 0.0820
3.0 0.0096 | 0.0202 | 0.0256 | 0.0345 | 0.0309 | 0.0594 | 0.0678 | 0.0715
2.0 0.0108 | 0.0232 | 0.0285 | 0.0348 | 0.0281 | 0.0508 | 0.0554 | 0.0523
1.9 0.0111 | 0.0235 {1 0.0288 | 0.0345 | 0.0278 | 0.0492 | 0.0533 | 0.0498
1.8 0.0115 | 0.0239 | 0.0291 | 0.0341 | 0.0269 | 0.0474 | 0.0509 | 0.0470
1.7 0.0L17 | 0.0243 | 0.0293 { 0.0337 | 0.0261 | 0.0454 | 0.0485 | 0.0442
1.6 0.0120 | 0.0246 | 0.0204 | 0.0331 | 0.0251 | 0.0431 | 0.0457 | 0.0412
1.5 0.0123 | 0.02:149 | 0.0201 | 0.0324 | 0.0239 | 0.0406 | 0.0428 | 0.0381
1.4 0.0126 | 0.0253 | 0.0292 | 0.0315 | 0.0225 | 0.0376 | 0.0396 | 0.0348
1.3 0.0129 | 0.0252 | 0.0290 | 0.0301 | 0.0209 | 0.0316 10.0360 | 0.0314
1.2 0.0131 | 0.0250 | 0.0284 | 0.0291 | 0.0192 | 0.0313 4 0.0323 | 0.0279
1.1 0.0134 | 0.0247 | 0.0276 | 0.0276 | 0.0169 | 0.0276 : 0.0285 | 0.0245
1.0 0.0132 | 0.0239 | 0.0264 | 0.0259 | 0.0119 | 0.023Y i 0.0245 | 0.0207

}

by an isosceles triangle as shown in Fig. 67a. The deflection surface can
again be represented in the form

w = w; + we (@)

in which w, represents the deflection of a simply supported strip parallel
to the x axis, and w. has the same form as in the preceding article [Eq. (d)].
To represent the deflection w; in the form of a trigonometric series we
observe that the deflection produced by a concentrated force /> applied
at a distance £ from the left end of a strip is?

Bt — sin — sin —— ®)

Substituting ¢d&¢ for P and using ¢ = 2¢¢/a for & < a/2 and
g = 2qo(l@ — §)/a for £ > a/2, the deflection of the strip by an ele-
mental load is obtained. The deflection produced by the total load on

I See Timoshenko, ‘“Strength of Materials,” part I, 3d ed., p. 49, 1956.
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TapLE 15. NUMERICAL FACTORS 8 AND & FOR RREACTIONS IN SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER HYDROSTATIC PRESSURE ¢ = qoz/a

»=103b<a
! Reactions 8qea Reactions 81qeb
- - = +b/2
/b | z =0 z=a y = tb/
l

r = T = z = X =
vy =0y =b41 y =01y =bM"1 o5, | 0500 | 0.60a | 0.75a
e 0.1256 | 0.250 | 0.300 | 0.375
5.0 0.008 0.006 0.092 0.076 0.125 0.250 0.301 0.379
4.0 0.013 0.010 0.112 0.093 0.125 0.251 0.301 0.377
3.0 0.023 0.018 0.143 0.119 0.125 0.252 0.304 0.368
2.0 0.050 0.038 0.197 0.166 0.127 0.251 0.296 0.337
1.9 0.055 0.041 0.205 0.172 0.127 0.251 0.294 0.331
1.8 0.060 0.045 0.213 0.179 0.128 0.249 0.291 0.325
1.7 0.066 0.050 0.221 0.187 0.127 0.248 0.288 0.318
1.6 0.073 0.055 0.230 0.195 0.127 0.245 0.284 0.311
1.5 0.080 0.060 0.240 0.204 0.127 0.243 0.279 0.302
1.4 0.088 | 0.067 | 0.250 | 0.213 | 0.126 | 0.239 | 0.273 | 0.292
1.3 0.097 | 0.074 | 0.260 | 0.223 | 0.124 | 0.234 | 0.266 | 0.281
1.2 0.106 | 0.081 0.271 0.233 | 0.122 | 0.227 | 0.257 | 0.269
1.1 0.116 0.090 0.282 0.244 0.120 0.220 0.247 0.255
1.0 0.126 0.098 0.294 0.256 0.115 0.210 0.234 0.239

the strip is now obtained by integration in the following form:

© a2
w1—4lq)0: ;nl—zsinmw—x[ﬁ Ebll]—d£+/ a—gsm—gdé]
1

8qoat (=)0 | marzx
= Det E S e @
m=1,3,5, ...
Substituting this in Eq. (a) and using Eq. (d) of the preceding article,
we obtain

8(__ 1)(77»—1)/2
oms
m=1,3,5,...

+ A, cosh ’”J+B m’” nh’ﬁc’:—y] sinl".;—” @)

This expression satisfies Eq. (103) and also the boundary conditions at
the edges x = 0 and @ = a. The constants 4,, and B, can be found
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from the conditions along the edges y = +b/2, which are the same as in
the preceding article and which give
— (m—112
§~(-~1)~f— + A, cosh «,, + Bna, sinh «,, =
womb (e)
(2B,. + A,) cosh oy, + Bnay, sinh a, = 0

{
o

where, as before, we use the notation

_ mmd
“m = o

Solving Eqs. (e), we find

4 — _ 22+ antanh ) (—1) =012
" wm® cosh @,

4(—1)=vr2 N

m =

mom8 cosh oy,
To obtain the deflection of the plate along the x axis we put y = 0 in

TaBLE 16. NumerIicaL Facrors n, aNp ns IN Kos. (¢) (Art. 31) ror REACTIVE
ForceEs R; AND R, oT T™nE CORNERS OF SIMPLY SUPPORTED RECTANGULAR
PraTeEs UNDER HyDprostaTIC PRESSURE ¢ = qox/a

»=03,b<a

Ll ! |

a/b 5 1‘ 4 2 1.9 1.7 1.6 1.5 1.4 1.3 ¢ 1.2 1.1 | 1.0
| | : ;

L] L‘i_< AU R I _ !

. LU - Ny
n1 0. 00"0 0040 006,0. 0130 014‘0 01(’)‘0 017‘0 0180 O{’OO 0210. 0’3‘0 024:0. 02)‘0 026
na 0. 017l0 020‘0 0_’a|0 033 O 054‘0 03)‘() 036‘0 0370. 0370 038 0. 039‘0 0390. 0.39‘0 039

expression (d). 'Then

x

qoat* 8(—1)tm—Dr2 . mrx
(W)y—0 = LD Z [——6——— + A | sin ==

woms
m=1,3,5,...

The maximum deflection is at the center of the plate, where

— M (m—1)/2

Wnax = 7, E [ 55 T An(=1)
m=1,3,5,...

It can be represented in the form

4
qo
Wmax = O 5y~

D

in which « is a numerical factor depending on the magnitude of the ratio
b/a. Several values of this factor are given in Table 17.!

1 The tables are taken from the paper by Galerkin, loc. cit.



134 THEORY OF PLATES AND SHELLS

TaBLE 17. Numerican Facrors o, 8, v, 8, n ¥OR SiMPLY SUPPORTED
RECTANGULAR PraTes unDER A Loap 1IN ForuM oF o TRIANGULAR PRrisnm

y=03,b>a
Wmax .
qoad (ﬂlz)m:\x (le)m:\’( (Qr)mzw (Qg)max (‘ .c)m:\.\' (Vy)mux R
bla | = a D= Bqoa? | = Biqea® = yqoa | = vigeb | = 3qua | = &iqob | = ngoeab
a BB | v | w0 & | m
1.0 | 0.00263 | 0.0310 | 0.0317 | 0.199 0.315 0.147 0.250 0.038
1.1 | 0.00314 | 0.0390 | 0.0326 | 0.212 | 0.297 0.161 0.232 | 0.038
1.2 | 0.00364 | 0.0436 | 0.0330 | 0.222 | 0.280 | 0.173 0.216 | 0.037
1.3 | 0.00411 | 0.0479 | 0.0332 | 0.230 0.265 0.184 0.202 0.036
1.4 | 0.00455 | 0.0518 | 0.0331 | 0.236 | 0.250 | 0.193 | 0.189 | 0.035
1.5 | 0.00496 | 0.0554 } 0.0329 | 0.241 0.236 | 0.202 | 0.178 | 0.034
1.6 | 0.00533 | 0.0586 | 0.0325 | 0.246 0.224 G.208 0.168 0.033
1.7 | 0.00567 | 0.06615 | 0.0321 | 0.247 0.212 0.214 0.158 0.031
1.8 | 0.00597 | 0.0641 | 0.0316 | 0.249 0.201 0.220 0.150 0.030
1.9 | 0.00625 | 0.0664 | 0.0311 0.251 0.191 0.224 0.142 0.029
2.0 | 0.00649 | 0.0685 | 0.0306 | 0.252 0.183 0.228 0.135 0.028
3.0 1 0.00783 | 0.0794 | 0.0270 | 0.253 0.122 0.245 0.090 0.019
© 0.00833 | 0.0833 | 0.0250 | 0.250 0.250

Using expression (d) and procecding as in the preceding article, we can
readily obtain the expressions for bending moments M, and M,. The
maximum values of these moments in this case are evidently at the center

of the plate and can be represented in the fol-

“Hlm, .wH”HE lowing form:

a (Z‘[:c)max = Bl]oa2 (My)mzx = quoaz

2 The values of the numerical factors 8 and 3; are

Fia. 68 also given in Table 17. This table also gives
numerical factors v, v1, 8, 81, and n for calculating (1) shearing forces
(Q2) mex = ¥908, (Q))mex = ¥1gob at the middle of the sides z = 0 and

y = —b/2 of the plate, (2) reactive forces
IM,, B
Vs = (QjE T ay >max = fgon

V, 81q0b

oM.,
(Qy ox >
at the same points, and (3) concentrated reactions R = ngeab at the
corners of the plate which are acting downward and prevent the corners
of the plate from rising. All these values are given for b > a. When
b < a, a better convergency can be obtained by taking the portion w,
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TaBLE 18. NUMERICAL FACTORS «, 8, v, §, n FOR SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER A Loap IN ForMm or Ao TriaNGULAR Prism

v =03, <a
w‘“f‘q"ow (M2)max | (M max | Qx| (Qmax | Vaduox | Vidax | R
a/b | = LY = Bgeb?| = B1geh? = yquu | = viqob | = dqoa | = 81geb | = ngoad
a B 81 ¥ 71 8 51 n
% 0.01302 | 0.0375 | 0.1250 | ..... 0.500 | ..... 0.500
3.0 | 0.00868 | 0.0387 | 0.0922 | 0.045 0.442 0.027 0.410 0.010
2.0 | 0.00686 | 0.0392 | 0.0707 | 0.091 0.412 0.057 0.365 0.023
1.9 1 0.00656 | 0.0392 | 0.0681 | 0.098 0.407 0.062 0.358 0.024
1.8 1 0.00624 | 0.0391 | 0.0651 | 0.106 0.402 0.098 0.350 0.026
1.7 | 0.00588 | 0.0390 | 0.0609 { 0.115 0.396 0.074 0.342 0.028
1.6 | 0.00549 | 0.0388 | 0.0585 | 0.124 0.389 0.081 0.332 0.029
1.5 | 0.00508 | 0.0386 | 0.0548 | 0.135 0.381 0.090 0.322 0.031
1.4 10.00464 | 0.0382 | 0.0508 | 0.146 0.371 0.099 0.311 0.033
1.3 1 0.00418 | 0.0376 | 0.0464 | 0.158 0.360 0.109 0.298 0.035
1.2 | 0.00367 | 0.06368 | 0.0418 } 0.171 0.347 0.120 0.284 0.036
1.1 | 0.00316 | 0.0356 | 0.0369 | 0.185 0.332 0.133 0.268 0.037
1.0 | 0.00263 | 0.0340 | 0.0317 | 0.199 0.315 0.147 0.250 0.038

of the deflection of the plate in the form of the deflection of a strip
parallel to the y direction. We omit the derivations and give only the
numerical results assembled in Table 18.
Combining the load shown in Fig. 67a with r‘“’%—-’“'%“"
the uniform load of intensity g, the load
shown in Iig. 68 is obtained. Information
regarding defleetions and stresses in this lat-
ter case can be obtained by combining the
data of Table 8 with those of Table 17 or 18.
33. Partially Loaded Simply Supported
Rectangular Plate. Let us consider a sym-  ~t—
metrical case of bending in which a uniform
load ¢ is distributed over the shaded rectan- y
gle (Iig. 69) with the sides u and v. Fic. 69
We begin by developing the load in the series

=~
1 M=

b

S
(@]

o< | Pl

b

o

2 . omrz [TV gk
- gin —— g sin — d§
a a Ha—w) a

«©

_{)tm=1)/2
4 (=1 sin Y g TE (a)
2a a
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which represents the load for the portion prst of the plate. The corre-
sponding deflection of this portion of the plate is governed by the differ-
ential equation (103), which becomes

0

dtw dtw 'w  4q z (—1)m=ni2  mpu . mrr

ow 7 v _ = mrr
gt T 2002 T ot 2D g S g, sin == (0)
m=1,3.5,...

Let us again take the deflection in the form
w = wy + W (¢)

where w, is a particular solution of Eq. (b), independent of the variable y,
that is, satisfying the equation

©

0wy 4q (—1)n=b2 . mgu . mrr
9t " 7D T S sineg
m=1,3,5...

Integrating this latter equation with respect to x, we obtain

20

_ 4gat (—1)m=0i2 . mru . mr
w1= h s sl 5o sin == (@)
m=135...
Then w, must be a solution of Eq. (137) (page 114). Choosing the form
(136) for this solution and keeping in the expression (138) for Y, only
even functions of y, because of the symmetry of the deflection surface
with respect to the x axis, we have, by Eq. (¢),

©

w == (am + A, cosh mvn/ + B, m7r7/ sin n%y) sin _*m;rx (e)

m=1,3,5,...

in which, this time,

4qat . mmru
s (= D)o sin T )

a7ﬂ =
Fquation (e) represents deflections of the portion prst of the plate.
('onsidering now the unloaded portion of the plate below the line ¢s
we can take the deflection surface in the form

w o= E <l’ cosh - 71'y--}—B;n?’ﬂTﬂsinh
a a

mmy
m

m=1,3,5,...

+ €7, sinh —~ mWJ + D’ —~ cosh n’t_gg) sin %rg (9)

It is now necessary to choose the constants A,, B, . . ., D;, in the
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series (¢) and (g) in such a manner as to satisfy the boundary conditions
at y = b/2 and the continuity conditions along the line ts. To repre-
sent these conditions in a simpler form, let us introduce the notation

__mzb mry

=9 ™ da ")

The geometric conditions along the line fs require that

4

Jw ow v .
and o " oy fory = 5 ()

w=w

Turthermore, since there are no concentrated forces applied along the
line ¢s, the bending moments M, and the shearing forces @, must be
continuous along this line, Observing Eqs. (¢) these latter conditions
can be written down in the form

w9’ dw _ Pw’

. v .
o " ar M e T e YT @

Substituting expressions (e) and (¢) in Eqgs. () and (7) and using notation
(h), we can represent these equations in the following form:

(A, — A!) cosh 2v, + (Bm — B),)27vm sinh 2v,,
— (!, sinh 2v,, — D!2v,, cosh 2v,, + an = 0
(A,, — AL) sinh 2v,, + (B, — By,)(sinh 2v,, + 2v,, cosh 2v.)
— (7, cosh 2v,, — D, (cosh 2v, + 2v,, sinh 2v,,) = 0 &
(A,, — Al) cosh 2v,, + (B — B,,)(2 cosh 2v,, + 2y, sinh 2v,.) (k)
— (! sinh 2v,, — D],(2 sinh 2v,, + 2v,, cosh 2v,) = 0
(A, — AL) sinh 2v,, + (B. — B,)(3 sinh 2v,, + 2v,, cosh 2v,,)
— (!, cosh 2v,, — D;, (3 cosh 2v,, + 2vn sinh 2v,) = 0

From these equations we find
Am — AL = @ulvm sinh 2v,, — cosh 2v,,)
B, — B, = % cosh 2v,.
Ch. = Gm(¥m cosh 2v,, — sinh 2v,,)

D, = (12—’" sinh 2v,,

)

To these four equations, containing six constants A, . . . , D, we add
two equations representing the boundary conditions at the edge y = b/2.
Substituting expression (g) in the conditions w' = 0, ¢*w’'/dy? = 0 at
y = b/2 we obtain

A’ cosh a,, + Ba, sinh a,, 4+ C,, sinh a,, 4+ D, « cosh o, = 0 (m)
B!, cosh a,, + D, sinh e = 0
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Equations (m), together with Eqs. (I), yield the constants

Am
An = — cosh a,
cosh (am — 2vm) + Ym sinh (an — 2vn) + « sinh 2y, (n)
™ " " ™2 cosh a,,
(2279
Bm = m“a—m COSh (am ht 27m)

Substituting these and expression (f) in Eq. (), we obtain

- cosh 77
_ 4qa* (—D)=b2 - gy ' a
Y= s e e T e,
p- cosh a,,
m=1,3,5,...

[cosh (am ~ 279m) + vYw sinh (an — 2vn) + am smhzym]

2 cosh a,,
cosh (an — 2vn) mmry .

mmwy| . mwrz
sinh —723} sin —=
2 cosh a,,

+ (142)

From this equation the deflection at any point of the loaded portion of
the plate can be calculated.

In the particular case where u = a and v = b we have, from Eqs. (h),
Yo = an/2. Expressions (n) become

(479 Aoy G
Am = — cosh an (1 + 2 tanh am) Bo = 2 cosh a,,

and Eq. (142) coincides with Eq. (139) (page 116) derived for a uni-
formly loaded rectangular plate.

The maximum deflection of the plate is at the center and is obtained
by substituting y = 0, & = a/2 in formula (142), which gives

®

w9 Aoy ]
Waex = "Hyrs md " 2a cosh an,

m=1,35,...

o . sinh 2v,, .
[coah (0tm — 29m) + ¥m sinh (an — 2vm) + an m“ (143)
As a particular example let us consider the case where v = a and v is
very small. This case represents a uniform distribution of load along
the z axis. Considering v,, as small in I£q. (143) and retaining only small
terms of the first order, we obtain, using the notation gv = g,

_ q0a3 (;D(m—l)/2 ) _ F—(Xlni
Wasx = Dy 2 m# tanh an, cosh? a,, (144)
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For a square plate this equation gives

_ @
Wmax = 0.00674 D

In the general case the maximum deflection can be represented in the form

8
Waax = a% fora <b
QQb3 .
= a5 fora > b

Several values of the coefficient « are given in Table 19.

TasLE 19. DEFLECTIONS OF SIMPLY SUPPORTED RECTANGULAR PLATES
UnirorMLY LOADED ALONG THE AXIS OF SYMMETRY PARALLEL TO
THE DIMENSION @

Wmax = agea®/D

T
bla 12 | 1.3 1.4 1.3 1.2 1.1 1.0
« 000987 ! 0.00011 | 0.00882 | 0.00844 | 0.00799 | 0.00742 | 0.00674
a/b 1.1 1 1.2 1.3 1.4 1.5 2.0 w
@ 0.00802 | 0.00926 | 0.01042 | 0.01151 | 0.01251 | 0.01629 | 0.02083
|

Returning to the general case where v is not necessarily small and «
may have any value, the expressions for the bending moments 3, and
M, can be derived by using Kq. (142). The maximum values of these

TasLE 20. CoEFFICIENTS § FOR (M;)max IN SIMPLY SUPPORTED PARTIALLY
LoapEDp SQUARE Prates

vy =03"
]
w/a = 0 0.1 0.2 ¢ 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
v/a Coeflicients 8 in the expression (M ;)max = P
0 o 10.32110.251{0.209(0.1800.158|0.141|0.125|0.112(0.102(0.092
0.1 [0.378[0.28410.232{0.197|0.170:0.150(0.134(0.120(0.108|0.098|0.088
0.2 {0.308{0.254|0.214(0.184[0.161[0.142(0.127(0.114(0.103|0.093 |0.084
0.3 [0.26210.22510.195|0.168[0.151{0.13410.120;0.108|0.098|0.088|0.080
0.4 10.23210.203]0.179{0.15680.141(0.126[0.113{0.102|0.092|0.084 |0.076
0.5 10.208(0.18510.164}0.146{0.131}0.116|0.106[0.096,0.087|0.07910.071
0.6 [0.188]0.168{0.150|0.135(0.121|0.109[0.099 (0.090(0.081|0.074|0.067
0.7 10.170{0.153}0.137|0.124|0.112(0.101(0.091{0.083|0.076 | 0.069 | 0.062
0.8 [0.155(0.140/0.126/0.114[0.103(0.094{0.085!{0.077|0.070(0.063 | 0.057
0.9 10.141(0.127(0.115]0.10410.094;0.086 |0.0780.070|0.064 | 0.058|0.053
1.0 10.12710.115[/0.105}0.095]0.086{0.0780.071|0.064|0.058{0.053 |0.048
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TaBLe 21. COEFFICIENTS B8 AND B; FOR (M:)max AND (M )max IN PARTIALLY
LoapeEp RECTANGULAR Prates wiTh b = l.4a

vy = 0.3
|
uja = 0 02 04| 0.6 % 0.8 | 1.0 0 10.2 04 )06 | 081 1.0
v/a Coefficient g8 in the expression Coeflicient 8, in the expression
(Mr)max = BP (]‘{g/)mxw = BlP
0 © 0.276‘0.2080.1630.1340.110 o 10.299]0.230(0.183]0.151/0.125
0.2 0.33210.239{0.186]0.152(0.125(0.103(0.246/0.208/0.175(0.147/0.124|0.102
0.4 0.261}0.207,0.168/0.138]0.115[0.095(0.177,0.157(0.138/0.119]0.101(0.083
0.6 10.2190.181}0.151{0.126]0.105|0.086/0.138!0.125/0.111]0.097)0.083|0.069
0.8 0.187|0.158/0.134{0.112{0.094/0.078]0.112{0.102/0.091|0.080/0.069|0.058
1.0 0.162/0.139/0.118{0.100]0.084/0.070|0.093{0.085|0.077|0.068|0.058/0.049
1.2 0.141[0.122/0.104/0.089(0.075|0.062/0.079|0.072}0.065/0.058/0.050;0.042
1.4 0.123{0.106/0.091/0.077{0.065{0.054;0.068|0.062{0.056|0.050:0.043/0.036

TaBLE 22. COEFFICIENTS 8 AND B1 FOR (My)max AND (M )max IN PARTIALLY
LoAapED RECTANGULAR PLATES WITH b = 2a

y = 0.3
i |
ufa = 0 0.2 104 06| 08 1.0 0 i 02 04| 06| 08 1.0
v/a Coefficient 8 in expression Coeflicient 8; in expression
(Mz)mnx = BP (My)max = BlP

0 o [0.289]0.220(0.175/0.144/0.118] <« [0.294/0.225/0.179/0.148/0.122
0.2 0.347(0.252(0.199/0.163/0.135{0.111|0.242]0.203/0.1700.143|0.120{0.099
0.4 0.275(0.221/0.181:0.150/0.125/0.103(0.172/0.15210.133|0.114/0.097,0.081
0.6 0.233/0.195/0.164{0.138]0.115{0.095|0.133]0.120{0.106|0.093[0.079/0.066
0.8 (0.203]0.174{0.148/0.126|0.106/0.088/0.107,0.097|0.087/0.076{0.065]0.054
1.0 [0.179/0.155(0.134{0.115/0.097{0.080]|0.089{0.08110.073/0.064|0.055/0.046
1.2 0.161]|0.141;0.122|0.105/0.089{0.074|0.074/0.068)0.061;0.054]0.046/0.039
1.4 0.144/0.127/0.111{0.096/0.081|0.068]0.064/0.058/0.052/0.046,0.040/0.033
1.6 0.130/0.115{0.101/0.087/0.074{0.062,0.056(0.051/0.046/0.0406]0.035/0.029
1.8 [0.118]/0.104/0.091]|0.079{0.067|0.056|0.049/0.045/0.041|0.036]0.031/0.026
2.0 0.107/0.094/0.083/0.072|0.061/0.051{0.044{0.041/0.037|0.032(0.028(0.023

moments occur at the center of the plate and can be represented by the

formulas

(M) max = Buvg = BP

(M) mox = Bruvq = B,

where P = uvq is the total load. The values of the numerical factors 8
for a square plate and for various sizes of the loaded rectangle are given
in Table 20. The coefficients B, can also be obtained from this table by
interchanging the positions of the letters w and v.
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The numerical factors 8 and 8, for plates with the ratios b = 1.4a and
b = 2a are given in Tables 21 and 22, respectively.!

34. Concentrated Load on a Simply Supported Rectangular Plate.
Using Navier’s method an expression in double-series form has been
obtained in Art. 29 for the deflection of a plate carrying a single load P
at some given point z = £ y = ¢ (I'ig. 70). To obtain an equivalent
solution in the form of a simple series we begin by representing the Navier
solution (133) in the following manner:

» 0 X
4rb? . . omwE . mmx L "
W= Sn sin — sin —  (a) 7 t j
Ta a a f ;
m=1 ¢ —e Y i
the coefficient S, being given by A ! t}’
nwy — ||
sin 70 gin Y ;
, b b —x
S = N (O I
m2b? . i
n=l ( a Tt n) y
Introducing the notation Fie. 70
"« cos M(!/b:,,?z) "\ cos ,",75_(17b+ y)
Sy = e\ S = 7 3 (0)
m
n=1 <——(1/2 + n2> n=1 ( 2 + n2)
we can also represent expression (b) in the form
S, = (S, — Sy (d)
To evaluate the sums (¢) we use the known series
z cosmz __ 1w coshalr -2
a? + n? 22 ' 2« sinh 7o (e)

n=1

which holds for 0 < 2 < 27 and which we regard, first of all, as a fune-
tion S(e) of a. Differentiation of the left-hand side of Eq. (e) with

respect to a gives
aS(a) cOs N2
e = e z (@ + n) (N
n=1

After differentiating also the right-hand side of Eq. (¢) and substituting

1 The values of M, and M, for various ratios a/b, u/a, and v/b are also given in the
form of curves by G. Pigeaud, Ann. ponts et chaussées, 1929. See also Art. 37 of this
book.
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the result in Eq. (f), we conclude that
cos nz 1 88(a) 7w cosh a(r — 2)

1
= T %at T i sinh ra

7(r —2) sinh a(r —2z) 7 cosh a(r — 2) cosh 7a
4o sinh ra 4o sinh? ra

@)

Now, to obtain the values of the sums (¢) we have to put, in Eq. (g),
firstz = (@/b)(y — n), thenz = (x/b)(y -+ #) and, in addition, « = mb/a.
Using these values for substitution in Eqs. (d) and (a) we arrive, finally,
at the following expression for the deflection of the plate:

@

w=L Y <1 + B coth B — DI oot Prtr P i, M)

D Ly b b b b
m=1
sinh 2 sin B8 gy 7L g, 1T
m?® sinh 8, - (145)
in which
b
Bmzm—;-" yr=>b—y and ¥y >
. In the ecase of y < n the quantity y, must be
i replaced by ¥ and the quantity n by 71 = b — 7, in
ale using expression (145).

5{ "E’i Let us consider more closely the particular case
ol A ® of a load P concentrated at a point A on the axis
Sl of symmetry of the plate, which may be used as the
::1_ z axis (Iig. 71).  With 4 = b/2 and the notation

mwb B
y I e~ h
F1a. 71 2a 2 ( )
the general expression (145) for the deflection of the plate becomes
Pa? . [ SV .
W= [(1 -+ a. tanh @,) sinh T b — 2y)
m=1
._omzwé . omwx
N N sin = = sin = =
- (b — 2y) cosh T b - 21/)] “mFeosh e (146)

which is valid for y > 0, that is, below the x axis in Fig. 71. Putting,
in particular, y = 0 we obtain the deflection of the plate along the x axis
in the form
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* mmé mwrx

Pa? S e
Wm0 = 5575 (tanh “m ™ Gosh? ozm> m? @

m=1

This series converges rapidly, and the first few terms give the deflections
with sufficient accuracy. In the case of a load P applied at the center of
the plate, the maximum deflection, which is at the center, is obtained by
substituting £ = £ = a/2 in expression (z). In this way we arrive at the
result

Pa? 1 o, _ Pa?
Wnax = ”2?3“15 z 7—72—3 (tanh Uy — m) = T)— (147)
Values of the numerical factor « for various values of the ratio b/a are
given in Table 23.

TABLE 23. FAcTOR « FOR DErLECTION (147) oF A CENTRALLY LOADED
RECTANGULAR PLATE

b/a=| 1.0 { 1.1 ‘ 1.2 ’ 1.4 1 1.6 l 1.8 \ 2.0 J 3.0 1 ®

a= ‘0.01160'0.01265()A013531()AO1484~0A0157010.01620]0,01651’0.01(‘)9()3().01695

It is seen that the maximum deflection rapidly approaches that of an
infinitely long plate! as the length of the plate increases. The ecompari-
son of the maximum deflection of a square plate with that of a centrally
loaded circular plate inscribed in the square (see page 68) indicates that
the deflection of the circular plate is larger than that of the corresponding
square plate. This result may be attributed to the action of the reactive
forces concentrated at the corners of the square plate which have the
tendency to produce deflection of the plate convex upward.

The caleulation of bending moments is discussed in Arts. 35 and 37.

35. Bending Moments in a Simply Supported Rectangular Plate with
a Concentrated Load. To determine the bending moments along the
central axis y = 0 of the plate loaded according to Fig. 71 we calculate
the second derivatives of expression (146), which become

s . mmwk
. sin —
d*w __F ¢ {ianh an — %\ g, T
ax? /o 2Drx m "™ cosh? @,/ a
m=1
\ sin mm§
32w . F ¢ (tanh o, + sin e
0y Jomo = 2D=x m ™ cosh? a, a

me==1

1 The deflection of plates by a concentrated load was investigated experimentally
by M. Bergstriisser; see Forschungsarb., vol. 302, Berlin, 1928; see also the report of
N. M. Newmark and H. A. Lepper, Unidv. Illinois Bull., vol. 36, no. 84, 1939.
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Substituting these derivatives into expressions (101) for the bending
moments, we obtain

R sin mm
(M2)ymo = P 2 a [(1 + ») tanh o, — ~(1—: v)am‘] sin mr
2w a

m cosh? oy,

m=1
a
O (a)
P Esm o (1 — »ea . mwx
(M) ym0 = o — [(1 + ») tanh o, + oo o ] sin ——
m=1
When b is very large in comparison with a, we can put
A
tanh Ky, = 1 m ~ 0
, 1 P I .. m .
Then (M.)y—0= (M)y—0o = sz:ﬂ_L)* 2 — sin ~;L§ sin m—;@ )
m=1

This series does not converge rapidly enough for a satisfactory calcu-
lation of the moments in the vicinity of the point of application of the
load P, so it is necessary to derive another form of representation of the
moments near that point. From the discussion of bending of a circular
plate by a force applied at the center (see Art. 19) we know that the

shearing forces and bending moments become infi-
A nitely large at the point of application of the load.
We have similar conditions also in the caseof a rec-
tangular plate. The stress distribution within a
- ¢ —'7 cirele of small radius with its center at the point of
A
_,\,JY-\/—

x application of the load is substantially the same as
that near the center of a centrally loaded circular
plate. The bending stress at a point within this cir-
cle may be considered as consisting of two parts: one
is the same as that in the case of a centrally loaded

](,,,, . circular plate of radius a, and the other represents the
y difference between the stresses in a circular and those
Fic. 72 in a rectangular plate. As the distance r between

the point of application of the load and the point
under consideration becomes smaller and smaller, the first part of the
stresses varies as log (a/r) and becomes infinite at the center, whereas
the second part, representing the effect of the difference in the boundary
conditions of the two plates, remains continuous.
To obtain the expressions for bending moments in the vicinity of the
point of application of the load we begin with the simpler case of an
infinitely long plate (Fig. 72). The deflection of such a plate can readily
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be derived from expression (146) by increasing the length of the side b
and consequently the quantity e, = mwxb/2a, indefinitely, 7.e., by putting

tanh a, = 1 cosh a,, = Leon

sinh %‘ (b — 2y) = cosh (—Xb—m b —2y) = %e(“m/b)(b—%)

Substituting this into Eq. (146) the required deflection of the simply
supported strip carrying a concentrated load P at = £, y = 0 becomes!

@

2
; ‘;‘D i sin Téf—% sin <1 + "“”/> mule (148)
1

which holds for y > 0, that is, below the z axis (Fig. 72).

The corresponding expressions for the bending moments and the twist-
ing moment are readily obtained by means of Eqs. (101) and (102). We
have

1. .
w. =L E L gy mk g, [1 I )?’”’J] —
2 m a a
mo-= {
r 1 . mrg . mmy mm/
M, = o E ” Sin a sin [1 +v—- (1 - 7(7[ emmyle (149)

mrf  mwrx
M, = —-y (1 —») 2 sin == cos —— gmmrya

Once again using the quantity W = (M. 4+ M,)/(1 4 ») introduced
on page 92, we have

»

Pw |, w r 1 . mmxé . mmx

f — _I) et g — R St B T pemayla =4

M <6.772 + 6_[/2> - 5y SIS sin e e (150)
m=1

The moments (149) can be expressed now in terms of the funetion M in

the following simple manner:

M, %[(1 FANM ~ (1 — )y ":’J
- %[(1 oM+ (1 — WE?,‘!] (151)
! oM
M= — 51— oy 2

t This important case of bending of a plate has been discussed in detail by A. N4dai;
sce his hook ‘“Elastische Platten,” pp. 78-109, Berlin, 1925.
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Summing up the series (150), we obtain the expression?!

cosh 7—21 — CO8 r(—x(-;-i_—g)
M= —log - , (152)
4 cosh %/- — cos W—(ﬁalg

and, using Eqs. (151), we are able now to represent the moments of the
infinitely long plate in a closed form. Observing, furthermore, that
Adw = 0 everywhere, except at the point (x = ¢, y = 0) of the appli-
cation of the load, we conclude that the function M = — D Aw satisfies
(except at the above-mentioned point) the equation AM = 0. By virtue
of the second of the equations (111) the boundary condition M = 0 along
the edges * = 0 and x = a is also satisfied by the function M.

For the points along the x axis Eqgs. (151) yield M, = M, and therefore

(Mo = (M) ym0 = (M),0 Ln%;‘ﬁ (0)

Using Egs. (¢) and Kq. (152) in the particular case of a load applied at
the center axis of the strip, § = a/2, we obtain
1 4+ sin e
log —— ot d)
1 —sin™
G

(Mz:)yzﬂ = (1’ny)y=0 = E%:: }l)

a result which also can be obtained by summation of the series (b).

Now let us return to the calculation of bending moments for points
which are close to the point of application of the load but not necessarily
on the x axis. In this case the quantities (x — &) and y are small and,
using expression (152), we can put

T —§) _, 1= §° TY 7y?
cos 7 == ] 5 cosh = 1+ Sq

Thus we arrive at the result

P 1—0032—:;-g
M = —log o 5 5

4w 1+7ry_1+1r(x—f)

2a? 20?2
2
2asm7r—s 2asm7—ré
P g\ 2 P @ (153)
™ & r T or g xr '

1 See, for instance, W. Magnus and F. Oberhettinger, ‘ Formeln und Satze fur die
speziellen Funktionen der mathematischen Physik,” 2d ed., p. 214, Berlin, 1948.
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in which

r= V(e -+
represents the distance of the point under consideration from the point
of application of the load P. Now, using expression (153) for substi-

tution in Eqs. (151) we obtain the following expressions, valid for points
in the vicinity of the concentrated load:

| s
2a sin —

I P (1 — »v)Py?
Moo= g | (L) g log -+ 5

: . (154)

I 2a sin — WE

1 a 1 — »)Py?

M, = 2| 1+ v) — log P ( -'é;l;)i—y—

It is interesting to compare this result with that for a centrally loaded,
simply supported circular plate (see Art. 19). Taking a radius r under
an angle « to the z axis, we find, from Eqgs. (90) and (91), for a eircular
plate

M, =M, 0052a+ﬂL81n2a———(1+v)log(;+(l—-V)Py

a P 22 (e
M,=M,sin*a + M, cos’ a = —-(1 + v) log - - + (1 - u)—~

The first terms of expressions (154) and (e) will coincide if we take the

outer radius of the circular plate equal to

2a sin m
Under this condition the moments MM, are the same for both cases. The
moment M, for the long rectangular plate is obtained from that of the
circular plate by subtraction of the constant quantity! (1 — »)P/4r.
From this it can be concluded that in a long rectangular plate the stress
distribution around the point of application of the load is obtained by
superposing on the stresses of a centrally loaded circular plate with
radius (2¢/7) sin (r&/a) a simple bending produced by the moments
M,=—-(0 — v)P/4x.

It may be assumed that the same relation between the moments of
circular and long rectangular plates also holds in the case of a load P
uniformly distributed over a circular area of small radius ¢. In such a
case, for the center of a circular plate we obtain from Eq. (83), by neg-
lecting the term containing ¢?,

Mo = £ [(1 + ) log & + 1]
4 ¢ )

' We observe that 2 = 2 - 42
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Henece at the ecenter of the loaded circular area of a long rectangular
plate we obtain from Eqs. (154)

P 2a sin %E
M,=-"-|104+»log——— +1
Agr e i .
r : (155)
P 2a sin %‘E (1 )P
W, o= — [ — — 4_4_——_’/_“
M, i _(1 + v) log oy +- 1# i

From this comparison of a long rectangular plate with a ecircular plate
it may be concluded that all information regarding the local stresses at
the point of application of the load P, derived for a circular plate by
using the thick-plate theory (see Art. 19), can also be applied in the case
of a long rectangular plate.

When the plate is not very long, Eqgs. (@) should be used instead of
Eq. (b) in the calculation of the moments M. and M, along the z axis.
Since tanh «, approaches unity rapidly and cosh @, becomes a large
number when m increases, the differences between the sums of series (a)
and the sum of series (b) can easily be ealculated, and the moments M,
and M, along the z axis and close to the point of application of the load
can be represented in the following form:

©

> L. . R >
M, = -+ 3 0L E — gin mmé sin 220 4 v !
s

m a a "4x
m=1
owE
P(1+V)1 Zasm—+ ﬁ
4r r " (156)
M, = ,(l,—;:)P E % sin Tr%rf sin T 4y I:r
m=1
2a sin k3
_PA+y log e i
4 T Ry

in which v; and v, are numerical factors the magnitudes of which depend
on the ratio b/a and the position of the load on the x axis. Scveral values
of these factors for the case of central application of the load are given in
Table 24.

Again the stress distribution ncar the point of application of the
load is substantially the same as for a centrally loaded circular plate
of radius (2a/7) sin (r¢/a). To get the bending moments M, and M,
near the load we have only to superpose on the moments of the
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TaBLE 24. FACTORS 41 AND +v2 IN Kqs. (156)

b/a 1.0 1.2 1.4 1.6 1.8 2.0 %

i —0.565 | —0.350 | —0.211 | —0.125 | —0.073 | —0.0&2 0
ye | 40.135 | +0.115 | +0.085 | 40.057 | 40.037 | +0.023 | 0

circular plate the uniform bending by the moments M, = v1/’/47 and
M, = —(1 ~ v — v2)P/4r. Assuming that this conclusion holds also
when the load P is uniformly distributed over a circle of i small radius ¢,
we obtain for the center of the circle

. wé
2a sin — :
P a v
M,="—~1Q+vlog—---—+1]|+ -
477- T ] 47[' ™
- = (157)
. T
2a sin —
M, :714’ (1 + v) log 777—461—1—1 — (1 =~ v~=’yg)£
’ 4 | i e i 4

Just as in the case of a distributed load, reactive forces acting down-
ward and considerable clamping moments are produced by concentrated
loads at the corners of a rectangular plate. The corner reactions

R = nP H

due to a central load P are given in Table 25 by the numerical values of
the factor n, whercas the clamping moments have the value of —K/2
(see page 85). The computation of the values of R has been carried out
by a simple method which will be described in Art. 36.

Ta . IMERIC ACT n F EACTIVE B3 R THE NERS
1'aBLE 25. NuMmERIcAL Facror n ror REacTivE ForceEs R AT : CORNERS
oF SiMPLY SUPPORTED RECTANGULAR PLATES UNDER CENTRAL LOAD

p o= (.3
b/a= | 1.0 12 ‘ 1.4 ‘ 1.6 1 1.8 ‘ 2.0 ‘ 3.0 1 @
—_ i — | i —
n = 1 0.1219 } 0.1162 | 0.1034 l 0.0884 ‘ 0.0735 | 0.0600 } 0.0180 f 0

The distribution of the bending moments and reactive pressures in the
particular case of a square plate with a central load is shown in Iig. 73.
The dashed portion of the curves holds for a uniform distribution of the
load P over the shadowed circular area with a radius of ¢ = 0.05a.

36. Rectangular Plates of Infinite Length with Simply Supported
Edges. In our foregoing discussions infinitely long plates have been
considered in several cases. The deflections and moments in such plates
were usually obtained from the corresponding solutions for a finite plate
by letting the length of the plate increase indefinitely. In some cases
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it is advantageous to obtain solutions for an infinitely long plate first
and combine them in such a way as to obtain the solution for a finite
plate. Several examples of this method of solution will be given in this
article. We begin with the case of an infinitely long plate of width a
loaded along the x axis as shown in Fig. 74. Since the deflection surface
is symmetrical with respect to the x axis, we need consider only the por-
tion of the plate corresponding to positive values of ¥ in our further dis-
cussion. Since the load is distributed only along

the = axis, the deflection w of the plate satisfies the
L ¢ equation
5 * w , , dw o _
%‘TQH Erra 2 dx2 9yt + ayt 0 (a)
2
We take the solution of this equation in the form
L Z
y w = 2 Y. sin mm (b)
Fi1c. 74 a

m=1

which satisfies the boundary conditions along the simply supported
longitudinal edges of the plate. To satisfy Eq. (a), functions Y, must
be chosen so as to satisfy the equation

2,2 P 4
Yy — 2" Y;;+@§Ym=o
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Taking the solution of this equation in the form

Ym -4 emm//a + B yennry/a -+ C e—mrula + Dm mﬂ'y

e—m‘lry/a (C)
and observing that the deflections and their derivatives approach zero
at a great distance from the z axis, it may be concluded that the con-
stants 4, and B, should be taken equal to zero. Hence solution (b)
can be represented as follows:

w o= E <Cm + D, m_1ry) ¢—meule gin T (d)
a a
m=1

From the condition of symmetry we have

ow
) =0
(ay >y=0

This condition is satisfied by taking C,, = D,, in expression (d). Then

©

w = E (1 + mry) —mvle gin m__;rx (e)

m=1
The constants C,, can be readily calculated in each particular case pro-
vided the load distribution along the z axis is given.
As an example, assume that the load is uniformly distributed along
the entire width of the plate. The intensity of loading can then be
represented by the following trigonometric series:

£

% 1 . mmx

g=_4qo 2 — sin — =

m=1,35,...

in which g¢¢ is the load per unit length.  Since the load is equally divided
between the two halves of the plate, we see that

_ & [o*w | O'w _ 2 1 . mwx
(Qu)y=o = —D = 5y (5-5:3 + W)I,:o =0 z — sin —= N

Substituting expression {¢) for w, we obtain

2 Dn? . .omET 2qe 1 . mmx
. Cm? sin —— = —& — sin ——
a m a

from which
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o

3
Hence w= 1% E 1 <1 + m;ry) oyl gin 7%' @)
= 1 ‘3 =4

The deflection is & maximum at the center of the plate (x = a/2, y = 0),
where

_ 9@ (=1 Srgoa?
Whex = 57 mt 1,536D (%)

m=1,35, ...

The same result can be obtained by setting tanh «,, = 1 and cosh a,, = =
in Eq. (144) (sce page 138).

As another example of the application of solution (e), consider a load
of length » uniformly distributed along a portion of the x axis (Fig. 74).
Representing this load distribution by a trigonometric series, we obtain

©

4q, Z 1 . mmé . mmu . mrz
qg=— — gln —— §in 5 SN ——-
T m a 2a a
m=1
where gy is the intensity of the load along the loaded portion of the z axis.
The equation for determining the constants ., corresponding to Eq. (f),
18

0

e a? 2 1 . £ . T
D= ilf + . lf = = ~ sin 778 -W(Lm-t sin 77T
dy \dz2 AYy* /o T m a 2a a

m=1

Substituting expression (e) for w, we obtain

E-] oo
2Dy v g e AT 2q0 I ., mrE . mru . mrx
— C,m? sin —— = == -— §in ——> §in —(—— 8in ———
a a T m a 2a a
m=1 m=1
from which
3 "
a .omwé . mwu
Cp = DL p ITE gy T
" xt Dm? a 2a
Expression (e) for the deflections then becomes
qua® 1 . mrfé . mwu mmy . mmx .
w o= T — sin —> sin -~ | 1 + =2 } e=mmvie gin —~ i
D mt a 2a i a a @)
m=1

The particular case of a concentrated force applied at a distance £ from
the origin is obtained by making the length u of the loaded portion of the
2 axis infinitely small. Substituting
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. mwTu  mwu
gou = P and sin o £ o

in Eq. (7), we obtain

_ Pa* 1 . mr§ MTY\ _ria o M
W= 557 E g sin == (1 + ;) g~mmvs gin o (158)
m=1

an expression that coincides with expression (148) of the preceding article.
We can obtain various other cases of loading by

integrating expression (z) for the deflection of a long '

plate under a load distributed along a portion u of the <_;m

v
¥

4 [ pol<

x axis. As an example, consider the case of a load 7

of intensity ¢ uniformly distributed over a rectangle O |[FEE 7 \lx
with sides equal to v and » (shown shaded in Fig. 75). -4% lf’)' B
Taking an inﬁnitfesimal element of a lozijd of magni- >z

tude gu dn at a distance 5 from the z axis, the corre- e ges]
sponding deflection produced by this load at points y

with y > % is obtained by substituting ¢ dy for g, and Tic. 75

y — g for y in expression (7). The deflection pro-
duced by the entire load, at points for which y = v/2, is now obtained by
integration as follows:

w = qa? 1 mné gin AU o MAT
miD m* @ 2a a

m=1 /2
v/2 ma(y —x)
ma(y — -l
/ [1 £ MJ e ¢ dy
—v/2 a
qa? 1 sin mmk ‘n mwu . ML
—_— = —_— 1 — > 8 R
7D mt a 2a
m=1

2 p\ T2y —o 2a v\ —mCutn) .
l:(;l—;r'{"]/'—E)@ 2a - %7;_"‘?/‘{‘5 e 2a )

By a proper change of the limits of integration the deflection at points
with y < /2 can also be obtained. Let us consider the deflection along
the x axis (I'ig. 75). The deflection produced by the upper half of the
load is obtained from expression (j) by substituting the quantity »/4 for
y and for /2. By doubling the result obtained in this way we also take
into account the action of the lower half of the load and finally obtain

4qa* 1 . mrf . mru . mrx MAVN s
(’LU)yzo == _7;;5 %‘5 Sin T sm ?&‘ Sin T 1 — 1 + @ €
me=

) (k)
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When v = «, the load, indicated in Fig. 75, is expanded along the entire
length of the plate, and the deflection surface is cylindrical. The corre-
sponding deflection, from expression (k), 1s

©

(w) 1qa? 1 ; sin mré sin T i 1Y )
=0 T = - a5 8 T
v=0" 0D a 2a a
m= 1
Making & = #/2 = a/2 in this expression, we obtain
o
(w) _ 4qa* 1 sin X
y=0 D m5 g
m=1,3,5,.

which represents the deflection curve of a uniformly loaded strip.

The following expressions for bending moments produced by the load
uniformly distributed along a portion u of the x axis are readily obtained
from expression (7) for deflection w:

od 1 . mwE . mmu . mrx
M, = & — — SIn mé sin —;— SN — -
m a 2
m=1
mary ,
[1 + v + (1 — V) i ‘!jl e—mTylu
a
i (m)
, Gl 1 . mwfi . mru . MAx
My, ="~ — sin —— sin sin -———
T m a 2a a
m=1

[1 +y— (1 - )mT” ~mw/w]

These moments have their maximum values on the z axis, where

(M2)y—o = (My)y=0

= goall - v) ) L sin —= mm§ sin 7% gjp 1% (n)
m? m? a 2a a

In the particular case when & = u/2 = a/2, that is, when the load is
distributed along the entire width of the plate,

-]

a(l 1 . mmx
(e = (M) = 2HLED 2 L i T2
m=1,3,5,...

The maximum moment is at the center of the plate where
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)

— (m—1)/2
(Mme = (M) ome = M(%“—”) E DT 0.002800(1 + )

m=1,3,5,..
When « is very small, .e., in the casc of a concentrated load, we put

. mmu ma
sin — = —— and uw = P
2a 2a Qo

Then, from expression (n), we obtain

y P(1+V)w1.m$.mx
(M) = (M) = =5 2 Z L i e g o
1

which coincides with expression (b) of the preceding article and can be
expressed also in a closed form (see page 146).

In the case of a load ¢ uniformly distributed over the area of a rec-
tangle (Fig. 75), the bending moments for the portion of the plate for
which y = v/2 are obtained by integration of expressions (m) as follows:

a mm mwu . mw
M, =% Emz n~——$ sin -~ sin ——

2a a
+o/2 — _mmly—=n)
/_v/z [1 Fot (=) @%@]e "
qa 1 mmé mmry . mwx
= = — 8in —> §in —— sin ——
w? m? a 2a
m=1
2a v _mr(2y =)
[+ 0= -5
2 mw(2y-+v) (159)
ool
M:@ 1 . mmE . mmru . mwx
4Ly 3 — 8N ~——-* §iN —— sIn ———
™ m? a 2a a

m=1

2va )| Ty
[ - a=n(-3)|-

2 a v _m1r(2y+v)

LG I

The moments for the portion of the plate for which y < /2 can be calcu-
lated in a similar manner. To obtain the moments along the x axis, we
have only to substitute v/2 for v and v/4 for y in formulas (159) and
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double the results thus obtained. Hence

20

4qga’ 1 . mwé . mmu . mar
(M)y—o = % Ly m sin —d—g sin 5 = sin = -
m=1
{1 1 i mry | —57
+( ) 4a ¢
(160)
2 F ,
(My)y= 4qa E — sin —-= .\11 7’5;{{ sin m%),

{V — [V — (1~ %Z;q:l e_%?}

If values of the moments at the center of the loaded rectangular area are
required, the calculation may also be carried out by means of expressions
(167), which will be given in Art. 37. When v is very small, Egs. (160)
coincide with Eq. (n) if we observe that gv must be replaced in such a
case by ¢o. When v is very large, we have the deflection of the plate to a
cylindrical surface, and Iigs. (160) become

0

1qa? 1 .. m .. mwu . mwr
(M.)y—o = —%~ z — 8in ma§ sin 2 sin *ai

3 m?2 a 2a
m=1
(M), 4an2 — sin mé sin 7% gin M
a 2a
m The expressions for the deflections
Z*L_ _a* R and bending moments in a plate of finite
N e length can be obtained from the corre-
j&“ ——q———4 sponding quantities in an infinitely long
D’fg f\f L B - plate by using the method of images.’
+ TO X . Let us begin with the case of a concen-
| — b trated force P applied on the axis of
g _D_i____i____ P symmetry z of the rectangular plate
R [Dy i e __ with sides ¢ and b in Fig. 76a. If we
D g MR now imagine the plate prolonged in both
the positive and the negative y direc-

tions and loaded with a series of forces
Fre. 76 P applied along the line mn at a dis-

tance b from one another and in alter-

nate directions, as shown in Fig. 76b, the deflections of such an infinitely

1 This method was used by A. Nddai (see Z. angew. Math. Mech., vol. 2, p. 1, 1922)
and by M. T. Huber (see Z. angew, Math, Mech., vol. 6, p. 228, 1926).
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long plate are evidently equal to zero along the lines 4,8, AB, CD,
C1D;, . . . . The bending moments along the same lines are also zero,
and we may consider the given plate ABCD as a portion of the infinitely
long plate loaded as shown in I'ig. 76b. Hence the deflection and the
stresses produced in the given plate at the point of application O of the
concentrated force can be calculated by using formulas derived for infi-
nitely long plates. From Eq. (158) we find that the deflection produced at
the x axis of the infinitely long plate by the load P applied at the point O is

w©

Pa? 1 mm§ mwx
w1 = 557 5 sin o sm»—aA

m= 1

The two adjacent forces P applied at the distances b from the point O
(Fig. 76b) produce at the z axis the deflection

Pa"’
Wy = — — 8l n 775 (1 + 2a,,)e gin 70

in which, as before,
o — mmb
mo 2a
The forces P at the distance 2b from the point O produce at the x axis
the deflection

Pa? 1 m7rE . mwx
5 — sin —= (1 + dap)e sin Y

—-1

W3 =

and so on. The total deflection at the z axis will be given by the
summation

w=w +w+ws + - (p)
Observing that
tanh @, = L 1 — 2e72an |- g~ tan
R B
1 4 e 2am

cosh? a,, (e + eon)2 — (1 + ¢~2on)?
= de2an(] — e 2w 4 oo — qe—ban L . . 1)

we can bring expression (p) into coincidence with expression (146) of

Art. 34.

Let us apply the method of images to the calculation of the reactive force

R = —2M,,
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acting at the corner D of the rectangular plate ABCD (Fig. 76) and produced by a load
P at the center of this plate. Using Eqs. (151) and (152), we find that the general
expression for the twisting moment of an infinitely long plate in the case of a single
load becomes

1 oM
Mgy = ‘5(1 - V)y*(g

sin w(x — §) sin w(x + £)
_ Pl — vy a _ a @
8a cosh _ cos T———(x =9 cosh ™ _ cos W—~——(m +9
a a a a

Hence a load P concentrated at ¢ = £ = a/2, y = 0 produces at z = 0 the twisting
moment

P — 1
My = —PUZ9_ v )
4q Y
cosh —
a
Now, putting y =0/2, 3b/2, 5b/2, . . . consecutively, we obtain the twisting

moments produced by the loads +P acting above the line DC., Taking the sum of
these moments we obtain

Pb(1 — 1 3 5
M., = - 22 - . ()
ga b 3rh 5mb
cosh —  cosh —  cosh —
2a 2a 2a

To take into account the loads acting below the line DC we have to double the
effect (s) of loads acting above the line DC in order to obtain the effect of all given
ioads. Thus we arrive at the final result

Pb(1 —
— __(4_,_'.,2 (_1)(m‘1)l2 ‘m___. (t)
{2 mab
cosh —
m=1,3,5,. .. 2a

M.y =

As for the reactive force acting downward at the point D, and consequently at the
other corners of the plate, it is equal to B = —2M.,, M., being given by Eq. (1).

The method of images can be used also when the point of application of P is not on
the axis of symmetry (Fig. 77a). The deflections and moments can be calculated by
introducing a system of auxiliary forces as shown in the figure and using the formulas
derived for an infinitely long plate. If the load is distributed over a rectangle, for-
mulas (167), which will be given in Art. 37, can be used for calculating the bending
moments produced by actual and auxiliary loads.

37. Bending Moments in Simply Supported Rectangular Plates under a Load
Uniformly Distributed over the Area of a Rectangle. Let us consider once more the
practically important case of the loading represented in Fig. 78. If we proceed as
described in Art. 33, we find that for small values of u/a and /b the series representing
the bending moments at the center of the loaded area converge slowly and become
unsuitable for numerical computation.

In order to derive more convenient formulas! in this case let us introduce, in exten-
sion of Eq. (119), the following notation:

1 See S. Woinowsky-Krieger, Ingr.-Arch., vol. 21, p. 331, 1953.
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M=M£u@__pcﬁ+ﬁg

1+ dx? dy?
yMeZ My pfoR_ Y
1 —» dx? ay?
Hence M,=%30+vM + 31 —»N (162)

M, =11+ »M —L1 - »N

At first let us consider a clamped circular plate of a radius ao with a central load,
distributed as shown in Fig. 78. The bending

_\_‘1::_’—_/: o moments at the center of such a plate can be
I L obtained by use of the Michell solution, for an
} .bZ eccentric single load. If w and v are small in
S S L
! —— T
a !
by| ! Lol I
:2 : X = S z ’
b WEZZ
n !
I b a4 ulug
1 Zo - T2
I Y i
by
I R A Q =mem >
y (a) (b) y y
Fia. 77 F1a. 78

comparison with ao, the result, evaluated by due integration of expression (197) (p.
293), can be put in the form

_ P 2a,
a
P
N ==
47r¢

in which

1 1
¢ = k arctan E -+ E arctan &k

1 1
¥ = k aretan P arctan k (163)
k=2 and d=\/u2+v2
u

For a simply supported circular plate with the same radius ao as before, we have to
add a term P /47 to M, and M, (see p. 68), 1.e., a term I’/2x(1 4 ») to M and nothing
to N, so that these latter quantities become

2a P
2 et _—
M <2 + log ) + el 9
ll/

N

(®)

Il

N
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Tinally, to obtain the corresponding expressions for an infinite strip (Fig. 75),
we must assume ao = 2a¢/r sin (xt/a) and introduce an additional moment
M, = —(1 — »)P/4r (sce p. 147). This latter operation changes the quantity
M by —(1 — »)P/4x(1 + ») and the quantity N by --P/4r. Introducing this in
Egs. (b) we arrive at the result

P 4asin7-r—£
a
=—\2 — 7 43—
M= \2leg— g~ +3 ¢ (164)
P
N=—(1+y
A

The values of the factors ¢ and ¢, depending only on the ratio »/u, are given in
Table 26.

Considering now the case of a rectangular plate (Fig. 78), we have only to take into
account the cffect of the auxiliary loads! +P (Fig. 77) and to add this effect to the
values (164) of M and N. The final result, in the case shown in Fig. 78, can then be
put in the form

4a sin ik
=L\t —2% 4
47 & wd ® (165)
P
N = > b+
T
where ¢, ¢, d are given by expressions (163) and Table 26, and
e % mwk
A=3-—-4 E ——e— gin? ——
cosh amn a
mey (166)
2rh 1 . o_omwé
p=1—-— —— sin? —
a cosh? am
m=1

with am = mab/2a. The terms A and yu, expressed by rapidly convergent series, are
wholly independent of the dimensions » and v (and even the shape) of the loaded area.
Their numerical values are given in Table 27.

From Egs. (162) we obtain the expressions for the bending moments

Pr 4asin£§

a
Mz=°8—“ 210g—d~+)\—qp (1 4 ») + (u +¢)(1 — v)

L T 56D

. omE

P 4as1n;
M, = Z 1\ 210g Fr—pf (49— +90 =9
871"7 ‘ﬂ'd A

acting at the center of the loaded area (Fig. 78). Expressions (165) and (167) are also
applicable to the calculation of moments of a simply supported infinite strip as a
particular case.

11t is permissible to regard them as concentrated provided » and v are small.
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TABLE 26. VALUES OF THE FACTOR ¢ AND y DEFINED BY Eqs. (163)

k =ov/u
k ¢ ¥ k @ ¥ k ¢ ¥
0 1.000 —1.000 1.0 1.571 0.000 2.5 1.427 0.475
0.05 1.075 —0.923 1.1 1.569 0.054 3.0 1.382 0.549
0.1 1.144 —-0.850 1.2 1.564 0.104 4.0 1.311 0.648
0.2 1.262 —0.712 1.3 1.556 0.148 5.0 1.262 0.712
0.3 1.355 —0.588 1.4 1.547 0.189 6.0 1.225 0.757
0.4 1.427 —0.475 1.5 1.537 0.227 7.0 1.197 0.789
0.5 1.481 —-0.371 1.6 1.526 0.261 8.0 1.176 0.814
0.6 1.519 —0.282 1.7 1.515 0.293 9.0 1.158 0.834
0.7 1.545 —0.200 1.8 1.504 0.322 10 1.144 0.850
0.8 1.560 —0.127 1.9 1.492 0.349 20 1.075 0.923
0.9 1.568 —0.060 2.0 1.481 0.374 ) 1.000 1.000

TaBLE 27. VALUES OF THE

Facrors N AnD u (Eq. 166) FOR SiMPLY SUPPORTED
RECTANGULAR PLATES

Mfor &/a = wfor &/a =
b/a
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.5 12.792 12.352 |1.945 |1.686 |1.599 (0.557 1—0.179 |—0.647 | —0.852 1 —0.906
0.6 [2.861 |2.545 12.227 12.011 |1.936 {0.677 0.053 |—0.439 |—0.701 |—0.779
0.7 12.904 [2.677 |2.433 {2.259 [2.198 |0.758 0.240 {—0.229 [—0.514 [—0.605
0.8 12.933 [2.768 {2.584 |2.448 {2.399 [0.814 0.391 |—0.031 | —0.310 | —0.404
0.9 [2.952 |2.832 12.694 |2.591 |2.553 |0.856 0.456 0.148 | —0.108 | —0.198
1.0 {2.966 |2.879 |2.776 (2.698 (2.669 |0.887 | 0.611 0.304 | 0.080 0.000
1.2 ]2.982 [2.936 (2.880 2.836 {2.820 {0.931 0.756 0.551 0.393 0.335
1.4 12.990 |2.966 |2.936 {2.912 |2.903 |0.958 0.849 0.719 0.616 0.578
1.6 2.995 [2.982 |2.966 (2.953 |2.948 10.975 | 0.908 | 0.82% | 0.764 0.740
1.8 12,997 {2.990 [2.982 12.975 |2.972 |0.985 | 0.945 | 0.897 0.858 0.843
2.0 |2.999 |2.995 |2.990 [2.987 |2.985 |0.991 0.968 | 0.939 | 0.915 0.906
3.0 [3.000 13.000 {3.000 {2.999 [2.999 [0.999 | 0.998 | 0.996 | 0.995 0.994
o |3.000 {3.000 |3.000 {3.000 |3.000 {1.000 1.000 1.000 1.000 1.000
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Extending the integration over circular, elliptic, and other areas, the corresponding
expressions for M and N for these loadings are readily found. Taking, for instance,
a circular loaded area (Fig. 79) we obtain for its center

.o
— i P . 2asm?l-+)\_2
A T4 - (168)
N = P
0 - 47r#

these expressions being equivalent to the result (157).
Comparing (168) with expressions (165) for k = 1, we
may conclude that a circular and a square loaded area
DI P p——— = are equivalent with respect to the bending moments they
produce at the center of the area, if

g % e
é\\ o
>

u
¢ = = ™ = 0.57u or u =08 X2 (c)
‘\/2 (

It should be noted that, as the load becomes more and more concentrated, the
accuracy of the approximate Jogarithmic formulas for the bending moments, such as
given by Eqgs. (157) and (167), increases while the convergence of the customary series
representing these moments becomes slower. Numerical calculations! show also that
the accuracy of those approximate formulas is entirely sufficient for practical purposes.

38. Thermal Stresses in Simply Supported Rectangular Plates. Let
us assume that the upper surface of a rectangular plate is kept at a higher
temperature than the lower surface so that the plate has a tendency to
bend convexly upward because of nonuniform heating. Because of the
constraint along the simply supported edges of the plate, which prevents
the edges from leaving the plane of the supports, the nonuniform heat-
ing of the plate produces certain reactions along the boundary of the
plate and certain bending stresses at a distance from the edges. The
method described in Art. 24 will be used in calculating these stresses.?
We assume first that the edges of the plate are clamped. In such a case
the nonuniform heating produces uniformly distributed bending moments
along the boundary whose magnitude is (see page 50)

atD(1 4+ »)

M, = W (a)

where ¢ is the difference between the temperatures of the upper and the
lower surfaces of the plate and « is the coefficient of thermal expansion.

1 See 8. Woinowsky-Kricger, Ingr.-Arch., vol. 3, p. 340, 1932; and Ingr.-Arch., vol.
21, pp. 336, 337, 1953.

2 See paper by J. L. Maulbetsch, J. Appl. Mechanics, vol. 2, p. 141, 1935; see also
E. Melan and H. Parkus, “ Warmespannungen infolge stationdrer Temperaturfelder,”
Vienna, 1953, which includes a bibliography on thermal stresses. For stresses due to
assemblage crrors in plates, see W. Nowacki, Bull. acad. polon. sci., vol. 4, p. 79, 1956.
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To get the bending moments M. and M, for a simply supported plate
(Fig. 62), we must superpose on the uniformly distributed moments given
by Eq. (¢) the moments that are produced in a simply supported rec-
tangular plate by the moments M, = —atD(1 4 v)/h uniformly dis-
tributed along the edges. We shall use Eqs. (120) (sec page 92) in dis-
cussing this latter problem. Since the curvature in the direction of an
edge is zero in the case of simply supported edges, we have M, = »M..
Hence at the boundary

M.+ M, My M _ _atD(+ ) -
14 v 14+ v h

Thus the first of equations (120) is satisfied by taking M constant along
the entire plate and equal to its boundary value (b). Then the second
of equations (120) gives

w | 0w _ of(l+ v)

Fro Ty S ()
Hence the deflection surface of the plate produced by nonuniform heat-
ing is the same as that of a uniformly stretched and uniformly loaded
rectangular membrane and is obtained by finding the solution of Eq. (¢)
that satisfies the condition that w = 0 at the boundary.

Proceeding as before, we take the deflection surface of the plate in the

form

M =

W = w1 + W2 {(d)

in which w; is the deflection of a perfectly flexible string loaded uni-
formly and stretched axially in such a way that the intensity of the load
divided by the axial force is equal to —at(1 + »)/h. In such a case the
deflection curve is a parabola which can be represented by a trigonometric
series as follows:

_ _at(l +v)z(@ —2)

el 3 2
bl s mmx
__ at(l + ) 4a? M
7 e Tt (e)

m=1,3,5...

This expression satisfles Eq. (¢). The deflection ws, which must satisfy
the equation

0%w, | O*wy
3 T oz =0 ()
can be taken in the form of the series
wy = Yo sin "LZE (9)

m=135,...
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in which Y, is a function of y only. Substituting (¢) in Eq. (f), we find

22
v/ -2y, =0
a
Hence Y, = A, sin "“” + B, mry (h)

TFrom the symmetry of the deflection surface with respect to the z axis
it may be concluded that Y, must be an even function of y. Hence the
constant 4, in the expression (h) must be taken equal to zero, and we
finally obtain

w = Wy + wy = E sin 2 [—— at(l + ») da> + B,, cosh mry]

h wim?

(@)
This expression satisfies the boundary conditions w = 0 at the edges
z = 0andz = a. To satisfy the same condition at the edgesy = +b/2,
we must have
2
B,, cosh m_7rb ot + v) Aa? =
h 7r3.m3
Substituting the value of B, obtained from this equation in Eq. (2),
we find that

$ sin 227 cosh ™Y
w = — ol + v)da? a_ 1_7‘ a )
- w3h m? cosh a,, J
m=13,5,...

in which, as before, o, = m=b/2a.

Having this expression for the deflections w, we can find the corre-
sponding values of bending moments; and, combining them with the
moments (a), we finally obtain

atD(1 + ») 3w 2w
hd . mmx mmy
4Dat(l — »?) sin == cosh —%
=TT m cosh a,,
m=1,3,5,.
b, _ oD+ ) <a2w 2 20) ®
v h ox?

" sin ™ oosh 7Y
at(l — ) D 4Dat(l — »?) ) a
h Th m cosh a,

m=1,3,5,.,.
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The sum of the series that appears in these expressions can be readily
found if we put it in the following form:

w . mwx mry
sin —— cosh —%
a a

m cosh o,
m=1,3,5 ...
® . mmrx mmy S i AT
sin —— cosh —=  emm¥/o gin ——
_ a a a
m cosh amy, mesn
m=123,5 ...
"
egnmvle | mmn
+ g ST O

mesm

m=1.35 ...

The first series on the right-hand side of this equation converges rapidly,
since cosh (mmy/a) and cosh e, rapidly approach e ¥/* and e*» as m
increases. The second series can be represented as follows.?

©

orala wip ML .
eyt sin —— i sin v
— = Zarctan — -~ (m)

© meon 2 . e Ty
m=1,3,5... Slnh (% - F

The bending moments M, and M, have their maximum values at the
boundary. These values are

. {1 — ) D

(Zu:c).?/=:|:b/2 = (ﬂjy)z=0,x=a = @ ( Ev"l‘

= e (n)

1t is seen that these moments are obtained by multiplying the value of
M, in formula (a) by (1 — »). The same conclusion is reached if we
observe that the moments A, which were applied along the boundary
produce in the perpendicular direction the moments

,atD(1 + »)
’ h

M} = »M, = —

which superposed on the moment {(a) give the value (n).

39. The Effect of Transverse Shear Deformation on the Bending of
Thin Plates. We have seen that the customary theory of thin elastic
plates leads to a differential equation (103) of the fourth order for the

1See W. E. Byerly, “Elementary Treatise on Fourier Series and Spherical, Cylin-
drical and Ellipsoidal Harmonics,” p. 100, Boston, 1893. The result can be easily
obtained by using the known series

2z sin ¢ ] z3 28 |
arctan " »/7=xsm¢+—{;—sm3¢—!—-5—sm5<p+- .
-z : !

9
2
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deflection and, accordingly, to two boundary conditions which can and
must be satisfied at each edge. For a plate of a finite thickness, how-
ever, 1t appears more natural to require the fulfillment of three boundary
conditions than of two. The formal reason for the impossibility of satis-
fying more than two conditions by the customary theory has been the
order of the basic equation of this theory; physically this reason lies in
the fact that the distortion of the elements of the plate due to transverse
forces such as @ (page 52), Q., and @, (page 79) has been neglected in
establishing the relations between the stresses and the deflection of the
plate. The disregard of the deformation due to the transverse stress
component obviously is equivalent to the assumption of a shearing
modulus G, = «; proceeding in this way we replace the actual material
of the plate, supposed to be isotropic, by a hypothetic material of no
perfect isotropy. Owing to the assumption G, = « the plate does not
respond to a rotation of some couple applied at the cylindrical surface
of the plate, if the vector of the couple coincides with the normal to this
surface. This enables us to identify

Gaudy the variation M ,,/dy of twisting cou-

] ples due to horizontal shearing stresses
T ™ dy x and acting along an edge x = a with
h y the effect of vertical forces Q. applied
2 B at the same edge, thus reducing the
-*— :tdz 2 number of the edge conditions from
h 0% three to two (page 83). The stress
2
Y

__,-__T&x__/rf}/’f%

'ZfL_ analysis of the elastic plates is greatly
simplified by this reduction. On the
other hand, in attributing some purely
hypothetic properties to the material of the plate we cannot expect com-
plete agreement of the theoretical stress distribution with the actual one.
The inaccuracy of the customary thin-plate theory becomes of practical
interest in the edge zones of plates and around holes that have a diameter
which is not large in comparison with the thickness of the plate.

The generalization of the customary theory with respect to the effect
of shear deformation is substantially due to E. Reissner.!

Let us consider an element of the plate submitted to the external
transversal load ¢ dz dy and to a system of stress components (Fig. 80).
In accordance with E. Reissner’s theory we assume a linear law for the
distribution of the stress components o, a,, and r,, through the thickness
of the plate. By equations of equilibrium (@) on page 98 the distribu-

Fia. 80

L See J. Math. and Phys., vol. 23, p. 184, 1944; J. Appl. Mechanics, vol. 12, p. A-68,
1945; Quart. Appl. Math., vol. 5, p. 55, 1947. For the history of this question going
back to a controversy between M. Lévy and Boussinesq, see L. Bolle, Bull. tech. Suisse
romande, October, 1947.
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tion of the components 7., and 7,, then follows a parabolic law. As for
the stress component o, it is readily obtained from the third of equations
of equilibrium (&) if one takes into account the conditions

(¢2)i=niz = —¢ (0)e=ts2 = 0

at the upper and lower surface of the plate. We arrive, in this manner,
at the following expressions for the stress components in terms of their
resultants and the coordinate z:

12M ;2 12M 2 _ 12M .2
Op = ——7;3— G, = h"’ Tey = — h";
= S;Q” 1 — _23 : — ﬁ?y 1 — 2z\* (a>
e = 2h h ) " ;
o 3q12 2z 1 /2\} .
o= 74?[3‘ Tfﬁ(?{)] ®)

Except for Eq. (b) the foregoing system of equations coincides with the
corresponding relations of the customary theory. In like manner we can
rewrite the following conditions of equilibrium of the stress resultants
(see pages 80, 81):

an aQy

3 + 3y +qg=0 ()
oM. oM., -
ar  dy Q=0 ?
oM, My g )
dy dzx Y

Assuming an isotropic material and supposing the displacements uo, vq,
we of any point of the plate to be small as compared with its thickness A,
we make use of the general stress-strain relations

d 1
_57-%1 = E oz — V(o'u + o.)]
d 1
5 = Flo — Moet o]
duo + o _ 1 (e)

dy "9x G
Buo 3w0 _ 1
% T er G
v , dwe 1
%t ey G

in which G = E/2(1 4- »). We do not use the sixth relation
Jwe 1

3z B [Uz - V(C’z + O'y)]
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however, since this latter proves to be in contradiction with the assumed
linear law for the distribution of the stresses o, o, T4

Next,! we introduce some average value w of the transverse displace-
ment, taken over the thickness of the plate, as well as some average values
oz and ¢, of the rotation of the sections ¢ = constant and y = constant,
respectively. We define these quantities by equating the work of the
resultant couples on the average rotations and the work of the resultant
forces on the average displacement to the work of the corresponding
stresses on the actual displacements wo, vo, and wo In the same section;
1.e., we put

h/2 h/2
f—h/z oo dz = Mo, - /~h/2 Tallo d2 = M.,ey
h/2 \ h/2
S owads = Mg, = / N Tatiodz = Mg f)
h/2 h/2
xz = w z =
/_h/2 ToWo d2 = Q. /_h/2 T, Wo dz = Qu

Now, substituting expressions (a) for the stresses in I8qs. (f), wearriveat
the following relations between the average and the actual displacements:

3 [h2 92\ 2
w = 57 —h/zwo[l — (F) ]dz

12 [7/2 ygz

R RV g
12 (72 ygz
ey = F/._h/z_h—dz

Using Eqs. (¢) and observing Eq. (b), we are also able to express the
stress components o, o, and 7., in terms of the actual displacements;
we find?

LB (e w3 [2_2 1(%y

A <m + ay> i - ) [? 3 <;z> }
B (o o se [2 2 102y

"”'1_—V2<ay+”ax> 4(1—1/)[3 h+d(-7L“>J (h)
_ Ig auo (91)()

T34 ) <6y + ﬁ)

1 E. Reissner, in his treatment of the subject, makes use of Castigliano’s principle of
leagt work to introduce the conditions of compatibility in the analysis. The method
here followed and leading to substantially the same results is due to A. 1. Green,
Quart. Appl. Math., vol. 7, p. 223, 1949. See also M. Schiifer, Z. angew. Math. Mech.,
vol. 32, p. 161, 1952.

2 Terms with 2% do not actually occur in the following expressions for o, and o,
since they are canceled out by identical terms with opposite sign contained in duo/dx

and dvy/9y.
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Substituting this in Eqgs. (@), multiplying the obtained equations by
12z dz/k*, integrating between z = —h/2 and z = h/2, and observing
relations (g), we arrive at the expressions

M$=D[%+v% 6V(1+V)Aq]

ox Ay 5Kk
B o, dg. | 6v(l + ») .
M,=0D [B—y + v Y + —5En ¢ Q)
_ DA — ) (d¢. | B¢y
My = 2 (6y R

in which D is defined, as before, by Eq. (3). In like manner, substituting
expressions (a) for the stress components 7., and 7., in the last two equa-
tions (¢), multiplying the result by 3{1 — (22/h)?% dz/h, and integrating
between the limits 2 = +h/2, we obtain

= w121+
=~ T35 T & g
_ w1214y, &
T T 9y T 5 TER

Now, eight unknown quantities, namely M., M,, M., Q., Q,, v, ¢, and
¢y, are connected by two equations (j), three equations (), and, finally,
by three equations of equilibrium (¢) and (d).

In order to transform this set of equations into a form more convenient
for analysis we eliminate the quantities ¢, and ¢, from Eqs. (j) and (2),
and, taking into account Eq. (¢), we obtain

p(Tw vy, K0 g
M. = D(8x2+vag/2>+5 dz 101 —»

P 9*w 9w h*0Q, qh* w
M, = =Digz+ W) 5oy 101=3 ()
_ . w  h*(3Q, | 90,
Mo = A =0DG5y 10<ay +61>

Substitution of these‘expressions in Eqgs. (d) yields, if one observes Eq.
(c), the result

R _ 9w h:  dq
Qe = 158€: = = D=5~ ~ 1501 = »yax o
B 8(Aw) R og

Q= q54% = D 3y 10(1 = ») 3y

in which, as before, the symbol A has the meaning (105). In the par-
ticular case of h = 0, that is, of an infinitely thin plate, the foregoing
set of five equations, expressions (k) and (), gives Eqgs. (101) and (102)
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for the moments and Eqs. (108) for the shearing forces of the customary
thin-plate theory.

To obtain the more complete differential equation for the deflection
of the plate we only have to substitute expressions ({) in Iq. (¢); thus
we obtain

h?2 — v

DAaw = q —
We can satisfy this equation by taking w, that is, the ““average deflection”

at (z,y), in the form
w = w + w'’ (m)

in which w’ is a particular solution of the equation

h?2 -

and w'’ is the general solution of the equation
AAw' = 0 (0)

Therefore, using Eq. (169), we are able, just as in the ordinary thin-plate
theory, to satisfy four boundary conditions in all. We can obtain a sup-
plementary differential equation, however, by introducing into consider-
ation the shearing forces Q. and @, Tquation of equilibrium (¢) is
satisfied, in fact, if we evpress these forces in a form suggested by the
form of Lqs. (1), i.e.,

ot ®
0, - —p2ow _ &
0 = @, - p2e o !

In these expressions ¢ denotes some new stress function, whereas Q. and
(), must satisfy the relations

F R g _pdw) R 9y

Q — 15 AL: = or  10(1 = ») ac o
I X N G '
AT R 3y 10(1 = ») 3y

as we can conclude from Eqs. () and (n). Ditferentiating the foregoing
equations with respect to 2 and y, respectively, and adding the results
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we arrive at the condition of equilibrium

.

(s)
To establish a differential equation for the stress function ¢ we substitute
expressions (g) in Egs. (I) with the result

d h? G,
a—y<¢—mA¢) = *@( 10~\1P> ()

from which we conclude that the expressions in parentheses are con-
stants. Making these constants equal to zero we have the relation

Ay — 1]:—31,& =0 (170)

which, still assuming that h ¢ 0, yields a second fundamental equation
of the generalized theory of bending, in addition to Lq. (169).

Having established two differential equations, one of which is of the
fourth and the other of the second order, we now are able to satisfy three
conditions, instead of only two, on the edge of the plate. Considering
the general case of an element of the cylindrical boundary of the plate
given by the directions of the normal » and the tangent ¢ (Fig. 54) we can,
for instance, fix the position of the element by the equations

w = W On = Pn @Yy = Pt (u)

Herein 1w is the given average deflection and @, and @, are the given
average rotations of the element with respect to the axes t and = respec-
tively. In the particular case of a built-in edge the conditions are w = 0,

» =0, and ¢; = 0. Instead of displacements some values Q,, M,,
M, of the resultants may be prescribed on the boundary, and the corre-
sponding edge conditions would be

Q‘ﬂ = Q_TL ﬂjn = A7['IL [‘Int = AT[n,t (v)

Hence the conditions along a free edge are expressed by equations @, = 0,
M, =0, M, =0, and for a simply supported edge the conditions are
w=0, 48, =0 M, =0 Inthelatter case we obtain no concentrated
reactions at the corners of the plate, which act there according to the
customary theory and are in obvious contradiction to the disregard of
the shear deformation postulated by this theory.

As an illustration of the refined theory let us consider a plate in form of a semi-
infinite rectangle bounded by two parallel edges y = 0, ¥y = a and the cdge z = 0.
We assume that there is no load acting on the plate, that the deflections w and the
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bending moments M, vanish along the edges ¥ = 0, ¥ = q, and that the edge z = 0
is subjected to bending and twisting moments and to shearing forces given by

- n
M, = Mosin 2
a

ny

1'1[“, = Ho CcOoS — (w)
Q. = Qo sin iy
a

where Mo, Ho, Qo are constants and n is an integer. Then, in view of ¢ = 0, we have
= 0by Eq. (») and w = w” by Eq. (m). We can satisfy Eq. (o) and the condition
of vanishing deflections at z = « by taking

7n n e—nrzla
w=w"=sinﬂ A+ m:B
a a D

A and B being any constants. Next, assuming for ¢ a solution of the form

nr
¢ = X cos Yy
a

where X is a function of x alone, and substituting this in Eq. (170) we obtain

n
¢ = Ce =8 cos~7~rg
a
In this last expression
ntxt 10

8= i

and C ig a constant. From Eqs. (r) we have Q; = Q; = 0 and Eqgs. (g) give

[ ( ) e—nrala 4 Cnle—zﬂ] sin Y
a aQ

[23( ) emnTrls 4+ (e zﬁ] 05 Y
a

Finally, Eqs. (k) yield the following expressions for moments acting along the edge
z = 0:

(M2)omo = [—A(l -+ 23( n T hz) + C,Bah2:l n27r2SinELy

bnr | a? a

2 2 2h2 2 h2 2.2
(Mey)eco = [—‘4(1 — ) +B<1 —v it 2—) + (<% +T)] BT cos MY
a new a9 a* a

Equating these expressions, together with the expression for the shearing force

(Qc)emo = — [23 (T>3 T CT] sin Y
a a a

to the expressions (w), respectively, we obtain a set of three equations sufficient to
calculate the unknown constants A, B, and €. In this way, by using the refined plate
theory, all three conditions at the edge x = 0 are satisfied.

Q-

Qy
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Considering now the edges y = 0 we see that w vanishes along those edges, and M,
also vanishes there, as can be proved by substituting the expression for @, into
the second of equations (k).

Another theory of plates that takes into account the transversal shear deformation
has been advanced by A. Kromm.! This theory neglects the transverse contraction
e; but, in return, does not restrict the mode of distribution of bending stresses across
the thickness of the plate to a linear law. Applying this theory to the case of a
uniformly loaded, simply supported square plate with a/h = 20, Kromm found the
distribution of shear forces acting along the edge as shown in Fig. 81.  For comparison
the results of customary theory (Fig. 63) are also shown by the dashed line and the

M o e e — [ it 1
T 0.5qa
ol
(=]
;‘rﬂ, i NN
S Wo
|
| R=0.065qa2
— -0.5q0
-1.0qa.
! | ~1.5qa
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forces K. We see that, as soon as the transversal shear deformation is taken into
account, no concentrated reaction is obtained at the corner point of the plate. The
corresponding negative forces are distributed instead over a small portion of the
boundary adjacent to the corner, yielding at the corner itself a finite pressure acting
downward. The moments 3, on the four sides of the plate are zero in that solution.

Still another approach to the theory of shear deformation can be found in a paper
of H. Hencky.?

40. Rectangular Plates of Variable Thickness.® In deriving the differential equa-
tion of equilibrium of plates of variable thickness, we assume that there is no abrupt
variation in thickness so that the expressions for bending and twisting moments
derived for plates of constant thickness apply with sufficient accuracy to this case also.

Then
9% 9w EY 9%
M.= -D(=2+,72) M,=-D[24,2"
dx? oy? : ay? dy?

o

ax 8y

(a)

M., = —M,, = D1 — »)

Y A. Kromm, Ingr.-Arch., vol. 21, p. 266, 1953; Z. angew. Math. Mech., vol. 35, p.
231, 1955.

2 Ingr.-Arch., vol. 16, p. 72, 1947,

3 This problem was discussed by R. Gran Olsson, Ingr.-Arch., vol. 5, p. 363, 1934;
see also E, Reissner, J. Math. and Phys., vol. 16, p. 43, 1937.



174 THEORY OF PLATES AND SHELLS

Substituting these expressions in the differential equation of equilibrium of an element
[Eq. (100), page 81],
aM. M., oM,

daz? <oz Yy ay?

= —q ®)

and observing that the flexural rigidity D is no longer a constant but a function of the
coordinates r and y, we obtain

aD 3 aD 9
DAAw +2— — Au +2— — Aw
dxr dx Yy dy
92D 9w 32D w 32D 9%w
+abDaw - (1 —-—»){—-——2 — = ) =q (171)
Jx? oy? dzx dy Iz oy dy? ox?

where, as before, we employ the notation

A2 a2

As a particular example of the application of Eq. (171) let us consider the case in
which the flexural rigidity D is a linear function of y expressed in the form

D = D() + D]'_I/ (C)
where Dy and D, are constants.

b === - a -]
5 <
b
Y

Y
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In such a case Eq. (171) hecomes

a
(Do + Dup)aaw + 2Dy — Aw = ¢
gy
or A[(Dy + Dyy) aw] = ¢ (172)

Let us consider the case in which the intensity of the load g is proportional to the
flexural rigidity D. We shall assume the deflection of the plate (Fig. 82) in the form

w = W + w:

and let w, equal the deflection of a strip parallel to the x axis cut from the plate and

l()aded with a load of inlensiby
{ [¢ | —Dl 17 ()
‘ 4 i ,DU ,
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This deflection ean be represented, as before, by the trigonometric series

D1 @« 3
4 L+ —y)a
(10( + D, J) 1 . mrz  4qu! 1 | mrz

wy = ———————— — sin
(Do + D)=t mb a 75Dy mb a

m=1,3,5,... m=1,3,5,...

By substitution we can readily show that this expression for w; satisties Eq. (172).
It satisfies also the boundary eonditions w, = 0 and d%w,/dx2 = 0 along the supported
edges z = 0 and z = a.

The deflection w. must then satisfy the homogeneous equation

Al(Do + Dyy) Aws] = 0 N

We take it in the form of a series

mwlx

Wy = Vo sin

@

@€
m=13,5, ...

Substituting this series in Eq. (f), we find that the functions ¥, satisfy the following
ordinary differential equation:

0?2 min? ’” mir?
<W£ — P > [(Do + Duy) (Ym — prs Ym>] =0 (h)

Using the notation
77L2 2 m
fm = (DO + D]fl/) (Y’n,; - 7:; Ym) Tﬂ' = am (i)

we find, from Eq. (h),

fm = Amea”ﬂ + Bme_a"‘y
Then, from Eq. (), we obtain

, i A g%t B ey
VGt y, = At & B )
Dy -+ Dly

The general solution of this equation is
Y = Cne®n? + Dype®nt + g (k)

in which ¢, is a particulav integral of Eq. (j). To find this particular integral we use
the Lagrange method of variation of constants; .e., we assume that ¢,, has the form

Gm = Epetant 4 Foe 0]

in which E,. and F,, are functions of y. These functions have to he determined from
the following equations:!

E.com + Fle oy =0
Ao 4 B, e ony
am(Ds + Dry)

LE' and F’, in these equations are the derivatives with respect to y of £, and £

E:neamll — F:ne_amv =
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from which
7 Am + Bme_2a"'y

™" 2an(Do + Dyy)
F/ _ Ame2amv + Bm
™ 20,(Do + Dy)

Integrating these equations, we find

Am 4 Bmeummi’ Am 2am
i = / 2en (Do + D) ¥ = ZanDy 28 D, (Dot D)
SenDo — 2am(Do+Dy)
L B B f e DT d2an(Do + D)l
2em Dy 2an(Do + Diy)
Ane?@ny + B, B, 20m
F == _/ SenDo + D) ¥ = T 20Dy B, 0T
— 2anDo 2am{Do+ D1y)
__Aw T / e DU dR2an(Do 4 D)l
2amD) 200 (Do 4 D1y)

Substituting these expressions in Egs. ({) and (k) and using the notation*

U pu U gu
E:(u) = - du Ei(—u) = o du

we represent functions Y, in the following form:

— 2am
, 20, ~(Do+Day) 2am (D D
Y = A, ilog “am (Do + Diy) —e D1 v E; 2an(Do + Diy) Ot
D1 Dl
—~Zam
, | 5 (De+Duy) 2am — 20, (D Dy
_p D D 1og 2 (Do 4 Dy — B | Z2enDet DL

Dy : Dy

+ Crednv + Do %n¥ (M)

The four constants of integration A, B Cn., D. are obtained from the boundary
conditions along the sides ¥ = 0 and y = b. In the case of simply supported edges

these are
')2
(w)y=0 =0 e =0
Y? Jyo

82’
W)y =0 < L:) =0
oy? Jy=b

The numerical results for a simply supported square plate obtained by taking only the
first two terms of the series (g) are shown in Fig. 83.2 The deflections and the
moments M. and M, along the line z = a/2 for the plate of variable thickness are
shown by full lines; the same quantities calculated for a plate of constant flexural
rigidity D = 4(Do + Dib) are shown by dashed lines. It was assumed in the calcula-
tion that Db = 7D¢ and » = 0.16.

1 The integral E;(u) is the so-called exponential integral and is a tabulated function;
see, for instance, Jahnke-Emde, “Tables of Functions,”” 4th ed., pp. 1 and 6, Dover
Publications, 1945; or “Tables of Sine, Cosine and Exponential Integrals,”” National
Bureau of Standards, New York, 1940.

2 These results are taken from R. Gran Olsson, loc. cif.
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Finally, let us consider the case in which the thickness of the plate is a linear function
of y alone and the intensity of the load is any function of y (Fig. 82). Denoting the
thickness of the plate along the ling y = /2 by he and the corresponding flexural
rigidity by

ER}

Dy = ——=
" TI2(1 — )

(n)

we have at any point of the plate

b 2
D =Dy~ and h=[1+x<—?’—1>]ho
h% b

This yields b = (1 — Mhoat y = 0and h = (1 + Mheat

(0)

where A is some constant.
y = b

.4qoa2 . 4qqa? “4a0 at
My'?‘ x* 3 X' 13D,
01082 0.04/9 00220 "= 0.0163
(00735) 0.0770) (0.0/148) T
/ /
/ l /, /
08676 /105935 4f 102072 [/ - 0175
(06800)  JI lozeiy 1] VWersze) fj | Y™™
/ / /
/ / /
12683 |1 12171 | 03095 | - 0335
(i1527) // (13187)] 0.2575) ll y==
i
14778 1663 0327 _
((5156) 162391 05154, y = 0494
} [
(15116) |l %1 l\
| | 02787
=0,
(6317 | 156040\ 02969)) y = 0653
\
\ \ \
12277\ 13965 \\ 0./834 ) 0812
(i4787) \ 12190) Ny [02223) '\ Yoo
\ 3
\
N\
02754 N\ lozzsr  \{ |00307
(3517 071A4] 0.0356] y =0972
Moment My, Moment My Deflection
Fic. 83

The following method* introducing the quantity A as a parameter proves to be most
efficient in handling the present problem. Considering the deflection w as a function
of the variables z, y, and \, we can express w(z,y,\) in form of the power series

wmkm
0

¢J]

s

m

]

in which m is an integer and the coefficients w,, are merely functions of z and .
1 See H. Favre and B. Gilg, Z. angew. Math. u. Phys., vol. 3, p. 354, 1952,
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Substituting expressions (o) and (p) in Eq. (171) and equating to zero the coeffi-
cients of successive powers of A, we obtain a sequence of differential equations

q
Adwy = =
Wo Do
AN 122 pwe+ (2 — 1) an
Arws = =31 =2 A Y _ w
(705Y bay Wo b I}
vy = <3| 22 o+ (H 1) an (@
We = P ba" W b Wi q
‘:8
_3 —

We assume the edges ¢ = 0 and x = a to be simply supported, and we shall restrict
the problem to the case of a hydrostatic load

g= = (r)

Using the method of M. Lévy we take the solution of Egs. (g) in the form

o

. nmzx .
wo = V,n sin — ()
a
n=13,...
0
.. mwx
w1 = Y sin— - - - 0]
a
n=1,3,...
[ca)
. . nwx
Wy = Yomn 8in —— (1)
a
n=13,...
the coeflicients ¥Yn (m = 0, 1, 2, . . .) being some functions of y. We can, finally,

represent the load (r) in analogous manner by putting

_ 44 oY 1 nwxr

—gin — ()
b n a

n=1.3,...

Substitution of expressions (s) and (v) in the first of the equations (g) enables us to
determine the functions Y., the boundary conditions being V,. =0, Y., = 0 at
y = 0and y = b if these edges are simply supported. The substitution of expressions
(s) and (f) in the second of the equations (q) yields the function Y1.. In like manner
any function wy, is found by substitution of wo, wi, . . . , Wn—y in that differential
equation of the system (g) which contains w,, at the left-hand side. The procedure
remains substantially the same if the edges y = 0, b are built-in or free instead of being
simply supported.
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4
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Numerical results obtained by H. Favre and B. Gilg! for the deflections and the
bending moments along the center line x = a/2 of a simply supported plate with
X = 0.2 and » = 0.25 under hydrostatic pressure (r) are shown in Fig. 84. Full lines
give results obtained by taking threc terms in the series (p), while the dashed lines
hold for the result of the first approximations.

1 Ibid.



CHAPTER 0

RECTANGULAR PLATES WITH VARIOUS
EDGE CONDITIONS

41. Bending of Rectangular Plates by Moments Distributed along the
Edges. Let us consider a rectangular plate supported along the edges
and bent by moments distributed along the edges y = +b/2 (Fig. 85).
The deflections w must satisfy the homogencous differential equation

d*w o*w o'w

gt T 2auia Tap =0 (a)

and the following boundary conditions:

2
w =0 g%;’:o forr =0andz =a b)
w=20 fory = + —éb- (c)
*w ) %*w .
-o(55),,, 0w -p(5%) | A @
o) in which f; and f, represent the bending

moment distributions along the edges

w, Y= Eb/2.

m/ #——x We take the solution of Eq. (a) in the
¥

fi{x) Ay, form of the series
dal anl el aal e ¥
/Z‘ """" Q= . mmx
y w = Y, sin —= (e)
Fic. 85 fng a

each term of which satisfies the boundary conditions (b). The functions

Y., we take, as before, in the form
= Ansinh %¢ + B, cosh ¥ 4 ¢,, m7ry sinh 7Y

mer

mry
+ D, cosh e 6))

which satisfies Eq. (a).
180
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To simplify the discussion let us begin with the two particular cases:
1. The symmetrical case in which (M ),z = (My)y=—s;2
2. The antisymmetrical case in which (M)y—p2 = — (M})y=s2
"The general case can be obtained by combining these two particular cases.
In the case of symmetry Y,, must be an even function of y, and it is
necessary to put A, = D, = 01in expression (f). Then we obtain, from

Eq. (e),

w= E (B,,, cosh 77 + ¢, Y ginh 'r_n7r_y> sin L (o)
a a a a

m=1
To satisfy the boundary condition (¢) we must put
B,, cosh a,, + Cnay, sinh a,, = 0

where, as before,
_ mxb

G 2a

Hence B,. = —C,ha, tanh a,,

and the deflection in the symmetrical case is

0

w = E . (Zn_;"__?{ sinh %’ — an tanh a, cosh mTw) sin mT” (h)

m=1

We use the boundary conditions (d) to determine the constants C,.
Representing the distribution of bending moments along the edges
y = +b/2 by a trigonometric series, we have in the case of symmetry

o

@) = falo) = 2 By sin 77 )

m=1

where the coefficients E, can be calculated in the usual way for each
particular case. TFor instance, in the case of a uniform distribution of
the bending moments we have (see page 151)

w0

M 1 . mmx .
(M yrarz = = o S ©

m=135,...

Substituting expressions (h) and () into conditions (d), we obtain

-] 0
2.2
mir . mmr . mwrx
—2D 5 Cn cosh a, sin ——= = E, sin ——
a a a
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from which

c. - — a*E,,
b 2Dm2r? cosh a,
and
i . mmx

a? s a mry  mwy mmy

2 T . vy
W= e -~ E,.\a, tanh «, cosh — ginh —*

22D m? cosh a, ( ™ " a a a

173)
In the particular case of uniformly distributed moments of intensity Mo
we obtain, by using expression (j),

w0

2M a? 1 mmy
w = - | a,, tanh @, cosh
xsD m? cosh a, \ ” a
m=13,5,...

mwy . , mw . mrx
_mry sinh MY Y gin T
a a a

The deflection along the axis of symmetry (y = 0) is

w0

2M ya? Z 1 a, tanh «,, . mnrx

W)ymo = 37" = e 8N —— k
(@)y=0 w3D mé cosh e a (k)
m=1,3,5,...

When ¢ is very large in comparison with b, we can put tanh a, = a,
and cosh o, = 1. Then, by using series (j), we obtain

0

(w) _ 11[067 l sin mar _
y=0 2rD m a

m=1335....

Mob?

Q| =

This is the deflection at the middle of a strip of length b bent by two
equal and opposite couples applied at the ends.

When q is small in comparison with b, cosh a,, is o large number, and
the deflection of the plate along the » axis is very small.

For any given ratio between the lengths of the sides of the rectangle
the deflection at the center of the plate, from expression (&), is

©

(w).ll=0,:=a/‘2 N J”{EO%{) 2 (_1)(7”_1)/2

m=1315,...

1 tanh U
m? cosh a,,

Having expression (173) for deflections, we can obtain the slope of the
deflection surface at the boundary by differentiation, and we can calcu-
late the bending moments by forming the second derivatives of w.
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Some values of the deflections and the bending moments computed in
this way are given in Table 28. It is seen, for example, that the deflec-
tion of a strip of a width a is about 3} times that of a square plate of
dimensions ¢. While the transverse section at the middle of a strip
transmits the entire moment M, applied at the ends, the bending moment
M, at the center of the plate decreases rapidly as compared with M,
with an increasing ratio b/a. This is due to a damping effect of the edges

= 0 and z = @ not exposed to couples.

TasLe 28. Drruecrions aAND BeExpING MoMENTS AT THE CENTER OF
RECTANGULAR PraTES SivPLY SUPPORTED AND SUBJECTED TO
CourLes UnirorMLY DISTRIBUTED ALONG THE EpgeEs y = +b/2 (Fic. 85)

v = 0.3

b/a w M, M,

0 0.1250M b2/ D 0.300M 1.000M
0.50 0.0964M ob2/D 0.387M, 0.770M,
0.7 0.0620M b2/ D 0.424M, 0.476 M,
1.00 0.0368M ya2/D 0.394M, 0.256M,
1.50 0.0280M a2/ D 0.264M, 0.046M,
2.00 0.0174M ya2/D 0.153M, —0.010M,

Let us consider now the antisymmetrical case in which

fi(@) = —fulz) = y E, smM

m—l

In this case the deflection surface is an odd funection of y, and we must
put B, = C, = 0 in expression (f). Hence,

o

w - E <A sinh " 4 D, MY o m_J) sin 72

m=1
From the boundary conditions (c¢) it follows that
A, sinh @, + Dy, cosh @, = 0

1
whence D, = — o tanh e, A

. . mmy 1 mw mm . mwx
w = A, sin mTY _ _ tanh O, mry cosh MYy gin L
a O a a a

and
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The constants A, are obtained from conditions (d), from which it follows
that

o o
272D m? . . mrx . omrx
; A, —- sinh «,, tanh a,, sin — = e SN ——
a ' a a
m=1 m=1
a? Ol
Hence A, = E -
™ 2xtD 7™ m? sinh a, tanh a,
and
L]
a? E, ., mmxy  mmy mmry
w = : oy, coth a,, sinh —2 — —< cosh =2
2rtD 2 m?sinh a, \ " a a a
m=1

sin %v (174)

We can obtain the deflection surface for the general case represented
by the boundary conditions (d) from solutions (173) and (174) for the
symmetrical and the antisymmetrical cases. For this purpose we split
the given moment distributions into a symmetrical moment distribution
M and an antisymmetrical distribution M}/, as follows:

(M) ymbse = (M) b2 = $[f1(x) + fa2)]
(M) ympyz = — (M) )iz = [ f1(x) — fa2()]

These moments can be represented, as before, by the trigonometric series

o

.. Mmrx
(M})y=sr2 = E By, sin ——

1

..o muk
(M;’)yzb/z = 2 E:,: s T

m=1

m

0

8 |

and the total deflection is obtained by using expressions (173) and (174)
and superposing the deflections produced by each of the two foregoing
moment distributions (/). Hence

0

. ommz
. sin —— .
@ a I, tanh cosh mrx
- - e «@ @ —
W = 9r:D m? cosh a, \ ™ ” a

m=1

(WI/
. mry sin m) —+ L (am coth a,, sinh may
a a a

sinh o,
_ ™Y osh m_z)] (175)
a a
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If the bending moments M, = E E,. sin (mrz/1) are distributed only
m=1
along the edge y = b/2, we have fo(z) = 0, E,, = E,; = E,; and the
deflection in this case becomes

©

. mTx
a? Ep sin a 1 mry
W=4rD m? [cosh o (am tanh e cosh ==

m=1

— Zr% sinh mvry) + 1 (am coth oy, sinh mTry

a sinh a,,
_ MY osh ﬁﬂ)] (176)
a a

Solutions (173) to (176) of this article will be applied in the investigation
of plates with various edge conditions.

Moments M, distributed along only one edge, say y = b/2, would pro-
duce, at the center of the plate, one-half the deflections and bending
moments given in Table 28. In case of a simultaneous action of couples
along the entire boundary of the plate, the deflections and moments can
be obtained by suitable superposition of the results obtained above for a
partial loading.!

42, Rectangular Plates with Two Opposite Edges Simply Supported
and the Other Two Edges Clamped. Assume that the edges z = 0 and
z = a of the rectangular plate, shown in Fig. 86,
are simply supported and that the other two edges l l l l l I 1 1 —%

are clamped. The deflection of the plate under ‘—:
any lateral load can be obtained by first solving 77

the problem on the assumption that all edges are aj
simply supported and then applying bending —x
moments along the edges ¥ = +0/2 of such a alee

o]
magnitude as to eliminate the rotations produced
along these edges by the action of the lateral load. }( ______ o ,
In this manner many problems can be solved by ;
combining the solutions given in Chap. 5 with the
solution of the preceding article.

Uniformly Loaded Plates.> Assuming that the edges of the plate are
simply supported, the deflection is [see Eq. (139), page 116]

FiG. 86

! Bending by edge couples was also discussed by H. Bay, Ingr.-Arch., vol. 8, p. 4,
1937, and by U. Weguer, Z. angew. Math. Mech., vol. 36, p. 340, 1956.

2 xtensive numerical data regarding rectangular plates with uniform load and sides
simply supported or clamped in any combination may be found in a paper by F.
Czerny; see Bautech.-Arch., vol. 11, p. 33, Berlin, 1955.
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mwy

osh

_ 4qa’ L gomme(,  an tanh an, + 2
~ #D mb a 2 cosh ap
m=135,...

1 mry . , mwy
+ 2cosh an @ sinh T) (@)

and the slope of the deflection surface along the edge y = b/2 is

ow _ 2ga? 1 . mrx
<a—y.>u=b/2 - le E El S a [am - ta’nh am(l + (227 ta:nh am)]

)

To eliminate this slope and thus to satisfy the actual boundary conditions
we distribute along the edges y = +b/2 the bending moments M, given
by the series

0

mmw®

(M)y=srr2 = 2 E.,, sin . (¢)

m=1

and we determine the coefficients K, so as to make the slope produced
by these moments equal and opposite to that given by expression (b).
Using expression (173)! for the deflection produced by the moments, we
find that the corresponding slope along the edge y = b/2 is

s .. mrx
sim —

E,[tanh an,(a, tanh @, — 1) ~ a,) (d)

Equating the negative of this quantity to expression (b), we find that

Em _ éﬂz Oy, — tanh am(l + e 47 t&!lh Olm) (e)

mm? o, — tanh an(a., tanh a, — 1)

Hence the bending moments along the built-in edges are

© mmx
0 oy — tanh a.(l + a, tanh a,)  (f)
m®  am, — tanh a,(a, tanh o, — 1)

sin
4qa?
(My)yesin = 5

m=1.3,5...

The maximum numerical value of this moment occurs at the middle of
the sides, where x = a/2. Series (f) converges rapidly, and the maxi-
mum moment can be readily calculated in each particular case, For

! From the symmetry of the deflection surface produced by the uniform load it can
be concluded that only odd numbers 1, 3, 5, . . . must be taken for m in expression
(173).
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example, the first three terms of series (f) give —0.070ga’ as the maxi-
mum moment in a square plate. In the general case this moment can be
represented by the formula yga®, where v is a numerical factor the magni-
tude of which depends on the ratio a/b of the sides of the plate. Several
values of this coefficient are given in Table 29.

Substituting the values (¢) of the coeflicients E,, in expression (173),
we obtain the deflection surface produced by the moments M, distributed

TaBLE 29. CONSTANTS @, Bi, 82, v FOR A RECTANGULAR Prare witH Two
Epces Sivrry SuprrorTED AND Two Evces Cramprep (Fia. 86)

v = 0.3
b <a
a
c=my=0| _e. _ =% 4 = =%, =0
« 2 y T=35Y Oz 5 Y 0|z V=3
b | Wuax = a% M, = Bigh? | M, = Bagb® | M, = vqb?
@ B: B2 Y
© 0.00260 0.0125 0.0417 —0.0833
2 0.00260 0.0142 0.0420 —0.0842
1.5 0.00247 0.0179 0.0406 —-0.0822
1.4 0.00240 0.0192 0.0399 —0.0810
1.3 0.00234 0.0203 0.0388 —0.0794
1.2 0.00223 0.0215 0.0375 —0.0771
1.1 0.00209 0.0230 0.0355 —0.0739
b>a
qa4 z:g,y=0 x:g,yz z:g,y=§
E Wmax = CY—B 2 2 2 2
a M. = Bwa® | M, = Byqa® M, = yqa*
4 B [: Y
1 0.00192 0.0244 0.0332 —0.0697
1.1 0.00251 0.0307 0.0371 —0.0787
1.2 0.00319 0.0376 0.0400 ¢ —0.0868
1.3 0.00388 0.0446 0.0426 ¢ —0.0938
1.4 0.00460 0.0514 0.0448 —0.0998
1.5 0.00531 0.0585 0.0460 —0.1049
1.6 0.00603 0.0650 0.0469 —0.1090
1.7 0.00668 0.0712 0.0475 —0.1122
1.8 0.00732 0.0768 0.0477 —0.1152
1.9 0.00790 0.0821 0.0476 —0.1174
2.0 0.00844 0.0869 0.0474 —-0.1191
3.0 0.01168 0.1144 0.0419 —0.1246
© 0.01302 0.1250 0.0375 —0.1250
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along the edges

a

hd . mwx
2qat STy
Yi="7D m® cosh apm
m=1,3,5,...
@, — tanh o, (1 + «, tanh a,,) <m7ry ian Y

an — tanh an(e, tanh a, — 1)
— a, tanh «,, cosh m;r_y) (¢)

The deflection at the center is obtained by substituting x = a/2, y = 0
in expression (g). Then

2ga* (=102 o tanh o,

me cosh an
an — tanh a,(1 + a, tanh a,)
an — tanh ap(a, tanh o, — 1)

This is a rapidly converging series, and the deflection can be obtained
with a high degree of accuracy by taking only a few terms. In the case
of a square plate, for example, the first term alone gives the deflection
correct to three significant figures, and we obtain

4

wy = 0.00214 L

Subtracting this deflection from the deflection produced at the center by

the uniform load (Table 8, page 120), we obtain finally for the deflection

of a uniformly loaded square plate with two simply supported and two
clamped edges the value

4
w = 0.00192 %

In the general case the deflection at the center can be represented by the
formula
4
w=all
Several values of the numerical factor « are given in Table 29.
Substituting expression (g) for deflections in the known formulas (101)
for the bending moments, we obtain
® sin 772
2qa? ’ & o, — tanh @, (1 + a, tanh )
s m? cosh an an — tanh a,(a, tanh a, — 1)

M, = —
m=135,...

[(1 — ) T’%ﬂs‘mh ﬁ;ﬂ! —[2v + (I — »)ay tanh ] cosh @} (h)
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- <ip T
. — 2qa* a  am — tanh an(l + an tanh a,)
VT g m? cosh an o, — tanh a,(o, tanh o, — 1)

m=13,5,...

[(1 — ) % sinh ﬁ;i'i 412 — (1 — »)am tanh ay] cosh"%'g (@)

The values of these moments at the center of the plate are

0

2 —1)m—1)/2
M, = 2% E (St Kl

s m? cosh ay,

m=13"5,...
a,, — tanh a,(1 4+ an tanh a,)
o — tanh o (o, tanh o, — 1)

2qa2 = (_1)(m~—1)/2

s m? cosh oy,
m=1335, .

Ol ~ tanh a,(l + o, tanh a,,)
an — tanh a,(a, tanh «, — 1)

[2v + (1 — v)an, tanh o]

[2 — (1 — v)a, tanh ay,)

These series converge rapidly so that sufficiently accurate valucs for the
moments are found by taking only the first two terms in the series.
Superposing these moments on the moments in a simply supported plate
(Table 8), the final values of the moments at the center of the plate can
be represented as follows:

M, = Bga® M, = Bya’ )

where 8; and 8 are numerical factors the magnitude of which depends on
the ratio b/a. Several values of these coefficients are given in Table 29.

Taking the case of a square plate, we find that at the center the
moments are

M, = 0.0244qa? and M, = 0.0332¢a?

They are smaller than the moments M, = M, = 0.0479¢a? at the center
of the simply supported square plate. But the moments M, at the
middle of the built-in edges are, as we have seen, larger than the value
0.0479ga>. Hence, because of the constraint of the two edges, the magni-
tude of the maximum stress in the plate is increased. When the built-in
sides of a rectangular plate are the longer sides (b < a), the bending
moments at the middle of these sides and the deflections at the center of
the plate rapidly approach the corresponding values for a strip with
built-in ends as the ratio b/a decreases.

Plates under Hydrostatic Pressure (Fig. 87). The deflection surface of
a simply supported rectangular plate submitted to the action of a hydro-
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static pressure, as shown in Fig. 66 (Art. 31), is

4 _ m+1 ’
- qoa z ( 1) ( 2 + an tanh an, cosh mmy
cosh am a

+ L mry sinh _mry) sin 7% (k)
cosh an @ a a

The slope of the deflection surface along the edge y = b/2 is

0

ow _ qoa? (=1)m*
Y Jy—s2 4D m!

=1

lam — tanh @n(1 4+ a., tanh a,)] sin _m%r:g )

This slope is eliminated by distributing the moments M, given by series
(c) along the edges y = +b/2 and determining the coefficients K., of that
series s0 as to make the slope produced by the moments equal and oppo-
site to that given by expression ({). In this way we obtain

2qoa*(—1)"t! @, — tanh o,(1 + a, tanh ay)
w3m? oy — tanh a,(a, tanh a, — 1)

E, =

Substituting this in series (¢), the expression for bending moments along
the built-in edges is found to be

[}
S0 ’
¢ o sy (=D sin T
(M) _ 2qea a
— yly=gb/2 = ] m?
t
o .DI}N m=1
—=x an, — tanh a,.(l 4+ a, tanh a,) (m)
DEN an — tanh an(a, tanh o, — 1) -
¥
The terms in series (m) for which m is even vanish
- O==mm=s > at the middle of the built-in sides where ¢ = a/2,

and the value of the series, as it should, becomes
equal to one-half that for a uniformly loaded plate
[see Kq. (f)]. The series converges rapidly, and the value of the bending
moment at any point of the edge can be readily obtained. Several values
of this moment together with those of the bending moments along the
middle line y = 0 of the plate are given in Table 30.

Concentrated Force Acting on the Plate.® 1In this case again the deflec-
tion of the plate is obtained by superposing on the deflection of a simply
supported plate (Art. 34) the deflection produced by moments distributed

F1a. 87

1 See 8. Timoshenko, Bawingenteur, 1922, p. 51.
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Tarre 30. Benping MoMENTS IN REcTANGULAR PraTeEs witH Hyprosraric
Loap, Two Epces SiMpLY SuPPORTED AND Two Lpges Cramrep (Fia. 87)

vy = 0.3

r=a/2,y=0 z2=3a/4,y =0 |r=a/2,y =b/2x =3a/4,y =b/2
b/a

M, M, M. M, M, M,
0.50[0.007¢eh? | 0.021¢eb? | 0.018¢cb? | 0.029¢cb? —0.042¢¢bh? —0.062gb?
0.75/0.011¢eb? { 0.020¢:b% | 0.018¢eb? | 0.021geb? —0.040gb2 —0.045¢¢b?
1.00{0.013¢ea?{0.017gea?|0.017¢a? | 0.015¢.a? —0.035¢.a* —0.035q.a?
1.25/0.021¢ea?|0.021g,a%|0.024ga? | 0.019q.a? —0.045¢.a? —0.043q.a?
1.50{0.030¢0a? ! 0.023¢0a?|0.031¢ga? | 0.020qa* —0.051g0a? —0.048q.a?
2 0.043q0a? | 0.024¢ea? | 0.042¢g4a?| 0.020q0a* —0.060g a2 —0.053¢g.a?

w {0.063q0a?|0.019q.a?|0.055¢0a%|0.017q.a? —0.063q0a? —0.055¢q0a®

along the clamped edges.

Taking the case of a centrally loaded plate and

assuming that the edges y = £b/2 are clamped, we obtain the following
expression for the deflection under the load:

©

R i B L N
e 9D | b2 m3 "™ cosh? an
m=1,3,5,...
©
o 1 tanh?® a, ) ()
4 m sinh o, cosh o, + am
m=1,305,...

The first sum in the brackets corresponds to the deflection of a simply
supported plate [scc Eq. (147), page 143], and the second represents the
deflection due to the action of the moments along the clamped edges.
For the ratios b/a = 2, 1, 1, and % the values of the expression in the
brackets in Eq. (n) are 0.238, 0.436, 0.448, and 0.449, respectively.

To obtain the maximum stress under the load we have to superpose on
the stresses calculated for the simply supported plate the stresses pro-
duced by the following moments:

®©

. = —P i Vtanh O
T 4a sinh o, cosh am + an
m=1,3,5,...
] 2v + (1 — v)an tanh ay,) ()
- _p _b_ tanh a,,
My = 4q sinh a,, cosh am + om
m=13,5,...

2 - (1 - v)a, tanh a,)
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TasLE 31. CoRRECTION BENDING MOMENTS AT z = ¢/2, y = 0, DU 10
CONSTRAINT AT y = +b/2 IN CasE oF A CENTRAL Loap P (Fia. 71)

v =03
b/a my = P my = B.P b/a my, = BiP my = B.P
B1 B B1 B2
0 —0.0484 —0.0742 1.0 —0.0505 —0.0308
0.5 —0.0504 —0.0708 1.2 —0.0420 —0.0166
0.6 —0.0524 —0.0656 1.4 —0.0319 —-0.0075
0.7 —(.0540 —0.0580 1.6 —0.0227 —0.0026
0.8 —0.0544 —0.0489 1.8 —0.0155 —0.0002
0.9 —0.0532 —0.0396 2.0 —0.0101 -+0.0007

Putting those correction moments equal to
My = BlP my = 62P (p)

the numerical factors 8, and B: for various values of the ratio b/a are
given in Table 31. When the central load P is distributed over the area
of a small circle or rectangle, we have only to add the moments (p) to
bending moments obtained for the simply supported plate by means of
the logarithmical expressions (157) and (167), respectively. The moment
M, at the middle of the clamped edges of a square plate is

M, = —0.166P

The calculations show that this moment changes only slightly as the

length of the clamped edges increases. It becomes equal to —0.168P
when b/a = 0.5 and drops to the value of —0.155P when b/a = 1.2.*

It should be noted that the clamping moment with the numerically

| largest possible value of —P/x = —0.3183P is

TTITITTd —* produced by a load concentrated near the built-in

edge of the plate rather than by a central load (see

Art. 81). In the case of several movable loads the

o influence surface for the clamping moment may be

- 0

0 « used to obtain its maximum value with certainty
ol (see Art. 76).
i 43. Rectangular Plates with Three Edges Sim-

ply Supported and One Edge Built In. Let us
consider a rectangular plate built in along the edge

= b/2 and simply supported along the other edges
(Fig. 88). The deflection of the plate under any
lateral load can be obtained by combining the solution for the plate with

Fic. 88

* Tor further data regarding the plate with two opposite edges built in, see A.
Pucher, Ingr.-Arch., vol. 14, p. 246, 1943-1944.
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all sides simply supported, with solution (176) for the case where bending
moments are distributed along one side of the plate.

Uniformly Loaded Plates. The slope along the edge y = b/2 produced
by a uniformly distributed load is

w©

dw _ 2qa® 1 sip T
ay y=b/2 - 7T4D m* a

m=1,3,5,...
[am — tanh an(l + an tanh an)]  (a)

The moments M, = ZE, sin (mrz/a) distributed along the side y = b/2
produce the slope! [see Eq. (176)]

©

9 ¢ 1 . mrz \
<3—y>u=b/2 " 4rD E m E,.(an tanh? a,,

m=135,...

— tanh an 4+ am coth? a,, — coth a, — 2a,,) ()
From the condition of constraint these two slopes are equal in magnitude
and of opposite signs. Hence

8qa? a, — tanh a,(1 + a., tanh )

E = — - -
" w3m? oy, tanh® «, — tanh a, + @, coth? o, — coth a, — 2,

(¢)

and the expression for the bending moments along the side y = b/2 is
8qal 1 . mrx
(My)y=bs2 = o= o
m=135,...
a, — tanh a,(1 + a, tanh «,)
2a,, — tanh e, (e, tanh a, — 1) — coth a,(w, coth a,, — 1)

(d)

Taking a squarc plate, as an example, the magnitude of the bending
moment at the middle of the built-in edge from expression (d) is found
to be

<M1/)1/>b/2,r=a/2 = _0-084qa2

This moment is numerically larger than the moment —0.070ga? which
was found in the preceding article for a square plate with two edges built
in. Several values of the moment at the middle of the built-in side for
various values of the ratio a/b are given in Table 32.

Substituting the values (¢) of the constants E,. into expression (176),
we obtain the deflection surface produced by the moments of constraint,
from which the deflection at the center of the plate is

(wy) _ @ (= 1)m=D2 [, tanh am,
Wi)z=a/20=0 = 2] m? cosh ay,

(e)

m=1,3,5,...

1 Only odd numbers must be taken for m in this syrametrical case.
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TasLE 32. DEFLECTIONS AND BENDING MOMENTS IN A RECTANGULAR PLATE
witH ONE Epge Buirt IN AND THE THREE OTHERS SIMPLY SUPPORTED

(Fig. 88)
v = 0.3
b/a (U e—ary=o (A[y):rxa/&y:h/? (sz>z=a/z,u=n (~1I7/)I=u/2.y=0

© 0.0130qa*/D —0.125¢a2 0.125¢a* 0.037ga?
2 0.0093qa*/D —0.122ga? 0.094¢q? 0.047qa?
1.5 0.0064¢a*/D —0.112¢a2 0.069¢a? 0.048qa?
1.4 0.0058¢ga*/D —0.109¢a? 0.063¢a 0.047¢a?
1.3 0.0050qa*/D —0.104¢a? 0.056qa2 0.045qa?
1. 0.0043¢at/D —0.098qa? 0.049¢a? 0.044qa?
1.1 0.0035gat/D —0.092¢ga? 0.041ga? 0.042¢a?
1.0 0.0028¢a*/D —0.084qa? 0.034¢a? 0.039¢a?
1/1.1 0.0032¢b*/D —0.092¢b? 0.033gb2 0.043¢b?
1/1.2 0.0035¢b*/D —0.098¢b2 0.032¢b2 0.047¢h?
1/1.3 0.0038gb"/ D —0.103¢b? 0.031gb 0.0504b°
1/1.4 0.0040¢b*/D —0.108¢h2 0.030qb2 0.052¢b?
1/1.5 0.0042¢b4/D —0.111¢b2 0.028¢b? 0.054qb?
0.5 0.0049¢b4/D —0.122¢b2 0.023¢b? 0.060¢b?
0 0.0052qb%/D —0.125¢b? 0.019¢bh? 0.062qb?

For a square plate the first two terms of this series give

o qat
(w1)2=(,/2,_,,:0 = 0.00127 (Jﬁ

Subtracting this deflection from the deflection of the simply supported
square plate (Table 8), we find that the deflec-

_2; tion at the center of a uniformly loaded square

’ v plate with one edge built in is
(0)sasrams = 000279 2

LN
: * Values of deflection and bending moments for

“IM gseveral other values of the ratio a/b obtained in a

similar way are given in Table 32.

fom e Qo J Plates under Hydrostatic Pressure. If the plate
y 1s under a hydrostatic pressure, as shown in Fig.

F1a. 89 89, the slope along the edge y = b/2, in the case

of simply supported edges, is (sce page 190)

3 _ m+1
ow = 4 N (D tanh am — antanh?an) sin 7T (f)
ay y=b/2 D mt a



VARIOUS RECTANGULAR PLATES 195

The slope produced by bending moments distributed along the edge
y = b/21is

©

ow a 1 . mrx
(Tyl)uﬂ,z T 4D E —sin == B tanh? ap — tanh ap

m=1

+ om coth? a, — coth am — 2a,) (9)

From the condition of constraint along this edge, we find by equating

expression (g) to expression (f) with negative sign
4qa2 (__ 1)m+1
B = =5 "
an — tanh o, (1 + «,, tanh o)
an, tanh? @, — tanh a, + a, coth? a, — coth an — 2a,,

Hence the expression for the bending moment M, along the edge y = b/2
is

‘ 4q.0? (—Dmtt . mrx
(M) ymsse = el RO
m=1
a, — tanh a.(l + a, tanh «,)
200, — tanh a,(an tanh @, — 1) — coth an(om coth @, — 1)

(h)

This series converges rapidly, and we can readily calculate the value of
the moment at any point of the built-in edge. Taking, for example, a
square plate and putting 2 = @/2, we obtain for the moment at the middle
of the built-in edge the value

(M) ymbi2,oma2 = —0.042¢00

This is equal to one-half the value of the moment in Table 32 for a
uniformly loaded square plate, as it should be. Values of the moment
(M )y—s/2 for several points of the built-in edge and for various values of
the ratio b/a are given in Table 33. It is seen that as the ratio b/a
decreases, the value of M, along the built-in edge rapidly approaches the

TasLe 33. Vanves oF toE MoymenT M, ALoNG THE Buit-in Eper y = b/2
OF RECTANGULAR Prates unper Hyprostatic Loap gex/a (Fre. 89)

b/a r = a/4 ‘ r =a/? z =3q
| ~

w —0.039q0a2 | —0.062¢a2 —0.055¢g00?
2 —0.038¢ea? 1 —0.061g.a? —0.053q0a?
3 —0.034¢0a? —0.056¢a? —0.050g0a?
1 —0.025g0a? —0.042¢qa? —0.040g,a?
2 —0.030g4b? ] —0.056q,b? —0.060geb?
3 —0.031gb? | —0.061geh? —0.073¢eb?
0 —0.031geb2 | —0.062qb2 —0.094qb?
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value —qob%z/8a, which is the moment at the built-in end of a strip of
length b uniformly loaded with a lcad of intensity gez/a.
Now let us consider a plate subjected to a hydrostatic load just as
before, this time, however, having the edge © = a built in (I'ig. 90).
In applying the method of M. Lévy to this case we take the deflection
surface of the plate in the form

[}
G0 .
/nﬂﬂ, Low = gery 16yt — 246% + 5b)

) ’ 384D
N ©
| mry .
I Xm
0 + 2 €08 —5= (%)
" m=1,35, ...
N in which
’f ______ O = A,, cosh m—m + B, sinh %
' Fic. 90 + ¢, sinh ™ 4 D, osh L

b b

Expression (7) satisfies the differential equation of the bent plate and the
edge conditions at y = +b/2 as well. Expanding the expression in
parentheses in Eq. (#) in the scries

1,536b* E : 1 mry
St (m—l)/Z
5 (=1 5 COS —

m=1,3,5..,

we obtain the coeflicients 4,,, By, . .
edges; t.e.,

(W) 2m0

. from the conditions on both other

(‘3?’))0 0 (W =0 (g%’)= -0 @)

Substitution of the coefficients in expression () makes the solution com-
plete. Deflections and bending moments obtained from the latter equa-
tion are given in Table 34.

TaerLe 34. DerrLEcTIONS AND BENDING MomENTS IN RECTANGULAR PLATES
CLaMPED AT z = a AND Carrving Iyprostatic Loap (Fia. 90)

v = 0.3

b/a (W) s—arzy=o (M) zarziy=0 (M y)z—arzy=o (M 3)2=a.y=0

® 0.0024qa*/D 0.029q a2 0.009qoa? —0.067g.a?
2 0.0023¢q0a*/D 0.029¢qa? 0.011¢pa? —0.063gqa?
1.5 0.0019qa*/D 0.026q.a? 0.013¢.a? —0.061g.a?
1.0 0.0013qqa*/D 0.019¢pa? 0.016¢(a? —0.048q.a?
> 0.0030qqb%/D 0.028¢ob? 0.034q0b? —0.071geb?
0.5 0.0045¢004/D 0.024q0b? 0.046¢gqb? —0.084¢g.b®
0 0.0065¢:b*/D 0.019¢b? 0.062¢0b? —0.125q0b?




VARIOUS RECTANGULAR PLATES 197

44. Rectangular Plates with All Edges Built In.! In discussing this
problem, we use the same method as in the cases considered previously.
We start with the solution of the problem for a simply supported rec-
tangular plate and superpose on the deflection of such a plate the deflec-
tion of the plate by moments distributed along

the edges (see Art. 41). These moments we (‘;’
adjust in such a manner as to satisfy the con- M—T
dition dw/dn = 0 at the boundary of the 7 x
clamped plate. The method can be applied to .
any kind of lateral loading, 0 i X
Uniformly Loaded Plates. To simplify our Sl
discussion we begin with the case of a uniformly ¥
distributed load. The deflections and the mo- o Lo | ’
ments in this case will be symmetrical with 2 , 2
respect to the coordinate axes shown in Ifig. 91. Fre. 91

The deflection of a simply supported plate, as
given by Eq. (139) (page 1106), is represented for the new coordinates in
the following form:

mmwy

osh

4(10/4 (_ 1)(m—1)/2 mwx (o497 tanh Ay + 2
= < coS 1 - - - ¢
m a 2 cosh ay,

F oyt T L””) (a)
a a

! For the mathematical literature on this subject see “Encyklopiidie der mathe-
matischen Wissenschaften,” vol. 4, art. 25 (Tedone-Timpe), pp. 165 and 186. Other
references on this subject are given in the paper by A. E. H. Love, Proc. London Math.
Soc., vol. 29, p. 189. The first nwinerical results for caleulating stresses and deflections
in clamped rectangular plates were obtained by B. M. Koyalovich in his doctor’s
dissertation, St. Petersburg, 1902. Further progress was made by 1. G. Boobnov, who
calculated the tables for deflections and moments in uniformly loaded rectangular
plates with clamped edges; see his “Theory of Structures of Ships,” vol. 2, p. 465, St.
Petersburg, 1914, and “Collected Papers on the Theory of Plates,” p. 144, Moscow,
1953. The same problem was discussed also by H. Hencky in his dissertation ¢ Der
Spannungszustand in rechteckigen Platten,” Miinich, 1913. Hencky’s method was
used by I. A. Wojtaszak, J. Appl. Mechanics, vol. 4, p. 173, 1937. The numerical
results obtained by Wojtaszak in this way for a uniformly loaded plate coincide with
the values given in Boobnov’s table. Further solutions for the same plate and various
cases of loading are due to T. Leitz, Z. Math. Phys., vol. 64, p. 262, 1917; A. Nédai,
Z. angew. Math. Mech., vol. 2, p. 14, 1922; A. Weinstein and D. H. Rock, Quart. Appl.
Math., vol. 2, p. 262, 1944; P. Funk and E. Berger, “Federhofer-Girkmann-Fest-
schrift,” p. 199, Vienna, 1950; G. A. Grinberg, Doklady Akad. Nauk. 8.8.8.R., vol. 76,
p. 661, 1951; K. Girkmann and F. Tungl, Osterr. Bauzeitschrift, vol. 8, p. 47, 1953.
An experimental investigation of the problem is due to B. C. Laws, Phil. Mag., vol.
24, p. 1072, 1937. OQur further discussion makes use of the method devcloped by
S. Timoshenko, Proc. Fifth Intern. Congr. Appl. Mech., Cambridge, Mass., 1938; the
method is more general than most of those previously mentioned; it can he applied to
any kind of loading, including the case of a conceuntrated load.
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where o, = mwb/2a. The rotation at the edge y = b/2 of the plate is

S

dw _ 20° (=i mae
Y Jypye D m* Ta

m=135 ...
{etn, — tanh o,.(1 + @, tanh a,)]
_ 2qa3 (=1)tn—D12 . mmr Am
=D 2 Tt 0 \oosht o, 0hen) O
m=1,35,...

Let us consider now the deflection of the plate by the moments dis-
tributed along the edges ¥ = +0/2. From considerations of symmetry
we conclude that the moments can be represented by the following series:

0

(Mz/)u=ib/:: = E (.‘ ])(m~—1)/2 E,, cos ? (c)

m=1,3,5,...

The corresponding deflection w; is obtained from expression (173) by sub-

stituting x + a/2 for x and takingm = 1,3,5, . . . . Then
a? (—1)m=nrz mxx [mmy . | mmy
Wy = ~— 557 B ~5—t——— cos —— { —= sinh —*=
! 2n*D E m? cosh an a a a
m=12335 ...

— w, tanh a,, cosh Znaiy) (d)

The rotation at the edge y = b/2, corresponding to this deflection, is

x

Jw _ a . (__1)(m—1)/2 mri
<a—y)y=b/2 - 2«D 2 “m m - €08 — tanh o,

m=1,3,5,...
Foro) ©

cosh? a,,

In our further discussion we shall need also the rotation at the edges
parallel to the y axis. [Forming the derivative of the expression (d) with
respect to x and putting © = /2, we obtain

0

dw; a ’ 1 mwy . . mry
) = - h
(ax )I,-n/-g 2 D z E m cosh a, ( a Mg

m=13,5,...

mryy\ _l_ HE—"‘
@, tanh a,, cosh o ) = T iD z cosh? a,,
m=1,3,5,...

(Z) sinh &, cosh Q’%r){/ — 2y cosh a, sinh m;ry) )
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The expression in parentheses is an even function of y which vanishes
at theedgesy = £b/2. Such a function can be represented by the series

0

A; cos %/ (@

i=1,35,...

in which the coefficients A; are calculated by using the formula

2 [+bs2 . | . |
4, =< b sinh e, cosh ¥ _ 2y cosh a,, sinh YN cos Y dy
b —b/2 a a b )

from which it follows that
16ia(—1)6-Dr2 p2 1
A; = R A
mir? at/pr g2
@t

Substituting this in expressions (¢g) and (f), we obtain

; cosh? a,

© o

((’)wl> I i, (= 1)z gy
T==af2

—_— —— €08 =
dx r:Da m? b? 2\? b
m=1,3,5,... =135 ...\ 42 + =

a” m-

(1)

In a similar manner expressions can be obtained for the deflections ws
and for the rotation at edges for the case where moments 3, are dis-
tributed along the edges @ = 4a/2. Assuming a symmetrical distribu-
tion and taking

o

(M) ooy = E (= 1) VI2F,, cos @)
m=:1,3,5, ...

we find for this case, by using expressions (¢) and (h), that

0

a b —1)tm—1/2
(%%)ha/z = T oD E F,, ( 1)m cos m;)ry (tauh B

m=1,335,...
B ..
+ cosh? Bm> ()

where 8,, = mwra/2b, and that

0 o

e Fu (16D i
0y Jyse  wDD m? (a2 12 )2 g )
i=135,...

m=13,5,... b‘l 7”2

When the moments (¢) and (7) act simultaneously, the rotation at the
edges of the plate is obtained by the method of superposition. Taking,
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for example, the edge y = b/2, we find

©

(aﬂl dus\  _ _ a g, (ZDomo L ma
Ay Yy /sy 2wD o m a
m=1,35,...
xm
(tanh [s 7% + m)
4a? F.. (—1)G-D/2 .
‘=D 08?7;—2; 0

— —5h7 — — 5 COf
w2 Db ms a2 \?
m=135... i=135... \j2 + m2

Having expressions (b) and ({), we can now derive the equations for
calculating the constants E,, and F,, in series (¢) and () which represent
the moments acting along the edges of a clamped plate. In the case of
a clamped plate the edges do not rotate. Hence, for the edges y = +b/2,
we obtain

dw Jwy s
- —— 4 == =0
(37J >u=b/2 + <ay + 9y >4/=b/2 e
In a similar manner, for the edges © = +a/2, we find
dw dwr | dw. -
(w)xm,z + <ax + %)MM =0 2

If we substitute expressions (b) and ([} in Iiq. (m) and group' together
the terms that contain the same cos (érx/a) as a factor and then observe
that Eq. (m) holds for any value of z, we can conclude that the coefficient
by which cos (¢wz/a) is multiplied must be equal to zero for each value
of . In this manner we obtain a system that consists of an infinite num-
ber of linear equations for calculating the coeflicients E; and I; as follows:

4qa® 1 a;
w1t (005112 o ~ tanh ai)

4

E; oy 8ia E : Fr 1 _
_T(tdnhai"f'm)—;b— ;ﬁm-—o (0)

G

A similar system of equations is obtained also from Eq. (n). The
constants Iy, E;, . . . , Fy, I, . . . can be determined in each particu-
lar case from these two systems of equations by the method of successive
approximations.

To illustrate this method let us consider the case of a square plate.
In such a case the distribution of the bending moments along all sides
of the square is the same. Hence E; = F;, and the two systems of cqua-

114 is assumed that the order of summation in expression (I) is interchangeable.
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tions, mentioned above, are identical. The form of the equations is

w0

E; o &1 E, 1
—‘i— (tanh a; + COSh2 ai) —7? m3 i 2
m=13,5,... 1+ m?
_ 4(](12 1 o
Tt gt (cosh2 o tanh ai)

Substituting the numerical values of the coefficients in these equations
and considering only the first four cocfficients, we obtain the following
system of four equations with four unknowns E,, E;, Es, and E+:

1.8033E, | 4-0.0764E; +0.0188K; -+0.0071E; = 0.6677K
0.0764E; +0.40450, l +0.0330E5s --0.0159E; = 0.01232K
0.0188E; +0.0330L; +-0.2255E; ] +0.0163E; = 0.00160K 2
0.0071EF, +0.0159E; +0.0163E; -+0.1558E; = 0.00042K

where K = —4¢a®/7%. 1t may be seen that the terms along the diagonal
have the largest coefficients. Ience we obtain the first approximations
of the constants E,, . . . , Iy by considering on the left-hand sides of
Eqs. (p) only the terms to the left of the heavy line. In such a way we
obtain from the first of the equations £, = 0.3700K. Substituting this

in the second equation, we obtain F; = —0.0395K. Substituting the
values of Ey and E; in the third equation, we find E; = —0.0180K.
From the last equation we then obtain E; = —0.0083K. Substituting

these first approximations in the terms to the right of the heavy line
in Eqgs. (p), we can calculate the second approximations, which are
E, = 0.3722K, E; = —0.0380K, E; = —0.0178K, E; = —0.0085K.
Repeating the calculations again, we shall obtain the third approxi-
mation, and so on.

Substituting the calculated values of the coeflicients E,, E;, . . . in
series (c), we obtain the bending moments along the clamped edges of
the plate. The maximum of the absolute value of these moments is at
the middle of the sides of the square. With the four equations (p) taken,
this value is

ullyly=b/2,a:=0 = ‘El - Ed + E5 — E7[ = 00517(1(12

The comparison of this result with Boobnov's table, calculated with a
much larger number of equations similar to Eqs. (p), shows that the
error in the maximum bending moment, by taking only four equations
(p),1sless than 1 per cent. It may be seen that we obtain for the moment
a series with alternating signs, and the magnitude of the crror depends on

the magnitude of the last of the caleulated coefficients i, Es, . . . .
Substituting the values of E;, K3, . . . in expression (d), we obtain

the deflection of the plate produced by the moments distributed along
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TasLe 35. DerLEcTIONS AND BENDING MoMENTs 1IN 4 UnirorMLy LoaDpED
RECcTANGULAR PLATE wiTH Buirt-iN Epces (Fie. 91)

v = 0.3
b/(l (w)I:O;[/r() (‘I‘II\I"Q/ZVU—“ (Z‘/[y)xso.j/zi//'l (A"u:c)xao.y=0 (3'[1/)19»0.1/;0
1.0 | 0.00126¢a*/D | —0.0513¢a®> | —0.0513¢a? 0.0231qa* 0.0231qa?
1.1 | 0.001504at/D | —0.0581qga2 —0.0538¢a? 0.0264ga2 0.0231qa?
1.2 | 0.00172¢a*/D | —0.0639¢a% | —0.0554qa? 0.0299¢a? 0.0228¢a?
1.3 | 0.00191¢a*/D | —0.0687¢a* —0.0563¢ga? 0.0327ga? 0.0222¢a*
1.4 | 0.00207qa*/D | —0.0726ga% | —0.0568¢a? 0.0349qa? 0.0212¢a®
1.5 | 0.00220ga*/D | —0.0757¢a% | —0.0570¢a? 0.0368qa? 0.0203¢a?
1.6 | 0.00230qa'/D | —0.07809a% | —0.0571¢a? 0.0381¢a? 0.0193ga?
1.7 | 0.00238qa*/D | —0.0799¢a? —0.0571¢qa*® 0.0392ga2 0.0182¢a2
1.8 | 0.00245qa*/D | —0.0812qa? | —0.0571qa? 0.0401¢a* 0.0174qa>
1.9 | 0.00249¢a*/D | —0.0822¢ga2 —0.0571qa? 0.0407qa2 0.0165¢a2
2.0 | 0.00254¢ga*/D | —0.0829qa? —0.0571¢az 0.0412¢a2 0.0158ga*
© 0.00260ga*/D | —0.0833¢qa? | —0.0571¢a? 0.0417ga2 0.0125qa®
the edges y = +£b/2. For the center of the plate (x = y = 0) this
deflection is
a’ a,, tanh a,, qa*
W) gmym = S35 Ly (—1)embiz 2= 7" = 0.00140 -
(01 2o 272D n(=1) m? cosh a,, 0 D

m=1.3,35,...

Doubling this result, to take into account the action of the moments dis-
tributed along the sides x +a/2, and adding

—
F % to the deflection of the simply supported square
3 3 Y plate (Table 8), we obtain for the deflection at
/ the center of a uniformly loaded square plate

o .

e with clamped edges

0 y 4 4
T ()mae = (0.00406 — 0.00280) 24 = 0.00126 1%
,)L J/' 1 (Q)
“"%""‘F‘”%“ Similar calculations can be made for any ratio
i?m 02 of the sides of a rectangular plate. The results

of these caleulations are given in Table 35.1
Plates under Hydrostatic Pressure. Representing the intensity of the
pressure distributed according to Fig. 92 in the form

1 The table was calculated by T. H. Evans; see J. Appl. Mechanics, vol. 6, p. A-7,
1939.
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we see that the effect of the term ¢o/2 on the deflections of the plate is
already given by the previous solution. Thus it remains to consider the
pressure gor/2a. The deflection surface of a simply supported plate
carrying such a load is readily obtained by combining the expression (k)
on page 190 with the expression (a) on page 186. Putting g = —¢qo/2 in
this latter expression and replacing x by = + a/2 in both expressions in
accordance with new coordinates, we obtain the deflection surface

)

2 (=Dt o 2 + a, tanh a, cosh Y
5D ms cosh an a
m=246, ...
1 Yy . :
+ . Iy 5 m) Sin me Q)
cosh «y, @

symmetrical with respect to the x axis and antisymmetrical with respect
to the y axis. Consequently, to eliminate the slope along the boundary
of the plate we have to apply edge moments of the following form:

o

(M) ogars = + E (— )™=, cos "%

=135 ...
mﬁo 5, (8)

.omnx
(M) ymiba = E (—L)m/2 1, sin 7:—
m=2,4,6, ..,

Proceeding just as in the case of the uniformly distributed load, we calcu-
late the coeflicients £, and F,, from a system of linear equations. The
deflections due to the simultaneous action of the
load qoz/2a and the moments (s) must be added,
finally, to the deflections of the clamped plate
loaded uniformly with ¢¢/2. Numerical re-
sults obtained by such a procedure are given in 0 |
Table 36.!

Plates under Central Load. As a third ex- |
ample let us consider the bending of a rectan- £ a o I,
gular plate with clamped edges under the action TR
of a load P concentrated at the center (Fig. 93).
Again we go back to the case of a simply sup-
ported plate. Substituting into expression (146) a/2 for ¢, and v + a/2

s

- Yy -

tSee Dana Young, J. Appl. Mechanics, vol. 7, p. A-139, 1940. More extensive
tables were computed, by means of the method of finite differences, by Ii. G. Odley,
J. Appl. Mechanics, vol. 14, p. A-289, 1947,
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TaBLE 36. DEFLECTIONS AND BENDING MoMENTS IN RECTANGULAR PLATES
wiTH BuiLt-IN EpGeEs anp Hyprosraric Loap (Fra. 92)

v = 0.3
=0,y =0 z=af2,y =0z = —a/2,y=0c=0,y= +b/2
b

a' qoat

w = a? Mz = Bigoa? | My = Bagoa? M. = yigoat M: = vagoa? My = bqea2

@ B1 B2 Y1 Y2 4

0.5 | 0.000080 0.00198 0.00515 —0.0115 —0.0028 —0.0104
3 0.000217 0.00451 0.00817 —0.0187 —0.0066 -~0.0168
1.0 | 0.00063 0.0115 0.0115 —0.0334 -0.0179 —0.0257
1.5} 0.00110 0.0184 0.0102 —0.0462 —0.0295 —0.0285
o 0.00130 0.0208 0.0063 —0.0500 —0.0333

for z, we arrive at the deflection surface (valid for y > 0)

w Pa? L cos 222 | tanh m
i D m3 a ™ cosh? an,
m=1,3,5 ...
mari . mm
cosh _;Q — sinh ™Y

may

) m 1
— —= tanh «a,, sinh mry 4. mry cosh mﬂ]
a a a

The angle of rotation along the edge y = b/2 is

%

dw _ Pa 1 cos T om tanh an, )
T 2r2D m? a cosh an,

m=13,5,.,.

To calculate the bending moments along the clamped edges we proceed
as in the case of uniform load and obtain the same two systems of Eqs.
(m) and {n). The expressions for w; and w, are the same as in the former
case, and it will be necessary to change only the first term of these equa-
tions by substituting expression (f) instead of (dw/dy),—s2 in Bq. (m),
and also a corresponding expression for (0w/0x).—q2 in Lq. (n).

For the particular case of a square plate, limiting ourselves to four
equations, we find that the left-hand side of the equations will be the
same as in Eqgs. (p). The right-hand sides will be obtained from the
expression (t), and we find

1.8033L, +- ]0‘0764E3 + 0.0188F; + 0.0071E; = —0.1828P
0.07646, + 0.4045L; 4| 0.0330E; + 0.0L59F; = 40.00299P
0.0188E, + 0.0330E; + 0.2255E; + | 0.01635E; = —0.000081P
0.0071E,; + 0.0159E; + 0.0163E; + 0.1558FK; = +0.000005P
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Solving this system of equations by successive approximations, as before,
we find

£, = —0.1025F E; = 0.0263F

Es = 0.0042P E, = 0.0015P

]

Substituting these values in expression (c), the bending moment for the
middle of the side y = b/2 can be obtained. A more accurate calcu-
lation! gives

(A[y)y=b/2,:c=0 = —012571)

Comparing this result with that for the uniformly loaded square plate,
we conclude that the uniform load produces moments at the middle of
the sides that are less than half of that which the same load produces if
concentrated at the center.

Having the moments along the clamped edges, we can calculate the
corresponding deflections by using Eq. (d). Superposing deflections pro-
duced by the moments on the deflections of a simply supported plate,
we obtain the deflections of the plate with built-in edges. By the same
method of superposition the other information regarding deflection of
plates with built-in edges under a central concentrated load can be
obtained.? Thus, if the load P is distributed uniformly over the area
of a small circle or rectangle, the bending moments at the center of the
loaded arca x = y = 0 can be obtained by combining the results valid
for simply supported plates [see Eqs. (157) and (167)] with some addi-
tional moments

My = B1P my, = BzP

given in Table 37 along with data regarding the maximum deflection of
the plate and the numerically largest clamping moment. This latter
moment, however, can reach the value of —P/r = —0.3183P, as men-
tioned on page 192, in the case of a movable load.

45. Rectangular Plates with One Edge or Two Adjacent Edges Simply
Supported and the Other Edges Built In. Let us begin with the case of a
plate simply supported at the edge y = 0 and clamped along the other
edges (Fig. 94). No matter how the load may be distributed over the

1In this calculation seven equations, instcad of the four equations taken above,
were used.

¢ Caleulated by Dana Young, J. Appl. Mechanics, vol. 6, p. A-114, 1939. To
obtain the moments with the four correct figures it was necessary to use in this calcula-
tion seven coeflicients F and seven coefficients F in Eqs. (m) and (n). Further solu-
tions of the problem were given by H. Marcus “Die Theorie elastischer Gewebe,”
2d ed., p. 155, Berlin, 1932; J. Barta, Z. angew. Math. Mech., vol. 17, p. 184, 1937;
G. Pickett, J. Appl. Mechanics, vol. 6, p. A-168,1939; C. J. Thorne and J. V. Atanasoff,
Towa State Coll. J. Sci., vol. 14, p. 333, 1940. The case was investigated experi-
mentally by R. G. Sturm and R. L. Moore, J. Appl. Mechanics, vol. 4, p. A-75, 1937.
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TasLE 37. BEnpixg MoMENTS AT THE MIDDLE oF LONGER SIDES AND
DEFLECTIONS AND ADDITIONAL MoOMENTS AT THE CENTER OF
REcTANGULAR PraTEs Loapep ar THE CENTER (Fra. 93)

v = 0.3
. Correction moments
Womrs = a 22| (11, +P
Z=y=0 — y)z=0.y=blt =
D
bl (Me)zmymo = B1P | (My)zeyo = BoP
o ¥ 8 B2
1.0 l 0.00560 —0.1257 —0.0536 —0.0536
1.2 0.00647 —0.1490 —0.0579 —(0.0526
1.4 0.00691 —0.1604 —0.0618 ‘ —0.0517
1.6 0.00712 —0.1651 —0.0653 | —0.0510
i.8 0.00720 —0.1667 —0.0683 ‘ —0.0504
2.0 0.00722 ! —0.1674 —0.0710 —0.0500
© 0.00725 1 —0.168 —0.0742 —0.0484

given plate sstt, we can consider this plate as one-half of a plate rrét hav-
ing all edges clamped and carrying a load antisymmetrical with respect
to the line ss. The deflections and the bending moments then are zero
along that line. Thus the problem under counsideration is reduced to the

r_QO,’ > q k-
r r
A7 4 'JJ_- :‘;ZZQZZ%___
ot — ot — ; |44
P A ﬁf
b~ — - l— /j - Ve
7
L A 2
| 72
A 2 ] § 0 S X
7
- 7
 —
P el
e —] -©- !
— |
4 Y
Ted AL t
qo - § K -(—%—)@—-%-)-
y
Fra. 94

problem already solved in Art. 44. Some numerical data concerning two
cases of load distribution are given in Table 38.1 A more extensive table

{The tabulated results are due to Dana Young, J. Appl. Mechanics, vol. 7, p.
A-139, 1940, and to C. P. Siess and N. M. Newmark, Univ. Illinots Bull., vol. 47, p.
98, 1950. Y. 8. Uflyand used quite a different method in treating this problem; see
Doklady Akad. Nauk. 8.8.8.R., vol. 72, p. 655, 1950,
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TapiLe 38. DeFLECTIONS AND BENDING MOMENTS IN RECTANGULAR PLATES
wiTH ONE Epce SimprLy SurporTED AND THrREE Epces Buiur In

(F1g. 94)

Load b/a (W) 20, y—br2 (M 2)zearziymbiz (M )z 0.yt

Uniform pressureq........ 0.5 0.00449¢b*/D —0.0786¢b? —0.1148¢b?
0.75 | 0.00286q¢b%/D —0.0730gb2 —0.0838¢b?

1.0 0.00157¢b4/D —0.0601¢b? —0.0551¢b?

4 0.00215ga?/D —0.0750qa2 —0.0571qa?

2 0.00257qa*/D —0.0837¢a? —0.0571qa?
Hydrostatic pressure qoy/b | 0.5 0.00202¢b4/D | —0.0368¢¢b2 | —0.0623¢cb?
0.75 | 0.00132¢¢b4/D | —0.0344¢eb% | —0.0484qcb?
1.0 | 0.00074g0b%/D | —0.0287qob? | —0.0347qob?

of bending moments is given on page 244 in connection with a design
method for floor slabs.

The rectangular plate rsut (Fig. 95) with two adjacent edges + = 0 and
y = 0 simply supported and two other edges clamped can be regarded in
like manner as an integral part of the plate

bounded by =z = +a, y = +b with all edges gj;f/“ﬁiu/l/z—/‘zé—y

built in. R I
Let us consider a load uniformly distributed 7} I o

over the arca rsut of the given plate.! A checker- Ea“ : 0 §:-¥——x

board loading distributed over the area 2a by 2b Ej - w P i

as shown in Fig. 95 then yields the conditions of a 74 !

simply supported edge along the lines z = 0 and ?EE?;;‘} T j—""

¢ = 0. Thus the problem of bending a plate with g _,J/

two adjacent edges simply supported and two y

others clamped is again reduced to the problem, Fre. 95

already solved in Art. 44, of a plate with all

edges built in. Calculations show that the numerically largest moment
is produced near the mid-point of the long side of the plate. The values
of this clamping moment prove to be —0.1180¢b* for b/a¢ = 0.5 and
—0.0694¢b* for b/a = 1.0. The maximum bending moment near the
center of a square plate has the value of 0.034ga? (for » = 0.3) and the
corresponding deflection is given by 0.0023gat/D. TFurther numerical
data regarding bending moments in this case are given on page 243.

1A modification of Timoshenko’s method was applied in handling this case by
Siess and Newmark, loc. ¢it.  For use of the energy method see W. B. Stiles, J. Appl.
Mechanics, vol. 14, p. A-55, 1947.  See also M. K. Huang and H. D). Conway, J. Appl.
Mechanics, vol. 19, p. 451, 1952,
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46. Rectangular Plates with Two Opposite Edges Simply Supported,
the Third Edge Free, and the Fourth Edge Built In or Simply Supported.*
Let us assume the edges ¢ = 0 and £ = a in Fig.
96 as simply supported, the edge y = b as free,
and the edge y = 0 as built in. In such a case
the boundary conditions are

w

L w=20 5567=0 forz=0andz =a {(a)
el dib w0 e y=0 ()
Fic. 96 9y
and along the free edge [see Eqgs. (112), (113), page 84]

02w d*w 3w ddw
(ayi + v W)y:b =0 [W + (2 - WBTJ:L,:b =0 (¢)

In the particular case of a uniformly distributed load we proceed as in
Art. 30 and assume that the total deflection consists of two parts, as
follows:
w = w; -+ W
where w, represents the deflection of a uniformly loaded and simply sup-
ported strip of length o which ean be expressed by the series
_ 4qat 1 . maex

W= g Sin = (d)

and w, is represented by the series

w0

Wy = Y,. sin m%x (e)
m=1,3,8,...
where
4
Y= (Am cosh T 4 B, ™™ sinh "TY
D a a a
+ Cnsinh 2 4+ D, ﬂ;ri/ cosh 7%) 6))

Series (d) and (e) satisfy the boundary conditions (a), and the four con-
stants in expression (f) must be determined so as to satisfy the boundary

1 This case was discussed by Boobnov; see the English translation of his work in
Trans. Inst. Naval Arch., vol. 44, p. 15, 1902, and his “Theory of Structure of Ships,”
vol. 2, p. 545, $t. Petersburg, 1914, It was also discussed by K. Goriupp, Ingr.-Arch.,
vol. 16, p. 77, 1947, and by V. Bogunovié, “On the Bending of a Rectangular Plate
with One Edge Free,” Belgrade, 1953,
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conditions (b) and (¢). Using the conditions (b), we obtain

4
womb

An = — Cn=—D, )

From the remaining two conditions (¢) we find
4

Bu =5
wom
(3 + »)(1 — ») cosh? 8,. + 2v cosh 8,
— (1 — v)Bn Sinlﬁlvﬁm — (1 — ¥
(3 + »)(1 — ») cosh? 8, + (1 — »)?3% + (1 4 »)?

4 h
C. = o (h)
(3 + »)(1 — ») sinh B,, cosh 8, + »(1 4 ») sinh B, )

- V(l - V)ﬂm cosh B — (1 - V)zﬁm
B4+ v —v)cosh?Bn + (1 — 926 + (1 + »)?

where 8, = mwb/a.

Substituting the constants (g) and (k) in Eq. {f) and using series (e)
and (d), we obtain the expression for the deflection surface. The maxi-
mum deflection occurs in this case at the middle of the unsupported edge.
If the length b is very large in comparison with a, that is, if the free edge
is far away from the built-in edge, the deflection of the free edge is the
same as that of a uniformly loaded and simply supported strip of length a
multiplied by the constant factor (3 — »)(1 + »)/(8 + v). Owing to the
presence of this factor, the maximum defleetion is larger than that of the
strip by 6.4 per cent for » = 0.3. This fact can be readily explained if we
observe that near the free edge the plate has an anticlastic deflection
surface.

Taking another extreme case, when a is very large in comparison with b,
the maximum deflection of the plate evidently is the same as for a uni-
formly loaded strip of length b built in at one end and free at the other.
Several values of the maximum deflection calculated! for various values
of the ratio b/a are given in Table 39. This table also gives the maxi-
mum values of bending moments which can be readily calculated from
the expression for the deflection surface. The calculations show that
(M ) max oceurs at the middle of the unsupported edge. The numerical
maximum of the moment M, occurs at the middle of the built-in edge.

The case of the hydrostatic load distributed according to the law
go(1 — y/b) can be treated in the same manner as the foregoing case. Let
the deflection be expressed by

_4qo(1 — y/b)ar 1 . mrx . mwr .
W=y p + Y sin — ()
m=1,3,5,... m=1,3,5,...

! This table was calculated by Boobnov, op. cit.
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TaBLE 39. DEFLECTIONS AND BENDING MOMENTS FOR A UNIFORMLY LOADED
Prate witn Two OpposiTE Epges SimvpLy SupporTED, THE THIRD EdGE
Free, axp THE Fourra Buiur In (Fra. 96)

v =03

z=a¢/2,y=blx=0a/2,y=0
b/a Winax

J/Ix IIJJ/

0 0.125¢b4/D 0 —0.500¢b?
+ 0.094¢b4/D 0.0078qa? —0.428qh?
1 0.0582¢b4/D 0.0293¢a? —0.319¢b?
2 0.0335¢b*/D 0.0558qa? —0.227¢b?
1 0.0113¢b%/D 0.0972¢a? —0. 119¢b?
3 0.0141ga*/D 0.123¢a? —0.124qa?
2 0.01509a4/D 0.131qa? —0.125ga?
3 0.0152¢a*/D 0.133ga? —0.125¢az
0 0.0152¢ga*/D 0.133ga? —0.125qa?

in which Y, is of the form (f), only with the constant ¢, instead of g.
Proceeding as before, we obtain the four constants A,, B, . . ., Dn
from the boundary coenditions (a), (b), and (c).

If the plate is bent by a load distributed along the free edge, instead of
by a load distributed over the sur-
face, the second of the boundary
conditions (¢) must be modified by
putting the intensity of the load
distributed along the free edge in-
stead of zero on the right-hand side
of the equation. The particular

Fia. 97 case of a concentrated force applied

at the free edge of a very long plate

was Investigated (Fig. 97).1 It was found that the deflection along the
free edge can be represented by the formula
Pb*

(w)y=b = a D

?

The factor « rapidly diminishes as the distance from the point A of appli-

18ee C. W. MacGregor, Mech. Eng., vol. 57, p. 225, 1935; D. L. Holl, J. Appl.
Mechanics, vol. 4, p. 8, 1937; T. J. Jaramillo, J. Appl. Mechanics, vol. 17, p. 67, 1950;
and K. Girkmann, “Flichentragwerke,” 4th ed., p. 233, Vienna, 1956. The case of a
cantilever plate having three edges free and carrying a uniformly distributed load was
discussed by W. A. Nash, J. Appl. Mechanics, vol. 19, p. 33, 1952.  See also the inves-
tigation of such a plate by W. T. Koiter and J. B. Alblas with numerical results given
in Proc. Koninkl. Ned. Akad. Wetenschap. Amsterdam, vol. 60, p. 173, 1957.
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cation of the load increases. Several values of this factor are given in
Table 40. The numerically largest values of the clamping moment pro-
duced by a load acting at the middle of the free edge of a plate of a finite
length a are given in Table 41.!

TaBLe 40
T = 0 b/4 b/2 b 2b
a = 0.168 0.150 0.121 0.068 0.016

TapLe 41. Bexping MomeENTs M = 8P, aT 2 = 0, y = 0, Dug 1o a Loap P
Acting aT 2 =0, y = b aND THE EpcEs 2 = +a¢/2 BrINve SmMeLy
Surrortep (F1a. 97)

y = 0.3

‘ ‘
b,@:i 4 f 2 1.5 1 2 0.5 4 1025 o

g = (——0.000039’ —0.0117| —-0.0455| —0.163; —0.366| —0.436| —0.4981 —0.507| —0.509

The case of a uniformly loaded rectangular plate simply supported
along three edges and free along the edge y = b (Fig. 98) can be treated
in the same manner as the preceding case in

which the edge ¥ = 0 was built in. It is neces- ofree =19

sary only to replace the second of the boundary % T [

conditions (b) by the condition | t:
ew\ , (w\]  _ i -
Ay TV 9zt =0 - i E

o, . . 5 0
Omitting the derivations, we give here only the **—
final numerical results obtained for this case. ™77 0o >t

The maximum deflection occurs at the middle of
the free edge. At the same point the maximum bending moment M,
takes place. These values of deflections w... and (M.)... are given in
the second and third column of Table 42.2 The last two columns give
the bending moments at the center of the plate.

Table 43, in a similar manner, contains the values of deflections and
bending moments produced at the middle of the free edge and at the
center of the plate by a hydrostatic load. v

47. Rectangular Plates with Three Edges Built In and the Fourth
Edge Free. Plates with such boundary conditions are of particular
interest as an integral part of rectangular tanks or retaining walls. Con-

t This table was calculated by V. Bogunovié, loc. cit. See also Art. 78.

2 This table and Table 43 were caleulated by B. G. Galerkin; see Bull. Polytech.
Inst., vol. 26, p. 124, St. Petersburg, 1915.
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Tarrk 42. DEFLEcTIONS AND Benping MomeNTs 1N UNIFORMLY LoOADED
REcTANGULAR PraTes wiTtH THREE EpcEs SrMrLy SUPPORTED AND
THE FourtH EpGgeE FrEe (Fia. 98)

y = 0.3
z=a/2,y=5b T =a/2,y =b/2
b/a

U'max (Zux)max ]I'[:: ]l[y
1 0.00710ga*/D 0.060qq? 0.039a? 0.022ga?
£ 0.00968ga*/D 0.083¢a? 0.055¢ga2 0.030ga?
1/1.4 0.01023ga*/D 0.088ga? 0.059ga? 0.032qa?
1/1.3 0.01092ga*/D 0.094¢a? 0.064ga? 0.034qa?
1/1.2 0.01158ga*/D 0.100ga? 0.069¢a? 0.036ga2
1711 0.01232ga4/D | 0.107¢ga? | 0.074ga® | 0.037qat
1 0.01286qa*/D 0.112¢q2 0.080ga? 0.039qa?
1.1 0.01341qa*/D 0.117ga? 0.085ga? 0.040qa?
1.2 0.01384ga*/D 0.121¢a? 0.090ga? 0.041¢a?
1.3 0.01417ga*/D 0.124q¢a® 0.094ga? 0.042qq?
1.4 0.014429a*/D 0.126ga? 0.098ga? 0.042qa?
1.5 0.01462ga*/D 0.128¢a? 0.101ga? 0.042ga?
2 0.01507qa*/D 0.132ga? 0.113ga2 0.041ga?
3 0.01520qa*/D 0.133¢a? 0.122¢a? 0.039¢ga*
o 0.01522qa*/D 0.133qa? 0.125¢a? 0.037qa?

TasLe 43. DerLecTioNs AND BeENDING MOMENTS IN HyDprOSTATICALLY LOADED
RectanguLar Prares witH THrReEe Evees SiMpLY SUPPORTED AND THE
Fourta Evce Free (Fig. 99)

= 0.3

r=a/2,y=0b

T =a/2,y=>5/2

b/a
w M. w M. M,

% 0.00230g0at/D | 0.0197q0a% | 0.00135g0a*/D | 0.0145g0a2 | 0.0120q0a
32- 0.00304q0a*/D | 0.0265¢00% | 0.00207q.at/D | 0.0220g0a? | 0.0156q.a2
1 0.00368g0a%/D | 0.0325¢0a? | 0.00313q0a*/D | 0.0331g0a? | 0.0214q.a?
1.5 0.00347q0a/D | 0.0308qa? | 0.00445¢0a?/D | 0.0453¢oa? | 0.0231qa?
2.0 0.00291geat/D | 0.0258¢0a2 | 0.00533q0a%/D | 0.0529q¢a? | 0.0222q.a?
«© 0 0 0.00651qea*/D | 0.0625q0a% | 0.0187¢a?
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sequently, the uniformly distributed and the hydrostatic load must be
considered first of all in that case.

Let the boundary of the plate be clamped at ¥ = 0 and z = +a/2
and free along y = b (Fig. 100). Assuming first a uniformly distributed
load of intensity ¢, the expression for deflections may be taken in the form

w = w; 4+ W + ws (@)
The expressions for

doat \ —1)m—Dr2 mrx
=L (DT o T ®)
wD mb a
m=135
mrx
and Wy = Y. (—1)m=Di2 cog TT (e)

contained in Lq. (@) are identical with expressions (d) and (e) of the
preceding article if one considers the new position of the origin.

b
Free  7j O
e R
!
)
£
< i
i
o 0
X 0 L ‘ )j/
0
e e —— [o e —— J L_qo_)l ~~§u>.<--.2_—n
Fra. 99 Fic. 100

A suitable form for the additional deflections w; due to the additional
constraint on the edges z = +a/2 is!

[

, = 4% Tyt nE o Ty TN oy
W D <I’n va tanh v, cosh o F, 5] sinh ) ) sin =57
n=1,3,5,...
4
+ % z (Gm sin mvry + H, ™Y osh ™Y
a
=135,
+ L. ™Y ginh J) cos XL (d)
a a

in which F,, . . ., I. are some counstants and v, = nwa/4b.

1 This method of solution essentially is due to Goriupp, op. cit., p. 153, 1948.
See also W. J. Van der b, Ingenieur, vol. 26, p. 31, 1950.
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As w; = 0 for y = Oand z = + /2, the boundary conditions still to
he satisfied by deflections (d) are the following:

62103 (921,03 83w3 33’1,03
hulihad pahat = — 2 — — =
(3_1/2 T dx? )ymb 0 [ ay’ o ) dz* ag]y=b

Jw; ) d(wy + we 4 wy) _

P = 0 —_— L = 0

Y ) o dx stal?
Now we expand all noncircular functions of « contained in expression (a)

in a series of the form Za, cos (mwrx/a) and all similar functions of y in
a series of the form Zb, sin (nwy/2b). A set of linear equations for F,,

(e)

Grn, . . . , I, is then readily obtained from conditions (¢). Solving the

equations we are able to express those unknown constants by the known
values of A, . . ., D, (see page 209).

In the case of a hydrostatic pressure

acting in accordance with Fig. 101, we have

& to superpose solution () of the preceding

article on the solution of form (d) and,
= besides that, to proceed as indicated above.
Whatever the load, the problem can also
7 be handled! by the method of finite differ-
<-q0-—l ences (see Art. 83). Numerical values of
Fro. 101 Tables 44 and 45 are computed essentially
by that procedure.!

48. Rectangular Plates with Two Opposite Edges Simply Supported

and the Other Two Edges Free or Supported Elost. beam o free
Elastically. Let us consider the case where the ¥—————__

————————— -
edges ¢ = 0and z = a (Fig. 102) are simply sup- ;
ported and the other two edges are supported by O
elastic beams. Assuming that the load is uni- [0 ;; x
formly distributed and that the beams are iden- !
tical, the deflection surface of the plate will be Efost. beam Slev
symmetrical with respect to the x axis, and we ;:_O_ij:_ei::é_:_j L
have to consider only the conditions along the L _______ Qe J
side ¥y = b/2. Assuming that the beams resist 7Y
bending in vertical planes only and do not resist Fra. 102
torsion, the boundary conditions along the edge y = b/2, by using liq
(114), are

2o L0) o

ayz dx? y=b/2 (CL)

ddw . Fw g O
D [5? + (Z B V) ax? ay]ysb/? h (EI 55—4—)1/;17/2

18ee A. Smotrov, “Solution for Plates Loaded According to the Law of Trapeze,”
Moscow, 1936.
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TaBLe 44. DrrLections, BEnping MomeNnTs, aND REacTioNs oF UnNirorMLY LoaDED REcTANGULAR Pratis witH THREE
Epces Buinr IN anp A Fourte Epge Free (Fic. 100)

v

1
[]

r=0y=5H z =0,y =b/2 r=a/2,y=1b Tz =a/2,y =b/2 z=0,y=0
b w w
a gat M. qa M. M, M, V. M, Ve M, Vy
=er | = Bwya* | = ar T | = Bqa® | = Bigat | = Bwa? | =yga | =Bga’ | =~yga| = Bya’ = vsq0
o B1 as B2 /3;“7# Bs v3 B4 Y4 Bs s
0.6 0.00271 | 0.0336 | 0.00129 | 0.0168 | 0.0074 —0.0745 | 0.750 —0.0365 | 0.297 —0.0554 0.416
0.7 0.00292 | 0.0371 | G.00159 | 0.0212 | 0.0097 —-0.0782 | 0.717 —0.0439 | 0.346 —0.0545 0.413
0.8 0.00308 | 0.0401 | 0.00185 | 0.0252 | 0.0116 —0.0812 | 0.685 —0.0505 | 0.385 —0.0535 0.410
0.9 0.00323 | 0.0425 | 0.00209 | 0.0287 | 0.0129 —0.0836 | 0.656 —0.0563 | 0.414 —0.0523 0.406
1.0 0.00333 | 0.0444 | 0.00230 | 0.0317 | 0.0138 —0.0853 | 0.628 | —0.0614 } 0.435 —0.0510 0.401
1.25 | 0.00345 | 0.0467 | 0.00269 | 0.0374 | 0.0142 —0.0867 | 0.570 —0.0708 | 0.475 —0.0470 0.388
1.5 0.00335 | 0.0454 | 0.00290 | 0.0402 | 0.0118 —0.0842 | 0.527 ~0.0755 | 0.491 —0.0418 0.373




912

TapLe 45. DEFLECcTIONS, BENDING MoMENTS, aND REacTions oF HyprosTAaTICALLY LOADED RECTANGULAR PLATES WITH
Turee Epges Buiur IN anp A Fourra Epce Free (Fic. 101)

[

z=0y="b =0,y =b/2 r=a/2,y =5 z=a/2,y=0b/2 r=0,y=0
b w M, w M, M, M, V. M, Ve M, v,
a (1'0“4 (10(14 ’
= = Bigoa’ | = as ) = Bagea® | = Byjoa’ = B3q0a° = 3ol = B4000% | = viqoa = Bsq00? | = v6qo@
o B as B By 8s ¥s Bs Vi Bs Vs
0.6 0.00069 | 0.0089 | 0.00044 0.0060 | 0.0062 —0.0179 0.093 —-0.0131 0.136 —0.0242 0.248
0.7 0.00069 | 0.0093 0.00058 0.0080 | 0.0074 —0.0172 0.081 —0.0170 0.158 —0.0261 0.262
0.8 0.00068 | 0.0096 | 0.00072 0.0100 | 0.0083 —0.0164 0.069 —0.0206 0.177 —0.0278 0.275
0.9 0.00067 | 0.0096 0.00085 0.0118 | 0.0090 —0.0156 0.057 —0.0239 0.194 —0.0290 0.286
1.0 0.00065 | 0.0095 | 0.00097 0.0135 | 0.0094 —0.0146 0.045 —0.0269 | 0.209 —0.0299 0.295
1.25 0.00056 | 0.0085 0.00121 0.0169 | 0.0092 —0.0119 0.018 —0.0327 0.234 —0.0306 0.309
1.5 0.00042 | 0.0065 | 0.00138 0.0191 0.0075 —{.0087 —0.006 —0.0364 0.245 —0.0291 0.311
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where EI denotes the flexural rigidity of the supporting beams. Pro-
ceeding as in Art. 46, we take the deflection surface in the form

w = w; + Ws (b)
0
4qat 1 . mnrx
where Wy = =5 — sin —— c
Y mb a ©)
m=1.3,5,...
o
. mwzx

and we = 2 Y. sin — (d)

m=135 ...

From symmetry it can be concluded that in expression (f) of Art. 46 we
must put C, = D, = 0 and take

4
Ym = g‘a* (Am COSh —W%/ + Bm Zn._g:—y- Sinh %) (6)

The remaining two constants A4,, and B,, are found from the boundary
conditions (a), from which, using the notations

mwb EI
2 "% @p =1
we obtain
An(1 — ») cosh a, + B,[2 cosh an + (1 — v)ay, sinh o] = —%’V—s
mbx
— A,[(1 — ») sinh @, + mm\ cosh a,] + B,[(1 + ») sinh «,,
4x

mirt

— (1 — »)a, cosh an — mwhay, sinh a,] =
Solving these equations, we find

4
mbrs
v(1 4+ ») sinh @, — v(1 — »)an cosh an — maA(2 cosh an
+ an, sinh an)
3 + »)(1 — ») sinh o, cosh a, — (1 — »)2%a,, + 2maA cosh? ay, (/)
B - 4 v(1 — ») sinh a, + mr\ cosh a, )
" mbr5 (3 4 »)(1 — ») sinh a., cosh o, — (1 — ¥) 20, g
+ 2mrX cosh? a,,

Ap =

The deflection surface of the plate is found by substituting these values
of the constants in the expression

-]
qa*

4 mny
’LU"—"(D]“"LUQ:ﬁ z (m—i_AmCOShT

+ By " sin ") i T2
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If the supporting beams are absolutely rigid, A = « in expressions (f)
and (¢), and 4, and B,, assume the same value as in Art. 30 for a plate
all four sides of which are supported on rigid supports.

Substituting A = 0 in expressions (f) and (g), we obtain the values of
the constants in series (h) for the case where two sides of the plate are
simply supported and the other two are free.

Iixcept for the case of very small values of A the maximum deflection
and the maximum bending moments are at the center of the plate.
Several values of these quantities caleulated for a square plate and for
various values of X are given in Table 46.1

TABLE 46. DEFLECTIONS AND BENDING MoMENTS AT THE CENTER OF A
UntrorMLYy LoADED Squakk Prate witn Two Kpems StveLy
SUPPORTED AND THE OTHER Two SurrorTED BY liLasTiC
Braus (Fra. 102)

v = (.3
A= E[/(l]) Wmaux { (J]I)mux : (A[y)m:u

w ’ 0.00406¢ga*/D 0.047Y9¢a? 0.0479¢a
100 0.00409ga*/ D 0.0481qa? 0.0177qa?
30 0.00416qa/D 0.0486¢a? 0.0473qa?
10 0.00434qa/D | 0.0500qa® | 0.0465qa?
6 0.00454qa*/D 0.0514¢a? 0.0455¢a*

4 0.00472qa/D 0.0528qa® § 0.0447qa?

2 0.00529qa*/ D 0.0571gqa? | 0.0419¢a?

1 0.00624gat/D | 0.0643qa? | 0.0376qa?
0.5 0.00756¢a*/ D 0.0744¢a? (. 0315ga?

0 0.01309¢a*/D | 0.1225qa> | 0.027Lya?

The particular case X = 0 of a plate with two opposite edges simply supported and
the other two free deserves some consideration.  As Table 472 shows, the deflections
and the largest moments of such a plate loaded uniformly differ but little from the
deflections and moments of a plate bent to a cylindrical surface.

49. Rectangular Plates Having Four Edges Supported Elastically or Resting on
Corner Points with All Edges Free. Let us consider a plate subjected to a uniform
pressure and supported along the boundary by four flexible beams. All heams arc
supposed to have rigid supports at the corners of the plate, and two beams parallel to
each other may have the same flexural rigidity (Fig. 103).

1 The table was calculated by K. A. Calisev, Mem. Inst. Engrs. Ways Commun.,
St. Petersburg, 1914, More recently the problem was discussed by K. Miiller,
Ingr.-Arch., vol. 2, p. 606, 1932, The tables for nonsymmetrical cases are caleulated
in this paper. Various cases of rectangular and continuous plates supported by
flexible heams were discussed by V. P. Jensen, Univ. Illinois Bull., 81, 1938.

2 These results are due to D. L. Holl, Towa State Coll. Eng. Exp. Sta. Bull. 129, 1936.
For the case of a concentrated load see also R. Ohlig, Ingr.-Arch., vol. 16, p. 51, 1917,
Both authors also discuss the effect of clamping the supported edges.
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TasLeE 47. DerLEcTIONs AND BENDING MomENTS IN UniForMLY LoADED
RECTANGULAR Prates with THE Eoges ¢ = 0, 2 = a SimpLy
SurrorTED AND THE OrtHER Two Frer (Fic. 102)

ry = 0.3
e =a/2,y =0 x=a/2, y= +b/2
b/a | qgat , at |
w =« —ID— M. = Bgu? | M, = 81ga?| w = a % M, = Bsyyu?
_ B B e | B
0.5 0.01377 0.1235 0.0102 0.01443 0.1259
1.0 0.01309 0.1225 0.0271 0.01509 0.1318
2.0 0.01289 0.1235 0.0364 0.01521 0.1329
£ 0.01302 0.1250 0.0375 0.01522 0.1330

By writing the deflections in the form

q
= — 162! — 24q2c? 5at 5(16y% — 24b22 R
“ 3841)(74_5)[7( T a*z® + 5af) + 8(16y y? + 5b))

ny nwe nre nry
+ A, cosh ~— cos — + 13, cosh — cos —
« a b b

. onwy nrx .. nmx nr
+ C,y sinh —= cos —- D,z sinh — cos rry (a)
a a b b

where 6/y and 4,, . . ., D,aresome constants andn = 1, 3,5 . . . , we satisfy the
differential equation Adw = ¢/D of the plate and also the eonditions of symmetry.!
Next, let us develop the algebraic and the hyperbolic

functions contained in expression (@) in cosine series. it by
Then, using for z = a/2 and y = b/2 the edge condi- ﬁ :l E
tions similar to conditions (a) of the preceding article, |l l: Bl
we arrive at a set of equations for the constants H 0 h ‘
—_H_X_

A, . . ., Dy of expression (a).
Making, in particular, §/y =0 and Evl, = «», we | i

would arrive at the solution of the problem already “ ;{ =

discussed in Art. 48. & LB
Let us consider now the bending of a square plate L—--Q"— ———Q~-——>‘

(@ = b) supported by four identical beams. We have 2 l 2

then, by symmetry, &/y =1, and 4, = B, and y

C. = D,. The unknown coefficients 4, are eliminated ¥ig. 103

by equating to zero the edge moments. Taking, then,

only four terms (n = 1, 3, 5, and 7) in scries (a), we arrive at four linear equations for
Cy, Cs, Cs and Cr. The results of numerical calculations carried out in this way are
given in Table 48.

I This method of solution is due to B. 3. Galerkin; see his  Collected Papers,” vol.
2, p. 15, Moscow, 1953. The boundary conditions under consideration are casily
realizable and thus appropriate for the verification of the theory by tests. See
N. Dimitrov, Bauingenieur, vol. 32, p. 359, 1957.
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TasLE 48. DErLECTIONS AND BENDING MOMENTS OF A SQUARE PLATE WITH
Four SipEs SupporTED Erasticanny (Fig. 103)

v = 0.25
z=0,y=0 z =09 =a/2
_BI »
YT w = a%— M, =M, = gua®| M, = pua?
@ B1 B2
0 0.00406 0.0460 0
100 0.00412 0.0462
50 0.00418 0.0463
25 0.00429 0.0467 0.0002
10 0.00464 0.0477 0.0024
5 0.00519 0.0494 0.0065
4 0.00546 0.0502 0.0085
3 0.00588 0.0515 0.0117
2 0.00668 0.0539 0.0177
1 0.00873 0.0601 0.0332
0.5 0.01174 0.0691 0.0559
0 0.0257 0.1109 0.1527

In the particular case of E/ = 0 we have a square plate carrying a uniformly dis-
tributed load and supported only at the corners. The value of v has but little influence
on the deflections and moments at the center of the plate; its effect on the edge
moments is more considerable. Taking, for example, » = 0.3 the values given in the
last line of Table 48 for » = 0.25 should be replaced by 0.249, 0.1090, and 0.1404
respectively.!

The problem of bending of a centrally loaded square plate fixed only at the corners
has also been discussed.? If the load P is distributed uniformly over a small area of a
rectangular or circular outline, an expression can be deducted? for moments taking
place at the center of the loaded area. Taking, for example, a squarc loaded area
u by u, those moments for » = 0.3 can be expressed in the form

M, =M, = (0.1034 log = + 0.129)P (b)
U

Having this solution and also the solution for the uniformly loaded square plate
supported at the corners, the problem shown in Fig. 104a can be treated by the method
of superposition. It is seen that if a square plate with free edges is supported by the

18ee H. Marcus, “Die Theorie clasticher Gewebe,” 2d ed., p. 173, Berlin, 1932;
various cases of plates fixed at points were discussed by A. Nddai, Z. angew. Math.
Mech., vol. 2, p. 1, 1922, and also by C. J. Thorne, J. Appl. Mechanics, vol. 15, p. 73,
1948.

2 8ec Marcus, 7bid.

3 See S, Woinowsky-Krieger, Ingr.-Arch., vol. 23, p. 349, 1955
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uniformly distributed reactions, the bending moments at the center are obtained by
subtracting from expression (b) the value M, = M, = 0.1090qa? given above for the
uniformly loaded square plate supported at the

corners and having » = 0.3. In this way weobtain I‘ """""""" Q-mmmmmm -

M, =M, = (0.1034 log% + 0.020>P ()

valid for » = 0.3. The distribution of bending P

moments along the middle line of the footing slab u
is shown in Fig. 104 for u/a = 0.1 and u/a = 0.2.
A uniform distribution of the pressure may be as-
sumed for a very rigid footing slab resting on soft
subgrade. More general hypotheses regarding the
law of distribution of that pressure will be postu- p
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lated in Chap. 8.

50. Semi-infinite Rectangular Plates under
Uniform Pressure. The deflection surface and the I '
stress distribution near the short side of long Irrrrrrrrrrorrss T

: P/q2
rectangular plates are practically the same as those ! g
at the ends of semi-infinite plates, as shown in Fig. Fic. 104a

105. It is mainly for this reason that the simple
theory of these latter plates deserves consideration. Let the load be uniformly dis-

R ermmmnnon Fnnennes .
2

1

i

i

1

|

i
ol

I

t

[

]

I

|

¥

{\ X
1 a

! @

i re}

i N

! o

i
ojot

]

|

t

i

]

§

XY

L Moments 5]
_____ [y ——
for =01
y
F1a. 104b

tributed over the area of the entire plate and let the cdges # = 0, x = a be simply
supported.t

1 The following solutions of the problem are due to A. Nddai; see his book ‘“Elas-
tische Platten,” p. 72, Berlin, 1925.
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The deflection surface of the plate may be expressed by

w =w + we (a)
in which
o
q 41t 1 . mmzx
= — (x4 — 2a2® + a¥x) = —— —sin — b
b 24D ( + ) oD z ms > a ®
m=1.3,75,...

is the particular solution of the equation Adw = ¢/D), q being the intensity of the load,
and

o0
4qat mwry . mnx
we = A, + By — | e ™™ gip —— (e)
3D a a
m=1,35,...

is a solution of the equation AAw = 0, yielding zero deflections at y = «. The
coefficients A, and B., which are still at our
0 Orpivese 0O ~__ disposal, must be determined so as to satisfy
% * ¥ the respective conditions along the edge y = 0
of the plate. The following three cases may
be considered.
The edge y = 0vs simply supported (Fig. 105a).
F———a—— le~-q -~ —-g-- The particular conditions to be fulfilled are
w = 0 and 8%w/0y? = 0 for v = 0. Substitu-
tion of the series expressing w = w: - w» in
y y y those conditions yiclds the values 4,, = —1/m?®

(a) (b) {e) and B, = A,/2 for the coefficients. Thus we
Fic. 105 arrive at the deflection surface
4qat mry ) e mrule max
B — 1 — in — (d
W= 5D ( + 2a ) mb s a )
m=1,3,5,...

in which w; is given by Eq. (b).
Of particular intcrest are the bending moments 3, of the plate. Along the middle
line z = a/2 of the plate we have, by differentiation,

(12 4qa? mmr e-mwy/’a
M, = 2L L2 SIS L (=D (o)
] JES . m3

m=1,35,...

Making use of the condition 93 ,/dy = 0 and taking into account the first term of the
rapidly convergent series, we conclude that A, becomes a maximurm at

al + v

Tl —vw»

Yy =

Table 49 gives the largest values of bending moments together with the largest values
of the edge reactions 7, and the forces I acting downward at the corners of the plate.

Tt should be noted that the value 0.0364qa? exceeds by 45 per cent the value
0.0250qa? of the largest moment 3, of an infinitely long plate, the value of Poisson’s
constant being the same in both cases.



VARIOUS RECTANGULAR PLATES 223

TapLE 49. LarcEst BEnDING MoOMENTS AND REAcTIONS OF A UNIFORMLY
LoADED SEMI-INFINITE PLATE wITH ALL EDGEs SmMPLY SUPPORTED
(F16. 105a)

v (M) max (My)max (V) max B

a a
0.2 0.1250ga?, z = g; y = « | 0.0364¢a%, x = 5: y = 0.48a ] 0.5209a, z = -2-: y = 0| 0.1085¢a2

il
8

0.3 | 0.1250ga% z = 1 y 3 0.0445qa2, £ = g, y = 0.5% |
The edge y = 0 s built in (Fig. 105b). Following the general procedure described

above, but using this time the edge conditions w = 0, dw/dy = 0on y = 0, we obtain,
instead of expression (d), the result

0.502¢qa, z = (2—1) y = 01 0.0949qa?

w0

4qat mzxy \ e ™vie  mzx
w = w; — i (1+T7r'/> sm—a— o

5D m#
m=1,3,5,...

in which w; again is given by Eq. (b). The corresponding bending moment

©

vqa? 4qa? may emTvie mag
+ v —sin—  (g)
8 L n a

m=1,3,5,...

M, =

becomes a maximum at z = «/2 and y = 2¢/7(1 — »). Assuming » = (0.3 we obtain
y = 0.91a and (M )max = 0.0427ga? whereas the assumption of » = 0.2 yields the
values of 0.0387¢a? and y = 0.80a, respectively. It can be shown, also, that the
variation of the c¢lamping moments along the short side ¥y = 0 of the plate obeys the
simple law

q
(My)y—o = — 5 (ax — z%)

Observing that at large values of y the deflection surface of the plate can be assumed
cylindrical, we have there

q q
Mz=§(ax—m2) Ml,=v§(ax—xz)

Thus, the distribution of the edge moments (g) is identical with the distribution of the
moments A, across the plate at y = « but with opposite sign.
The edge y = 0 is free (Fig. 106¢). If the conditions preseribed at y = 0 are
dw  o%w
g dx? ay?

a%w

ar? ay -

—o iy
B ays >

then, making use of cxpressions (a), (b), and (c), we arrive at the deflection surface

L

4vqat 14+v» mry\emmvle  mgx
= —_— —_— sin — h
bt W1+(3+v)r5 z (1—v a) ms a )
m=1,33,...
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The deflection and the bending moment M are largest at the middle of the free edge.
It can be proved that

33—
N LR
3 — v
and R

wy and (M,), being the deflections and the moments of an infinite simply supported

plate. We have therefore
0

(M) max = @__;M qitz
v 3+ 8

As a last example, leading to a different form of solution,
+—92-——><v——2-——> let us consider a uniformly loaded semi-infinite plate with
the edge y = 0 simply supported and the edges x = +a/2
built in (Fig. 106). The solution can be obtained by suh-
stituting b = « in a suitably chosen expression for the
y deflections of a finite rectangular plate simply supported on
Fie. 106 the edges y = 0, b and clamped on the edges ¢ = Fa/2.

’ The result of such a derivation, which is omitted here, is

NN

sinh B + 5 coshE cosh bz — Bz sinh 5 sinh i sin By
1 2 2 2 a 2 a a

4qat a
= _— : = dg
=D Jo 2 sinh g8 + 8 B?
(@)
Differentiating expression (2} and observing that
sin By dg
e =T fory >0
0 B 2
we obtain
9 sin Py dg
=2 | e _a
=D Jo 8 D

Thus the differential equation for bending of plates is satisfied. It can be shown that
the required boundary conditions at y = 0 and 2 = +a/2 are also satisfied by solu-
tion (7).

The expressions for the bending moments of the plate again involve infinite integrals,
which can be evaluated. Once more the moments M, are of interest. Assuming, for
example, » = 0.2, we arrive at a value of (M) nax = 0.0174¢a?, occurring at y = 0.3a,
whereas the moment M, = »qa?/24 of an infinitc plate does not exceed 0.00833¢a? for
the same value of ».

It should be noted that the properties of the scmi-infinite plates can be used as
a basis for calculating the deflections and bending moments of finite rectangular
plates with simply supported or built-in edges in any given combination.!

1 For this approach to the theory of rectangular plates see W. Koepcke, Ingr.-Arch.,
vol. 18, p. 106, 1950.
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61. Semi-infinite Rectangular Plates under Concentrated Loads. Assuming the
edges ¢ = 0 and z = a of the plate to be simply supported, let us consider, regarding
the third side (y = 0), the following two cases: (1) the edge y = 0 is simply supported,
and (2) the edge y = 0 is elamped.

The edge y = 0 is simply supported (Fig. 107). Assuming that the given load P is

applied at point z = £, y = 5 (Fig. 107), we first consider an infinite plate supported
only at the edges = 0 and x = a. In order to use the method of images (see page
156), we assume a sccond load —P acting at the point z = &, y = —2 of the infinite

plate. Theline y = 0 becomes then a nodal line of the deflection surface of the plate.
Thus the required bending of the semi-infinite plate is obtained by superposing the

e ————— Q-—-—= >
Loud—F’T P —
| «
0 ! X ——*—
| -
Lood+PT ks ¥
-(———-E —-——)‘
y

Fia. 107

deflections [see Iiq. (148), page 145] produced in the infinite plate by both concen-
trated loads. In this way we arrive at the deflection surface

mm
——(T(n—?/)
Pq? e mmr . omwE . max
wy = B — 14+— @ —y |sin-— sin ——
273D m? a a a
m=
@
e
\ =t
Pa 1+mr(+) . mxf . mwzx
—_— S e — (9 +y) | sin —— sin ——
273D ma3 a v a a
m=1
or, after some rearrangement,
o0
Pq? e~ mmle mmrn\ . . mxy  mxy mry | . mrf . mrx
Wy = — 1 + —— }sinh — — — cosh — | sin —>gin —
w3D m? a a a a a a
(a)

an expression valid for 0 € y < 5 and yielding w, = 0, 0%w,/0y? = 0aty = 0. The
deflections in the range of ¥ > » may be obtained in a similar manner.

If we distribute the single load over a small area, the moments 3 . at the center of
that area and the corresponding deflections prove to be smaller than those of an
infinite plate without the transverse edge at y = 0. But the moment M, is again an
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exception. Let us write this moment in the form M, = M, 4+ m,, where M, is the
moment of the infinite plate. The correction m,, representing the effect of the load —P
in Fig. 107, is then readily found by means of the second of the equations (151) (sce
page 145). Assuming, for example, » = 0.3 we obtain m, = 0.0065P as the largest
value of the correction, the corresponding position of the load being given by z = a/2,
y = 0.453a.

x X
1
|
1
I
b ——— - o JRRum—— > I
=
t
H
i
PR
be——— § —-J
y
F1c. 108

The edge y = 0 is buill in (Fig. 108). We begin with the calculation of the slope
of the elastic surface (¢) at y = 0, for which differentiation gives

L

dw1 Iy eTmTNa gt max
= — - sin — sin —— ®)
Ay /y—o D m a a

m=1

Next let us submit the simply supported semi-infinite plate to couples distributed
along the edge ¥ = 0 in accordance with the law

©

M)y = fz) = E E. sin %ﬂ
m=1

The corresponding deflections, vanishing at ¥ = o, we take in the form
oo

. mmzx
wy = (A + Buy)e=mmvle sin —~ {e)
a

m=1

The coeflicients A,, and B,, in this expression are readily obtained from the conditions

62wg
(Wa)yeo =0 —D ( 3 2> = f(z) @)
Y y=0

This yields An = 0, B,, = Ena/2mxD, and, finally,

o

ay Enpe—myla gy
Wy = ——— ———— gin —— ()
27D m a

m=1
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Since we have to eliminate the slope (b), the edge condition is

6w1 owse
(). (). -0

Substitution of expressions (b) and (e) in Eq. (f) gives

2Py mwé

Em = — — gmAla gj ——
a Q

and expression (¢) becomes accordingly

Pyy e @ . omwE . max
we = — —— - -———— §in —— gin ——
D m a a

m=1

(@)

The deflection surface of the semi-infinite plate clamped on y = 0 then is given by
w = w; + ws (h)

where w; denotes expression (a). As for the series (g), it can be represented in a
closed form. We have only to express the sine functions contained in (g) in terms of
the exponential functions

ei(mwfila) aud e:i:(mmvila)

and to observe the expansion
e2? 932
log (1 +¢) = +e —— +
g ( ) 5 T3

If we proceed in this manner, expression (g) finally appears in the simpler form

coshg (y +7) — cosg (z — &)
w, = — log - : (@)
cosh 2 (y +n) — cosg (xz + &)

The value of the clamping moments at y = 0 is readily obtained by differentiation of
expression (), and the result is

T 1 1
ik - )

cosh m_ cos T (x — 8 cosh m_ cos il (x + &)
a a a a

P
(M,)yeo = — — ginh
2a a

When the concentrated load approaches the built-in edge y = 0, the value given by
expression (j) tends to zero in general. If, however, £ = x and n — 0 simultaneously,
then Eq. (j) yields

2rx
p 1 — cos —(‘1*
. n ™
My)ymo = — Li — coth — ——M——— = —
(M)y0 m 2q 0 2a ™ 2rx
cosh — — cos —
a a

(k)

3N

7—0

If, finally, » = 0, the moment M, becomes zero.
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In conclusion let us consider a single load P (Fig. 109) uniformly distributed over a
straight-line scgment of some length 4. The moment caused by such a load at the
mid-point of the built-in edge is readily found by means of expression (§). Substitut-

N

0

X

R
-

ing ¢ = a/2 and I’ d&/u for P in this expression and integrating we obtain for the
required moment

op (atu)/2 sin %S dg
ks
(M) emarziyen = — il sinh ™ ——— o
au a 21y P
(a—wysz ©osh —= toos =
. oTu
s —
2P1] 2a
= — ——arctan
sinh -
a

Table 50 gives the position of the load producing the numerically largest clamping
moment and the value of that moment for various values of the ratio u/a.

TABLE 50. LARGEST CraMPING MOMENTS AT z = a/2 DuE To a SincLe Loap
DistriBurip over a Lexeru u (Fre. 109)

i i ! |
u/a 0 0.1 0. ’ ! .6 |

IS
]
e

n/a 0 0.147 0.203 0.272 0.312 0.321 0.343
M,/P | —0.318 | —0.296 | —0.275 | —0.237 | —0.204 | —0.172 | —0.143




CHAPTER 7

CONTINUOUS RECTANGULAR PLATES

52. Simply Supported Continuous Plates. Floor slabs used in build-
ings, besides being supported by exterior walls, often have intermediate
supports in the form of beams and partitions or in the form of columns.
In the first case we have to deal with proper continuous plates; in the
case of columns without intermediate beams we have to deal with flat
slabs. The floor slab is usually subdivided by its supports into several
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panels. Only continuous plates with panels of rectangular shape will be
considered in this chapter.

We begin with a case allowing a rigorous solution by methods already
used in the foregoing chapter. A rectangular plate of width b and length
a1 + az + as, supported along the edges and also along the intermediate
lines ss and #, as shown in Fig. 110, {orms a simply supported continuous
plate over three spans. We suppose that the intermediate supports
neither yield to the pressure in the transverse direction nor offer any
resistance to the rotation of the plate with respect to the axes ss and if.
With these assumptions, the bending of each span of the plate can be
readily investigated by combining the known solutions for laterally
loaded, simply supported rectangular plates with those for rectangular
plates bent by moments distributed along the edges.

229
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Let us begin with the symmetrical case in which
ay = Uy = A3 = @
and the middle span is uniformly loaded while the side spans are without
load (Fig. 110b). Considering the middle span as a simply supported
rectangular plate and using expression (b) of Art. 44 (see page 198), we
conclude that the slope of the deflection surface along the edge r; = a/2is

ow
61:2 zo=a/2

_ 20 (Zpobre sy Bn
== E o 08 - \ coihe o tanh 8, ) (a)

m=1,35,...

where B, = mma/2b. Owing to the continuity of the plate, bending
moments M, are distributed along the edges x» = +a/2. TFrom sym-
metry it is seen that these moments can be represented by the following
series:

0

(M) spmsars = (= 1)1, cos Z7Y ()

m=1,35,...
The deflections w; produced by these moments can be obtained from
Eq. (173), and the correspouding slope along the edge x> = a/2 [see
Eq. (e), page 198] is

ow) b E g, (=Dhore
0r2/ z—as2 2rD m

m=1,35,...

cos Tgﬂ (tanh B -+ -——ﬁ""———> (¢)

COShZ 6m

From the condition of continuity we conclude that the sum of expres-
sions (a) and (c) representing the slope of the plate along the line x5 = a/2
must be equal to the slope along the same line of the deflection surface
of the plate in the adjacent span. Considering this latter span as a
simply supported rectangular plate bent by the moments (b) distributed
along the edge 23 = —a/2, we find the corresponding deflection w. of
the plate by using Eq. (176) (see page 185), from which follows

b _mmy (—1)mDr2
= 4D B cos 57
m=1,3,5,
1 L MATy  mMATy . MAT3
[m (Bm tanh 8, cosh 5 5 sinh 5 >

1 Ly MWLy mwEy o MATs .
~ b A, (Bm coth 8, sinh A b cosh A >] {d)
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The corresponding slope along the edge 23 = —a/2 is
dws = _9_ & —1)m—Di2
<3_J73)x;—_a/2 N 4z D E m ( 1)
m=13,5,
cosh 22 ( tanh B, + eoth B, + L (e)
" ™ ' cosh? B, sinh? B,

The equation for calculating the coefficients £, is

w\ (e _ (3w
0x2/ ryemqs %2 Jzyma2 O3 ) rimaj2

Since this equation holds for any value of y, we obtain for each value of
m the following equation:

%W 1 [ Bm . b Ea Bn
=Dt (mcoshz g, — tanh Bm) 2D m (mnh B+ Cosh® B,
— b E"l BI’L B’In
=D m (tanh Bm + coth 8, + - cosh? B, sinh? Bm> N
from which
, o 8gb _ B» — tanh B, cosh? 8,
7 w%m® 3 tanh B,, cosh? 8, + coth 8,, cosh? 8., + 38, — B, COLhZ B,

)]

It is seen that F, decreases rapidly as m increases and approaches the
value —2¢b%/m*m?  Having the coeflicients E,, calculated from (g), we
obtain the values of the bending moments M, along the line # from
expression (). The value of this moment at y = 0, that is, at the
middle of the width of the plate, is

(Mssarrgn = ) Bu(—1)m002
m=13,5 ...
Taking, as an example, b = a, we have 8,, = mx»/2, and the formula (g)
gives
Jo Sq“ E; = 89“ 0.0092  H, = Sq“ £0.0020

(Mx)z«F:ta/‘l'z/sO = —0.0381¢a”

The bending moments at the center of the middle span can be readily
obtained by combining bending moments of a simply supported plate,
bent by uniform load, with moments corresponding to the deflections w;.
Taking, for example, a = b and v = 0.2, which is a convenient value for
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concrete, we get for the first of these moments the values of
(Moo = (Mo = 0.0479 X % ga? = 0.0442¢a?

(see Table 8, page 120) and for the second moments the values
(M) = —0.0067¢a? and (M) = —0.0125¢a?
Therefore
(M) epmoiymo = 0.0375qa2‘ (M) zm0,4—0 = 0.0317¢a?

If a side span is uniformly loaded, as shown in Iiig. 110¢, the deflection
surface is no longer symmetrical with respect to the vertical axis of sym-
metry of the plate, and the bending moment distributions along the lines
ss and ¢t are not identical. Let

]

(M) a2 = z (—1)Di2f, cos 7Y

‘ b
m=135.. )
W)
(M) papre = Z (=1)m=DI2F  cos %
m=13,5,...

To calculate the coefficients Fi,, and I, we derive two systems of equa-
tions from the conditions of continuity of the deflection surface of the
plate along the lines ss and . Considering the loaded span and using
expressions (¢) and (e), we find that the slope of the deflection surface
at the points of the support ss, for a1 = a; = a; = q, is

o

Jw _ 2gb° (—1)m—nr2 mary 8,
<Tvl>x1=al2 ~ @D E %% \comne g, — fanh Bn

m=13"5 ...

o

b (_ 1)(ﬂl~1)/2 . 7n7T]/ )
=D Ea cosh 3 tanh 8,
m=1,35 ...
. Bn _ Ba .
+ coth . + cosh? 3,  sinh? 6m> @)

Considering now the middle span as a rectangular plate bent by the
moments M, distributed along the lines ss and # and given by the series
(h), we find, by using Fq. (175) (see page 184),

©

3 b —1)m-Di2
() =iy Y R o (Bt F)

m=13,5,...

B 8, .
(m; + tanh Bm) + (Bw — Fa) (coth B — Wﬁ;)] ()
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From expressions (7) and (7) we obtain the following system of equations
for calculating coeflicients K. and F,,:

8qb*

‘21'37713

Am + Em(Bm + Cm) = —Bm(Em + Fm) - Cm(Em - Fm) (k)

where the following notations are used:

_ _ Bn
™ cosh? 8,

— = — ——Lm ¢

tanh 8. B, = (cosh2 5. + tanh ,6,,,)
Cn = m — coth 8.

The slope of the deflection surface of the middle span at the supporting

line #, by using expression (j), is

w©

ow b (—pe-ve omy [
(£2>Iz:a/2 N m 2 7 m - €08 T (Em + Fm)

m=1,3,53, .

Bm R e (Y Bm
(&)—sh?—ﬁ,; + tanh Bm) -+ (Fm ) <00th Bm — m)]

This slope must be equal to the slope in the adjacent unloaded span
which is obtained from expression (¢) by substituting F,, for £,. In this
way we find the second system of equations which, using notations (),
can be written in the following form:

Bm(Em + Inm) + ('Vm(Fm - Em) = —(Bm + Cm)FYm (m)
From this equation we obtain

Fm — E ”7(7/7711. - Bm (n)

Substituting in Eq. (k), we find

8qat 2(Bw + Ch)

Em = Am 5m3 ((]m — Bm)2 - 4(Bm + Cm)2 (0)

Substituting in each particular case for 4,,, B,, and C, their numerical
values, obtained from Eqs. (I), we find the coefficients I,, and F,,; and
then, from expressions (h), we obtain the bending moments along the
lines ss and ¢t. Take, as an example, b = ¢. Then 8, = m#x/2, and we
find from Eqs. ({)

A, = —0.6677 B, = —1.1667 Ci1= —0.7936
45 = —0.9983 B; = —1.0013 C; = —0.9987

Tor m larger than 3 we can take with sufficient aceuracy

A, =Bn=0C,=—1
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Substituting these values in Eq. (0), we obtain

8 8(1(1 8qa*

B = — q"omo Ey= — 5202106 Hy = — —1550.2500
The moment at the middle of the support ss is
(M) emajpymo = Ly — By + K5 — -« - - = —0.0424¢0?
For the middle of the support ¢ we obtain
(M) gmarpymo = F1 — F3 +F; — - - - = 0.0042q0*

Having the bending moments along the lines of support, the deflections
of the plate in each span can readily be obtained by superposing on
the deflections produced by the lateral load the deflections due to the
moments at the supports.

The bending moments in the panels of the continuous plate can be
obtained in a similar manner. Calculating, for example, the moments
at the center of the middle span and taking » = 0.2, we arrive at the

°1+1 values

l 7 Nz (M) simpumo = —0.0039ga*

i oll E;: (U )esy0 = —0.0031qa?
| '— "L‘rl' ol The equations obtained for three
L ls Y spans can readily be generalized and
l<———a‘1 e ha-m—ol expanded for the case of any number of
n (a) . spans.  In this way an equation similar
qi WW”{}“ to the three-moment equation of con-
A (’g) g tinuous beams will be obtained.! Let
e, 111 us consider two adjacent spans 7 and

7 + 1 of the length a; and a;41, respec-
tively (Tg. ]11) The corresponding values of the functions (I) are
denoted by Ai, Bi, i and Aifl, Birt, Citt. The bending moments along

the three consecutive lines of support can be represented by the series

oo

Mt = (—1)e=Dr2Ei-t cos Y
m=1,3,5
kel
‘ , ma)
M = (—1)=DizE: cos 1—7;]
m=1,3,
Mir! = (= 1)zt cos m———gy
m=1,3,5,...

! This problem in a somewhat different way was discussed by B. G. Galerkin; see his
“Collected Papers,” vol. 2, p. 410, Moscow, 1953.
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Considering the span ¢ + 1 and using expressions (@) and (j), we find

w©

dw _ 2_%1—12 (_1)(m—1)/2 cos mwy i
0Ti1) srom—tairre D m* b ™

m=135 ...

@

' (- ])(“’ D2 mmry : :
P —— 108 i i+ 1 i+1
477'1) Z cos [(11 ]—'m )Bm

m=1,3

— (B + E)0CR] (p)
In the same manner, considering the span ¢, we obtain

o

dw 2q.b? (=1)tm=b1/2 mmy .
—_— = S A'L
(6.’51)1,:,,‘/2 D m? cos b m

m=135 ...

®©

b (-~1)("""1)/2 mm/ N D

m=1,3,5,...

+ (B, — EZHCL (@

I'rom the condition of continuity we conclude that

ow _ fow
OLip1 )z m—(ai )2 0%; ) 2imai/2

Substituting expressions (p) and (¢) in this equation and observing that
it must be satisfied for any value of y, we obtain the following equation
for calculating F-!, Ei  and EiFl:

BB = C8) o PL(BL+ CL+ Bt 4 C6)

+ BB — CFY) = (g A + @ AL)  (177)

5m‘
Equations (&) and (m), which we obtained previously, are particular cases
of this equation. We can write as many Tqs. (177) as there are inter-
mediate supports, and there is no difficulty in caleulating the moments
at the intermediate supports if the ends of the plate are simply supported.
The left-hand side of Eq. (177) holds not only for uniform load but also
for any type of loading that is symmetrical in each span with respect to
the « and y axes. The right-hand side of Tq. (177), however, has a
different value for each type of loading, as in the three-moment equa-
tion for beams.

The problem of continuous plates carrying single loads can be treated
in a similar manner, In the particular case of an infinite number of
equal spans with a single load applied at any point of only one span, the
deflection of the plate may be obtained by resolving an equation with
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finite differences for the unknown coefficient FE: as functions of the
index 7.1

If the intermediate supports are elastic, the magnitude of the coeffi-
cients B is governed by the five-term equations, similar to the five-
moment equations of the theory of continuous beams.? The torsional
rigidity of supporting beams, tending to reduce the rotations of the plate
along the support, can also be taken into account in considering the
bending of continuous plates.?

As the simplest example of a continuous plate carrying a concentrated load, let us
consider an infinitely long plate simply supported along the sides x = 0, z = a, con-
tinuous over the support y = 0, and submitted to a concentrated load P at some point
z = & y = n (Fig. 112a). The load and boundary conditions undcr consideration
can be readily satisfied by supcrposition of cases shown in Fig. 1120 and ¢. In the

case of Fig. 112b each panel of the plate is

simply supported along the line y = 0, and

the elastic surface is given by the expression

p +w;/2, in which the sign must be chosen
_Z-T according to whether y is greatver or less

{ than zero, w: denotes the deflections (a) of

__I Art. 51, and |y| < In|. Inthe caseshown in
1
&=
a _i
2

Fig. 112¢, each panel is clamped along the
edge y = 0, and the corresponding deflec-
tions are w/2, w being given by expression
(h) in Art. 51. We have therefore

'

I
Pasy

}
~|o

We
w=w1+~2~ forn >y >0

(o) (b} {c) W
Fia. 112 2 fory <0

and the moments along the edge ¥ = 0 become equal to onc-half of the clamping
moments of a semi-infinite plate with one edge built in, these latter moments being
given by expression (j) of Art. 51.

63. Approximate Design of Continuous Plates with Equal Spans.t
The layout of a floor slab usually involves continuity not only in one
direction, as assumed in Art. 52, but rather in two perpendicular direc-
tions. A continuous slab of this kind is shown in Tig. 113. The spans
and the thickness of the plate are equal for all rectangular panels. Each

1 See 8. Woinowsky-Krieger, Ingr.-Arch., vol. 9, p. 396, 1938.

2 Continuous plates on elastic beams were considered by V. . Jensen, Unawv. Illinots
Bull. 81, 1938, and by N. M. Newmark, Univ. [llinois Bull. 84, 1938.

3 See K. Girkmann, “Flichentragwerke,” 4th ed., p. 274, Vienna, 1956,

4 The method given below is substantially due to H. Marcus; see his book “IDie
vercinfachte Berechnung biegsamer Platten,” Berlin, 1929.  The coefficients of Tables
51 to 56 are, however, based on solutions considered in Chap. 6 and on the value of
Poisson’s ratio » = 0.2, whereas Marcus uses for the same purpose a simplified theory
of rectangular plates and assumes » = (.
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panel may carry a dead load goand,
possibly, a live load p, both distri-
buted uniformly over the area of
the panel, the largest intensity of
the load being q¢ = qo 4 p.

Let us begin with the computation
of bending moments at the inter-
mediate supports of the floor plate.
Calculations show that these mo-
ments depend principally on the
loading of the two adjacent panels,
and the effect of loading panels
farther on is negligible. It is justi-
fiable, therefore, to calculate the
moments on supports by assuming
the load ¢ uniformly distributed

over the entire floor slab (Fig. 114a).
of the plate along the intermediate supports, each panel in Fig. 114a will
have the same conditions as a rectangular plate clamped along the inter-
mediate supports and simply supported at the external boundary of the

floor slab.

®
y X I-x
Ry
w @ x w
i
z z
@ X
)
Fic. 113

~~Qg*P

- agt &

Fia. 114

(+
oo

Neglecting, at first, the rotations
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The maximum bending moments for plates with such boundary con-
ditions have been tabulated (see Tables 51 to 56). Six possible combi-
nations of simply supported and built-in edges of a rectangular plate are
shown at the head of these tables. The direction of the x and y axes in
each panel of the slab (I"ig. 113) must be chosen in accordance with Figs.
116 to 121; span @¢ must be measured in the direction of the = axis and
span b in the direction of the y axis of the respective panel. The six
cases shown in Figs. 116 to 121 may be numbered 1 to 6, and the corre-
sponding indices are attached to the coefficients of Tables 51 to 56.

To illustrate the application of the tables, let us ealculate the bending
moment at the middle of the support {w (Fig. 113). We calculate for
this purpose the clamping moment of both panels adjacent to the sup-
port. For panel 2 we have to use the formula

My, = 8ql2 (@)

and Table 52, [ being the smaller of spans @ and b of the panel. In a
similar manner we obtain the clamping moment of panel 6 from the
expression

My = yeql? (b)

by making use of Table 56. The moment in question now is given with
suflicient accuracy by } )
M;w = %(Afzy + ﬂfﬁ;,;) (C)

and the moments on other intermediate supports are obtainable in a sim-
ilar manner.

It should be noted that Eq. (¢) expresses nothing else than a moment-
distribution procedure in its simplest form, .e., a procedure in which the
“carried-over” moments from other supports, as well as any difference
in the stiffness values of both adjacent panels, are neglected. Such a
simplified procedure is far more justified in the case of a continuous plate
than in the case of a continuous beam.

Next, let us consider the bending moments at the center of panel 6
(Fig. 113) as an example. The load distribution most unfavorable for
these moments can be obtained by superposition of loads shown in Fig.
114b and c.

The contribution of the uniformly distributed load qo + p/2 to the
values of the moments is obtained by use of Table 56, which gives

Mi, = as (qo + g) B Mi, =6 (qo + *—2’) a @

I denoting the smaller of both spans of panel 6.
Tet us consider now the effect of the checkerboard loading as shown in
Fig. 114¢. The boundary conditions of each panel here ure the same as
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those of a simply supported plate, and the moments at the center are
readily computed by means of Table 51 for case 1. The load +p/2
acting in panel 6 yields

arp _ Bwp
my =%y =Ele ©
and the largest moments at the center of panel 6 are

Me, = M{, + M¢! 1) s

M, = M, & CRNCINCE:
o) y—30 v y ++
In order to calculate the largest nega- _lx _ff _’S oiN
tive moments at the same point we lalotolols Lg ¥
have only to alter the sign of the load k- B R T R I

in Fig. 114¢.  Still using results (d) and ) H ITLi
(e), we then have X

Mo, = Mg, — Mg 7o T Ry,

As a second example of the application of
the approximate mecthod, let us compute

. . 13
the bending moments of the continuous T ‘Jyf i "'q
plate shown in Fig. 115, which was treated Xk X ~ A 0

rigorously in Art. 52.

First we choose the dircction of the z and
y axes in accordance with Figs. 117 and 118.  (g) {—{—{—H—{-—{—W—;‘"p
Agsuming next a load ¢ = ¢q¢ 4 p uniformly 4 AT do
distributed over the entire surface of the
plate (Fig. 115b) and using the coefficients

¥ 1o
given in Tables 52 and 53 for cases 2 and 3, (f) {133y Eigy
| . 3 2L 3 N ) |2 N N 2 B S
with b/a = 1, we obtain at the center of the ¥ 2P
support ss the moment Fra. 115
0.0840 4 0.0697 -
My = ——r (go + p)a® = ~0.0769(q0 + p)a2 (h)

2

the procedure being the same as in the foregoing example [Eq. (©)]. Using the rigorous
solution, the numerically largest moment at ss is produced by the load distribution
shown in Fig. 115¢. Superposing the bending moment obtained on page 231 upon
those calculated on page 234, the exact minimum value of the moment M, proves
to be

M-?S‘
or M.,

]

—[0.0381(g0 + p) + 0.0424(q0 + p) — 0.0042¢0)a?
—(0.0805¢0 + 0.0763p)a? @)

Putting, for instance, go = ¢/3, p = 2¢/3, the result (i) yields —0.0777¢a? as compared
with the value —0.0769¢a? obtained by the approximate method.

Finally, let us calculate the largest bending moment at the center of the middle
panel, the most unfavorable load distribution being such as shown in Fig. 115d.
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r—-- a --->]
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o, B
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b

TasLE 51. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CasE 1
» = 0.2, ] = the smaller of spans a and b

Center of plate
b/a Factor
M, = aigl?| M, = Byql*
___ ay ) B

0 0.0250* 0.1250

0.5 0.0367 0.0999

0.6 0.0406 0.0868

0.7 0.0436 0.0742 gh?
0.8 0.0446 0.0627

0.9 0.0449 0.0526

1.0 0.0442 0.0442 —
1.1 0.0517 0.0449

1.2 0.0592 | 0.0449

1.3 0.0660 0.0444

1.4 0.0723 0.0439

1.5 0.0784 0.0426

qa*

1.6 0.0836 0.0414

1.7 0.0885 0.0402

1.8 0.0927 0.0391

1.9 0.0966 0.0378

2.0 0.0999 0.0367

0 0.1250 0.0250%

* M oax = 0.0364qb? at 0.48b from the short edge.

1t

Tanx

0.0364qa? at 0.48a from the short edge.

Combining the load in accordance with Fig. 115¢ and f and using the coefficients o
and B of Tables 53 and 51, we arrive at the following expressions for these moments:

M, = [0-0216 (qo + g) + 0.0442 —Z] a?

M, = {0.0316 (Qo + %) +0.0442 g] a?

i

(0.0216g, + 0.0329p)a?

()

(0.0316qy + 0.0379p)a?
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TasLE 52. BENDING MoMENTS FOR UNirorMLY LoADED Prartes in Case 2
v = 0.2; ! = the smaller of spans ¢ and b

Center of plate x{;%dizgi

b/a Factor

M, = aquz ]l/[y = ﬁquz ]‘/-I,, = 52({12

[-73 B: 32
0 0.0125 0.0625 —0.1250
0.5 0.0177 0.0595 —0.1210
0.6 0.0214 0.0562 —0.1156
0.7 0.0249 0.0514 —0.1086 gb?
0.8 0.0272 0.0465 —0.1009 |
0.9 0.0204 0.0415 —0.0922
1.0 0.0307 0.0367 —0.0840
1.1 0.0378 0.0391 —0.0916
1.2 0.0451 0.0404 —0.0983
1.3 0.0525 0.0415 —-0.1040
1.4 0.0594 0.0418 —-0.1084
1.5 0.0661 0.0418 —0.1121
qa?

1.6 0.0722 0.0414 —(.1148
1.7 0.0780 0.0408 —0.1172
1.8 0.0831 0.0399 —0.1189
1.9 0.0879 0.0390 —0.1204
2.0 0.0921 0.0382 —0.1216
© 0.1250 0.0250* —-0.1250

* Mumax = 0.0387ga? at 0.80a from the built-in edge.

It is of intercst to verify the foregoing approximate values by use of the results
obtained on pages 232 and 234. Distributing the load again as shown in Fig. 1154
and interchanging the indices z and y in the results mentioned above, we have

M. = 0.0317(go + p)a? — (0.0051 + 0.0051)qa?
= (0.0215¢, -+ 0.0317p)a?

M, = 0.0375(qo + p)a? — (0.0039 + 0.0039)qoa?
= (0.0207¢, + 0.0375p)a?

Setting again qo = ¢/3 and p = 2¢/3, we obtain for the moments the exact values
of 0.0283¢a? and 0.0349ga?, respectively. Egs. (j) yield for the same moments the
approximate values of 0.0291¢a? and 0.0358¢a?.

(k)
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o
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o, B
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y
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TasLE 53. BEnpING MoMENTS FOR UNIFORMLY LoADED Prates IN Case 3
v = 0.2, ] = the smaller of spans a and b

Center of plate flzile(ild(lfl::

b/a Factor

M. = asqlt | M, = Boql?| M, = buql?

-3} B3 83
0 0.0083* 0.0417 —0.0833
0.5 0.0100 0.0418 —0.0842
0.6 0.0121 0.0410 —0.0834
0.7 0.0152 0.0393 —-0.0814 gb?
0.8 0.0173 0.0371 —-0.0783
0.9 0.0196 0.0344 —0.0743
1.0 0.0216 0.0316 —0.0697
1.1 0.0276 0.0349 —0.0787
1.2 0.0344 0.0372 —0.0868
1.3 0.0414 0.0391 —0.0938
1.4 0.0482 0.0405 —0.0998
1.5 0.0554 0.0411 —0.1049
ga?

1.6 0.0620 0.0413 —0.1090
1.7 0.0683 0.0412 -0.1122
1.8 0.0741 0.0408 —0.1152
1.9 0.0795 0.0401 —-0.1174
2.0 0.0846 0.0394 —0.1191
© 0.1250 0.02507 —0.1250

* Mpax = 0.0174¢b? at 0.30b from the supported edge.
t Mumax = 0.0387¢a? at 0.80a from the built-in edge.

The largest error of the approximate method ensues from the fact that the largest
positive moments do not always occur at the center of the panel. This is especially
far from being true in the case of distinctly oblong rectangular panels. If b, for
example, is much larger than a, the largest moment M, occurs near the short side of
the rectangular plate. Some values of these largest moments are given in footnotes to
the tables, and they should be considered as the least possible values of the corre-
sponding columns, regardless of the actual ratio b/a.

It should be noted, finally, that in the unsymmetrical casc 4 neither M, nor M,
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TasLE 54. BENDING MoOMENTS FOR UNIFORMLY LoApeEDp PLaTeEs IN Casp 4*
v = 0.2, [ = the smaller of spans a and b

PR S Atz = 0.1a

Center of plate Middle of fixed edge y = 0.1b

b/a ————— — 1 Factor
M, = a2 | M, = B> | M, = vagl* | M, = 8:q(% | Mpmax = €ql2

ay B4 Y4 34 €
0.5 0.0191 0.0574 —0.0787 —0.1180 0.0662
0.6 0.0228 0.0522 —0.0781 —-0.1093 0.0570
0.7 0.0257 0.0460 —0.0767 —0.0991 0.0501 gbt
0.8 0.0275 0.0396 —0.0746 —0.0882 0.0430
0.9 0.0282 0.0336 —0.0715 —0.0775 0.0363
1.0 0.0281 0.0281 —0.0678 —0.0678 0.0305 —
1.1 0.0330 0.0283 —0.0766 —0.0709 0.0358
1.2 0.0376 0.0279 —0.0845 —-0.0736 0.0407
1.3 0.0416 0.0270 —0.0915 —0.0754 0.0452
1.4 0.0451 0.0260 —(.0975 —0.0765 0.0491
1.5 0.0481 0.0248 —0.1028 —0.0772 0.0524 qat
1.6 0.0507 0.0236 —0.1068 —~0.0778 0.0553
1.7 0.0529 0.0224 —0.1104 —0.0782 0.0586
1.8 0.0546 0.0213 —0.1134 —0.0785 0.0608
1.9 0.0561 0.0202 —0.1159 —-0.0786 0.0636
2.0 0.0574 0.0191 —0.1180 —0.0787 0.0662

* The authors are indebted to the National Research Council of Canada for a grant
which greatly facilitated the computation of the table.

is the largest bending moment at the center of the plate. Table 54 shows, however,
that the difference between Mmax and the largest of the values of M. and M, does not.
exceed 10 per cent of the latter values and that the gencral procedure described on
page 238 is justified in case 4 as well.

For the purpose of the design of isolated panels without continuity (Fig. 119),
Table 54 contains the values of the largest moments M .z acting at z = 0.1e,y = 0.1b;
for rectangular plates the dircetion of omay is practically that of the shorter span and
for square plates that of the diagonal = —y. For the sake of a greater sccurity
those values of M .« may also be used in caleulating continuous panels of oblong shape.
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TasLE 55. Bexbving MoMmENTS FOR UNIFORMLY LOADED PLaTEs IN Casy 5*
» = 0.2, = smaller of spans ¢ and b

i Center of plate Middle of fixed edge
l)/(l, l~——-‘*“——-—‘ T FaCtor
Moo= el | My = Bl Mgl | My = sugl?
l [533 ) Bs Y5 35
05 + 0026 | 00554 | —0.0783 | —0.114
0.6 | 0.0245 0.0481 —~0.0773 —0.102
0.7 | 0.0268 0.0409 —0.0749 —~0.0907 b2
0.8 0.0277 0.0335 —0.0708 | —o0.0778 | ¢
0.9 | 0.0274 0.0271 —0.0657 —~0.0658
1.0 0.0261 0.0213 —0.0600 ~0.0547 |
1.1 0.0294 0.0204 —0.0659 —~0.0566
1.2 0.0323 0.0192 —0.0705 —~0.0573
1.3 0.0346 0.0179 —0.0743 —~0.0574
1.4 0.0364 0.0166 —0.0770 ~0.0576
1.5 0.0378 0.0154 —0.0788 ~0.0569
1.6 0.0390 0.0143 —0.0803 ~0.0568 |
1.7 0.0398 0.0133 —0.0815 ~0.0567
1.8 0.0405 0.0125 —0.0825 ~0.0567
1.9 0.0410 0.0118 —0.0831 —0.0366
2.0 0.0414 0.0110 —0.0833 ~0.0566
< | 00417 | 0.0083 —0.0833 ~0.0566

* The data of this table arc due substantially to F. Czerny, Bautech.-Arch., vol. 11,
p. 33, W. Ernst & Sohn, Berlin, 1955.

The method given in this article is still applicable if the spans, the flexural rigidities,
or the intensity of the load differs only slightly from panel to panel of the continuous
plate. Otherwise more exact methods should be used.

It should be noted, however, that the application of the rigorous methods to the
design of continuous floor slabs often leads to cumbersome caleulations and that the
accuracy thus obtained is illusory on account of many more or less indeterminable
factors affecting the magnitude of the moments of the plate. Such factors are, for
example, the flexibility and the torsional rigidity of the supporting beams, the restrain-
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TasLE 56. BENDING MoMENTS FoR UxiForMLY LoapkEp PraTeEs IN Cask 6
v = 0.2, = the smaller of spans a and b

Center of plate Middle of fixed edge

b/a _ - Factor

M, = aul® | M, = Boqit | M, = voqlz | M, = degl?

g Bs Yo ds
0 0.0083 0.0417 —0.0571 —0.0833
0.5 0.0118 0.0408 —0.0571 —0.0829
0.6 0.0150 0.0381 —0.0571 —0.0793
0.7 0.0178 0.0344 -0.0569 —0.0736 qb?
0.8 0.0198 0.0299 ~0.0559 —0.0664
0.9 0.0209 0.0252 —0.0540 —0.0588
1.0 0.0213 0.0213 —0.0513 -0.0513 |}-———o
1.1 0.0248 0.0210 —0.0581 —0.0538
1.2 0.0284 0.0203 —0.0639 —0.0554
1.3 0.0313 0.0193 —0.0687 —0.0563
1.4 0.0337 0.0181 —0.0726 —0.0568
1.5 0.0358 0.0169 —0.0757 —0.0570
qa?

1.6 0.0372 0.01567 —0.0780 —0.0571
1.7 0.0385 0.0146 —0.0799 —0.0571
1.8 0.0395 0.0136 —0.0812 —0.0571
1.9 0.0402 0.0126 —0.0822 —0.0571
2.0 0.0408 0.0118 —0.0829 —0.0571
% 0.0417 0.0083 —0.0833 —0.0571

ing cffeet of the surrounding walls, the anisotropy of the plate itself, and the inaceuracy
in estimating the value of such constants as the Poisson ratio ».

However, we can simplify the procedure of calculation by restricting the Fourier
series, representing a bending moment in the plate, to its initial term or by replacing
the actual values of moments or slopes along some support of the plate by their
average values or, finally, by use of a moment distribution procedure.!

b4. Bending of Plates Supported by Rows of Equidistant Columns—
(Flat Slabs). If the dimensions of the plate are large in comparison with

L For such methods see C. P. Siess and N. M. Newmark, Univ. Illinois Bull. 43,
1950, where a further bibliography on the subject is given. See also the paper of
H. M. Westergaard, Proc. Am. Concrete Inst., vol. 22, 1926, which contains valuable
conclusions regarding the design of continuous floor slabs.
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the distances ¢ and b between the columns (Fig. 122) and the lateral load
is uniformly distributed, it can be concluded that the bending in all
panels, which are not close to the boundary of the plate, may be assumed
to be identical, so that we can limit the problem to the bending of one
panel only. Taking the coordinate axes parallel to the rows of columns
and the origin at the center of a panel, we may consider this panel as a
uniformly loaded rectangular plate with sides ¢ and b.  From symmetry
we conclude that the deflection surface of the plate is as shown by the
dashed lines in Fig. 122b. The maximum deflection is at the center of
the plate, and the deflection at the corners is zero. To simplify the
problem we assume that the cross-sectional dimensions of the columns
are small and can be neglected in so far as deflection and moments at
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the center of the plate are concerned.! We then have a uniformly loaded
rectangular plate supported at the corners, and we conclude from sym-
metry that the slope of the deflection surface in the direction of the
normal to the boundary and the shearing force are zero at all points
along the edges of the plate except at the corners.?

Proceeding as in the case of a simply supported plate (Art. 30), we
take the total deflection w in the form

w = wy + we (a)

: =ty Ay
where W1 = getyy (1 b‘l> )

tIn this simplified form the problem was discussed by several authors; see, for
example, A. Nédai, Uber dic Biegung durchlaufender Platten, Z. angew. Math.
Mech., vol. 2, p. 1, 1922, and B. G. Galerkin, “Collected Papers,” vol. 2, p. 29, Mos-
cow, 1953.

 The equating to zcro of the twisting moment M, along the houndary follows from
the fact that the slope in the direction of the normal to the boundary is zero.
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represents the deflection of a uniformly loaded strip clamped at the ends
¥ = +b/2 and satisfies the differential equation (103) of the plate as well
as the boundary conditions

dw, 3 _ _p 9 (Pw 9w -
<%>I~ia/2 =0 (QI)I:ia/z h b 57‘(731‘—2 + ay? r—tal? =0 (C)

The deflection w, is taken in the form of the series

we = Ao + Z Y. cos m—;rfi (d)

m=246, ...

each term of which satisfies the conditions (¢). The functions Y,. must
be chosen 80 as to satisfy the homogeneous equation

AAU)Q = O (6)

and so as to make w satisfy the boundary conditions at the edges
y = £b/2. Equation (e) and the conditions of symmetry are satisfied
by taking series (d) in the form

wy — Ao+ 2 <4 cosh T 4 pp M M_W) cos ™ (5
a a a a
m=2406 ...

where the constants A, 4,, and B, arc to be determined from the
boundary conditions along the edge y = b/2. TFrom the condition con-
cerning the slope, viz., that

Jw _ Qu_q dws 0
Y J s dy Y Jy-or2

we readily find that

tanh an,
Bu = = o anh a, @)
in which, as before,
mmb
Oy == % (h)

Considering now the boundary condition concerning the shearing force,
we see that on a normal section nn (Fig. 122b) of the plate infinitely
close to the boundary y = b/2, the shearing forece @, is equal to zero at
all points except those which are close to the column, and at these points
), must be infinitely large in order to transmit the finite load 1gab to the
column (I'ig. 122¢) along an infinitely small distance between z = a/2 — ¢
andx = a/2 + ¢. Representing @, by a trigonometric series which, from
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symmetry, has the form

Q, = Co+ E C,. cos y%r{v_ @)

m=2,406,...

and observing that

Q,=0 f0r0<x<g—

2
a/2
and f Q,de = — gab
a/2—c¢ 4
we find, by applying the usual method of calculation, that
_ ga_b _r
B 2a
and / Q, cos m—” dx = — (II—J (—1)m2

where P = qab is the total load on one panel of the plate. Substituting
these values of the coefficients Co and C,, in series (¢), the required bound-
ary condition takes the following form:

d*w ?*w
@ = =D (57 +555)...

P mnx P
— —1 mf2 < o
a (—=3) cos a 2a

m=246,...
Substituting expression (@) for w and observing that the second term in

parentheses vanishes, on account of the boundary condition dw/dy = 0,
we obtain

o0

3
D <6 wz) __PF E (—1)"'2 cos mwre
y=b/2 a a

ay?
m=24,06,...

from which, by using expression (f), we find that

,m37r3 .
D — [(4, + 3B,) sinh o + B, cosh o) =
a

(=72 ()

el

Solving Eqs. (g) and (j) for the constants A, and B,., we obtain

A = Pa? (—1)miz &m 4 tanh an
™= 7 9mireD sinh e, tanh o
Pa? 1
= — — mf2 T
B, 2mire D (=1) sinh o, (k)
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The deflection of the plate takes the form

0

1yt gos ™
= .,.q_bj_ — L_lﬁ * + Ao + M—IZ_ ( 1) cos a
w = 384D b? 0 273D S o tanh o

m=246,...

m

[tanh Am mf;ry sinh *'gy‘ — (am + tanh «,) cosh %] ()

The constant A, can now be determined from the condition that the
deflection vanishes at the corners of the plate. Hence

(w)r=a‘/‘2,1/:b/2 =0

b 1 m m
and AD = — qa (am _— M) (m)

2w D m?® tanh? a,,
m=24,6,...

The deflection at any point of the plate can be calculated by using expres-
sions () and (m). The maximum deflection is evidently at the center of
the plate, at which point we have

0

(w) _ _qb* _ qa’b (—1)™? @, 4+ tanh a,
W) 2e0,y=0 = 3841) 2','r3D m3 sinh W tanh ,
m=24,6,...
_ ,qﬂb_ ~1_ _ afm‘t‘ tanh «,, )
2x*D m\*" 7 tanbla, )
m=2,46,...

Values of this deflection calculated for several values of the ratio b/e are
given in Table 57. Values of the bending moments (M,).—0y—0 and
(M,)z—04—0 calculated by using formulas (101) and expression (I) for
deflection are also given. It is seen that for b > & the maximum bend-

TapLE 57. DeFLEcTIONS AND MoMENTs AT THE CENTER oF A PaneLn (Fig. 122)

v = 0.2

gb* 2 2

b/a ’w=a—5 M, = Bgb* | M, = Bigb
a B B:

1 0.00581 0.0331 0.0331
1.1 0.00487 0.0261 0.0352
1.2 0.00428 0.0210 0.0363
1.3 0.00387 0.0175 0.0375
1.4 0.00358 0.0149 0.0384
1.5 0.00337 0.0131 0.0387
2.0 0.00292 0.0092 0.0411
0 0.00260 0.0083 0.0417
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ing moment at the center of the plate does not differ much from the
moment at the middle of a uniformly loaded strip of length b clamped
at the ends.

Concentrated reactions are acting at the points of support of the plate, and the
moments calculated from expression (I) become infinitely large. We can, however,
assume the reactive forces to be distributed uniformly over the area of a circle repre-
senting the cross section of the column. The bending moments arising at the center
of the supporting area remain finite in such a case and can be calculated by a pro-
cedure similar to that used in the case of rectangular plates and described on page 147.
With reference to Fig. 122, the result can be expressed by the formulas?

©

b [ 1
(M 2)zmarzymbiz = Mo — A 1 + 1 - v —
4 3 . m1rb
sinh? —
a

L n=1 . (0)
b2 1 1
M) martiis = Mo+ 5= | =2 41— 0) ) — +a-nZ
4 3 . nxb b
sinh? ——
L n=1 a
In these expressions
M LY PR ¢ +1
= — — 0
T T S = =g

g = ¢ ™' and ¢ denotes the radius of the circle, supposed to be small compared
with spans ¢ and b of the panel. Carrying out the required calculations, we can
reduce Egs. (o) to the form

(M 2)zearzy—hrz

b
qf [(1 + ) log— - (a +3»>]
gab (»)
47

(M )raineyahio ,:(1 + ») ]c)g - - (B + ozv):'

in which « and g8 are coefficients given for several values of the ratio b/¢ in Table 58.

TaBLE 58. VALUES oF COEFFICIENTS a AND 8 IN Lgs. (p) ForR MOMENTS
ON SUPPORT

\ \
b/a 1 1.1 1.2 1.3 14 15 2.0
: |
P 0.811 | 0.822 0.829 0.833 0.835 0.836 | 0.838
8 0.811 | 0.698 0.588 0.481 0.374 0.268 ‘ —0.256

The bending moments corresponding to the centers of columns of rec-
tangular cross section also can be calculated by assuming that the reac-
tions are uniformly distributed over the rectangles, shown shaded in Fig.

! Given by A. Nddai in his book ‘‘Elastische Platten,” p. 154, Berlin, 1925.
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TasLe 59. BEnpine MoMENTS AND LARGEST SHEAR FoORCE oF A Squakrk
Paxen orF o Unrrormry Loapep Prate (Fig. 123)

v = 0.2
wja = k (M) royear = Bga2 (M)reu=o = Br1ga2| (M) zeaf2y-0 = B2ga?|(My) sz y-0 = B3ga%|Qumax = yqi
8 81 B2 B L%
0 - ® 0.0331 —0.0185 0.0512 o
0.1 —0.196 0.0329 —0.0182 0.0508 2.73
0.2 —0.131 0.0321 —0.0178 i 0.0489
0.3 —0.0933 0.0308 -0.0170 0.0458 0.842
0.4 —0.0678 0.028¢ —~0.0158 0.0415
0.5 —0.0487 0.0265 . —0.0140 0.0361 0.419
: i

123, that represent the cross sections of the columns.! In the case of
square panels and square columns we have u/a = »/b = k, and the
moments at the centers of the columns and at the centers of the panels
are given by the following formulas:

_a+

(Mx):t=.z/=a/2 = (ﬂ[u)x:y:a/‘l = ) V)qa2 [(1 — k) (2 — k)

12

4

1 2 s mmk mr(2 — k) .
+ i E P N— sinh 5 cosh 5 sin mvrk] (@)
m=1

(Mz)z=1/:0 = (A{J/)Z==y=0

1 21— k? 1 inh mrk si k
_( ~|—4v)qa [ = +,}‘3/TZE(‘1)M+IS mrk sin mmr ] (r)

m? sinh mx

m=1

The values of these moments, to-
gether with values of moments at
half a distance between columns, ob-
tained from the same solution and
calculated for various values of k and
for v = 0.2, are given in Table 59.
It is seen that the moments at the
columns are much larger than the
moments at the panel center and that
their magnitude depends very much
on the cross-sectional dimensions of
the columns. The moments at the
panel center remain practically con- Fre. 123
stant for ratios up to k = 0.2. Hence the previous solution, obtained on

N

bl
2

(SR SN

2

N

t This case was investigated by 8. Woinowsky-Krieger; see Z. angew. Math, Mech.,
vol. 14, p. 13, 1934. See also the papers by V. Lewe, Bauingenieur, vol. 1, p. 631,
1920, and by K. Frey, Bauingeniewr, vol. 7, p. 21, 1926,
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the assumption that the reactions are concentrated at the panel corners,
is sufficiently accurate for the central portion of the panel.
An approximate calculation of moments given by Eq. (¢) in the form of a series can

also be made by means of expressions (p). Using for this purpose Eq. (¢), Art. 37,
we substitute

¢ = u e = (0.57u
V2
i.e., the radius of a cirele equivalent to the given squarce area u by v, in Egs. (p). In
the particular case of square panels numerical results obtained in this manner are but
slightly different from those given in the seccond column of Table 59.

The shearing forces have their maximum value at the middle of the
sides of the columns, at points m in Fig. 123.  This value, for the case of
square panels, depends on the value of the ratio & and can be represented
by the formula @ = vyqa®. Several numerical values of the factor v are
given in Table 59. It is interesting to note that there is a difference of
only about 10 per cent between these values and the average values
obtained by dividing the total column load ga®(1 — %?) by the perimeter
P 4ka of the cross section of the column.
Uniform loading of the entire plate
/ r gives the most unfavorable condition

b at the columns. To get the maxi-
v mum bending moment at the center

)
of a panel, the load must be distri-
buted as shown by the shaded areas
in Iig. 124a. The solution for this

P case is readily obtained by combining
; the uniform load distribution of in-
WP 3 tensity ¢/2 shown in Fig. 124b with
(o) the load ¢/2 alternating in sign in
consecutive spans shown in Fig. 124¢.

.
4

TENERY Ity a
Tt t IEEEE ti{,r 2 The deflection surface for the latter
(c) T% casc is evidently the same as that
Fie. 124 for a uniformly loaded strip of length

a simply supported at the ends.
Taking, as an example, the casge of square pancls and using the values in
Table 57, we find for the center of a pancl (Iig. 124a):

4 4
5 49% 00942 1%

1 _ at
(w)r=u=0 = 2 q - 0001)81 B 3—8—4 5 ﬁ D

(Mo — %([ - 0.0331a® + 117) ¢a? = 0.0791¢a?

(M) 1 = éq -0.0331a2 + %2 ga® = 0.0291qa’
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From Table 59 we conclude, furthermore, that
(M) smoy=bie = 2q - 0.0512a% + %ga? = 0.0881¢a?

The foregoing results are obtained in assuming that the plate is free to
rotate at the points of support. Usually the columns are in rigid con-
nection with the plate, and, in the case of the load distribution shown in
Fig. 124, they produce not only vertical reactions but also couples with a
restraining effect of those couples on the bending of the panels. A frame
analysis extended on the flat slab and the columns as a joint structure
therefore becomes necessary in order to obtain
more accurate values of bending moments under
alternate load.* 24 -

The case in which one panel is uniformly 2
loaded while the four adjacent panels are not ~
loaded is obtained by superposing on a uniform
load q/2 the load ¢/2, the sign of which alter- /4/ - /V
nates as shown in Fig. 125. In this latter case 222
each panel is in the same condition as a simply
supported plate, and all necessary information
regarding bending can be taken from Table 8. Taking the case of a
square panel, we find for the center of a panel that

ST
A
S
]

+
|

NN NN

e )

Fra. 125

S SN AR at _ gat
(@)amym0 = 54~ 0.00381 % + 5 ¢ - 0.00406 75 = 0.00494 I
(Moo = (M) amyo = %q -0.0331a? + -% q - 0.0479 % a* = 0.0387qa?

The case of an infinitely large slab subjected to equal concentrated
loads centrally applied in all panels can be handled substantially in the
same manner as in the preceding case, 7.e., by using the double periodicity
in the deflections of the plate.?

The problem of bending of a uniformly loaded flat slab with skew
panels has also been discussed.?

55. Flat Slab Having Nine Panels and Slab with Two Edges Free.
So far, an infinite extension of the slab has always been assumed. Now
let us consider a plate simply supported by exterior walls, forming the
square boundary of the plate, together with four intermediate columns
(Fig. 126). From symmetry we conclude that a uniformly distributed

1 The procedure to be used is discussed in several publications; see, for instance,
H. Marcus, “Die Theorie clastischer Gewebe,”” p. 310, Berlin, 1932.

2 This problem was discussed by V. Lewe in his book ‘‘Pilzdecken und andere
trigerlose Eisenbetonplatten,” Berlin, 1926, and also by P. Pozzati, Riv. math. Univ.
Parma, vol. 2, p. 123, 1951.

3 8ee V. 1. Blokh, Doklady Akaed. Neuk S.8.8.R., n. s., vol. 73, p. 45, 1950.
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also Lewe, op. cit.
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load of intensity ¢ produces equal
column reactions R, which we may
consider as redundant in the given
statically indeterminate structure.
Removing all columns, we obtain a
simply supported square plate carry-
ing merely the given load ¢g. The
deflections wq produced by this load
at the center of the columns can
easily be calculated by means of the
theory given in Chap. 5. Next, re-
moving the load ¢ and distributing a
load B = 1 (acting downward) uni-
formly over cach area u by u, we
obtain some new deflections w; at the
same points * = +a/2, y = +a/2
asbefore. Fromthecconditionthatin
the actual case these points donot de-
flect, we conclude that we — Rw, = 0,
which yields R = wo/w;. Now it
remains only to combine the effect
of the uniform load ¢ with the effect
of four known reactions on the bend-
ing moments of the square plate of
the size 3a by 3a.

In the case of a partial loading,
such as shown in Fig. 126b and ¢, we
have to superpose one-half of the
moments previously obtained on the
moments of a simply supported plate
with the area a by 3a, carrying a
uniformly distributed load 4g¢/2.
Calculations of this kind carried out
by Marcus! led to the values of bend-
ing moments given in Table 60. The
reaction of a column is B = 1.196¢a?
in this case. The bending of an in-
finite plate which is supported not
only along both its parallel sides

1 “Die Theorie elastischer Gewebe”’; see

The case of a square plate with one intermediate support was

discussed by N. J. Nielsen, ““Bestemmelse af Spandinger I Plader,” p. 217, Copen-

hagen, 1920.
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TasLE 60. CorrriciENTS 8 FOR CALCULATION OF BENDING MoMENTS M = Bga?
oF A SivpLY SUPPORTED SQUARE PLATE wiITH FOUR INTERMEDIATE
Corumns (Fig. 126)
ufa = 0.25, » = 0.2

Load a Load b Load ¢
. T |y
Point - =
e e M, M, M. M, M, M,

1 0 0 0.021 0.021 | —0.048 | -0.004 0.069 0.025
2 0.50 —0.040 0.038 | —0.020 0.019 | —0.020 0.019
3 1.00 0.069 0.025 0.093 0.027 | —0.024 | —-0.002
4 0 0.5 0.038 | —0.040 | —0.036 | —0.036 0.074 | —0.004
5 0.5{05] —-0.140 | —0.140 | —-0.070 | —0.070 | —0.070 | —0.070
6 1.0 0.5 0.074 | —0.004 0.092 0.014 | —0.018 | —0.018
7 0 1.0 0.025 0.069 | —0.028 0.017 0.052 0.052
8 0.5 1.0] —0.004 0.074 | —0.002 0.037 | —0.002 0.037
9 1.01.0 0.053 0.053 0.066 0.044 | —0.013 0.009

but also by one or several rows of equidistant columns? can be discussed
in a similar manner.

The case of bending of a long rectangular plate supported only by the
two parallel rows of equidistant columns (IFig. 127) can also be solved
without any difficulty for several types of loading. We begin with the case
in which the plate is bent by the moments M, represented by the series

(M) etz = Mo + E Ey cos 2= (@)

m=24,8,...
Since there is no lateral load, the deflection surface of the plate can be
taken in the form of the series

2 b2
=A0+A1(’1“—Z>

+ <A cosh Z¥ 4 B, mWJ sinh ﬁ;rﬂ> cos %r_y_c ®)
=24,6,...

the coefficients of which are to be determined from the following boundary
conditions:

«©

2 . mrz
Ve V£2—> 62=M0+ z EmCOST
y i m=245,... ()

3w
[4 +2-v 3y axz]yﬁibﬂ =0

1 This problem has been considered by K. Grein, ‘Pilzdecken,” Berlin, 1948,
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and from the condition that the deflection vanishes at the columns.
Substituting series (b) in Eqgs. (¢), we find that

M,
4="9p
A - — a*bp (1 4+ ») sinh @ — (1 — »)a, cosh a, ()
™= T mmiD (3 + »)(1 — ») sinh a, cosh ay, — @n(l — )2
B - _ ak,, sinh a,

r2m2D (3 + ») sinh @, cosh a, — an(l — »)

Combining this solution with solution (I), Art. 54, we can investigate the
bending of the plate shown in Fig. 127a under the action of a uniformly

f t f !

0 X
} R/
l"HHH"Hl(,l)H"HHH"i
b

Fia. 127

distributed load. For this purpose we calculate the bending moments
M, from expression (I) by using formula (101) and obtain

h?
(Mu)u=ib/2 = - ?_2
_ qab (=m0 149 an(l =) mrx
2w E m [tanh oy sinh? a, 008 =5 e)
m=2406,...

Equating this moment to the moment (a) taken with the negative sign,
we obtain the values of M, and E,, which are to be substituted in Eqs.
(d) for the constants A1, A, and B, in expression (b). Adding expres-
sion (b) with these values of the constants to expression ([), Art. 54, we
obtain the desired solution for the uniformly loaded plate shown in Fig.
127a.

Combining this solution with that for a uniformly loaded and simply
supported strip of length b which is given by the equation

I B AN Y PR
W= 24D(4 y><4b y

we obtain the solution for the case in which the plate is bent by the load
uniformly distributed along the edges of the plate as shown in Fig. 127b.
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656. Effect of a Rigid Connection with Column on Moments of the Flat Slab. In
discussing the bending of a flat slab it has always been assumed that the column
reactions are concentrated at some points or distributed uniformly over some areas
corresponding to the cross section of the columns or their capitals. As a rule, however,
concrete slabs are rigidly connected with the columns, as shown in Fig. 128.

In discussing moments at such rigid joints, let us begin with the case of a circular
column and let ¢ be the radius of its cross section. The calculation of bending

<----0.220-~~]

-3

REERRIINERE

.

0
Q
n

N 3|

—-2¢-]
Fia. 128

moments using cxpression (I) in Art. 54 shows! that, in the case of a square panel
(a = b) and small values of ¢/a, the bending moments in the radial direction practically
vanish along a circle of radius e = 0.22a (Fig. 122a). Thus the portion of the plate
around the column and inside such a circle is in the state of an annular plate simply
supported along the circle r = 0.22a and clamped along the circle r = ¢, with a
transverse displacement of one circle with respect to the other. Hence the maximum

_-Middle line of pane! ~Midd!e line of panel
—_—— " R gttt s N
N A 1
= '
< _ i c
E. c=0.1a | o}N §| § /,u=0.20 ! ol
s | | | $| P ” |
£ I £, T Y :
@ gl 3 173 | X
s © i 2 \0
=21 . !
ﬁ\J = I !
< \\ | okv
L. I e

F1c. 129 F1a. 130

bending stress around the column can be obtained by using formulas (75), previously
derived for circular plates (see page 61), and combining cases 3 and 8 in Fig. 36.

A more elaborate discussion of the same problem is due to F. Té6lke.2 Numerical
results obtained by F. Télke for a square panel and ¢/a = 0.1 (Fig. 129) are given in
Table 61, together with values of bending moments calculated for the same case on the

1 Such caleulations were made by A. Niddai; see his book ““Elastische Platten,” p.

156, Berlin, 1925.
2 F. Tolke, Ingr.-Arch., vol. 5, p. 187, 1934.
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basis of the customary theory. It is seen that a rigid connection between slab and
column tends to increase numerically the moments on support and to reduce the posi-
tive moments of the slab.

TarLE 61. CoEFFICIENTS B FOR CALCULATION of BenpING MoMENTS M = Bga®
oF A UNiroRMLY LOADED SQuaARE PANEL oF A FraT SuaB

y = 0.2
Circular column Square column
(Fig. 129) (Fig. 130)
Bending Location Rigid Rigid
moment connection | Customary | connection | Customary
with theory with theory
column column
My=M, z=a/2,y=a/2 0.0292 0.0323 0.0264 0.0321
M, x=a/2,y=0 0.0399 0.0494 0.0348 0.0487
M, ¢ =a/2,y=0 | —0.0161 | —0.0179 | —0.0146 | —0.0178
M,=M,| z=09y=0 | ........ —0.143 | ... —0.131
M, z=uf2,y=0 | ... ... | ... —0.0626 -0.0803
M, x=u/2,y=u/2] ... | . ... — —0.0480
M, ! r=c —0.1682 —0.0629

The same table also gives moments for a flat slab rigidly connccted with a column
of a squarc cross section! (Fig. 130). The infinitely large stresses occurring at the
corners of columns in this case are of a highly localized character. Practically, they
are limited by a cracking of concrete in tension and a local yielding of the steel
reinforcement.

TFrom this discussion we may conclude that (1) the actual values of bending moments
of a flat slab at the columns generally lie between the values given in Table 61 for the
rigid connection and thosc given by the usual theory, and (2) ecircular columns secure
a more uniform distribution of clamping moments than columns with a square-shaped
supporting area.?

1 See 8. Woinowsky-Krieger, J. Appl. Mechanics, vol. 21, p. 263, 1954.

2 See T. Haas, “Conception et calcul des planchets & dalles champignon,” Paris,
1950. The distribution of stresses in a flat slab has been investigated experimentally
by M. Ro% and A. Eichinger, Proc. Congr. Concrete and Reinforced Concrete, Liége,
1930; by R. Caminade and R. L'Hermite, Ann. inst. lech. baliment el trav. publ.,
February, 1936; and more rceently by J. G. Hageman, Ingenieur, vol. 65, June, 1953.



CHAPTER 8

PLATES ON ELASTIC FOUNDATION

57. Bending Symmetrical with Respect to a Center. A laterally
loaded plate may rest on an clastic foundation, as in the case of a con-
crete road, an airport runway, or a mat. We begin the discussion of such
problems with the simplest assumption that the intensity of the reaction
of the subgrade is proportional to the deflections w of the plate. This
intensity is then given by the expression kw. The constant k, expressed
in pounds per square inch per inch of deflection, is called the modulus of
the foundation. The numerical value of the modulus depends largely
on the properties of the subgrade; in the case of a pavement slab or a
mat of greater extension this value may be estimated by means of the
diagram in Table 62.1

TABLE 62. VALUES orF THE MoDULUS OF SUBGRADE

Modulus k" in Ib/sqin./in. j
¥ T T T |
do [ o [ [ [Jego | 250 | [ | s¢o | [ [ [sc0
General soil rating as subgrade, subbase or base
Poor . Excellent Good |Best
Very poor subgrade subgrade Fair to good subgrade subgrade Good subbase base |bose
[ [ ow ¢
G-Gravel P - Poorly graded
S ~Sand L - Low to med. compressibility e
M-Mo.very fine sond,silt  H = High compressibility GP
C~Clay GF i;
F - Fines, materiot
o Oiess.fhun O0.1mm SW
~ Qrganic
W-Well graded ¢
SP
[ SF
g CH | ML {
OH I cL i
I oL | ! !
& MK 1 | l !

Let us begin with the case of a circular plate in which the load is dis-
tributed symmetrically with respect to the center. In using Eq. (58),

1 Based on Casagrande’s soil classifieation. The table should not be regarded as a
substitute for plate bearing tests. For further information see Trans. Am. Soc. Civ.
Engrs., vol. 113, p. 901, 1948,  Sec also K. Terzaghi, Geotechnigue, vol. 5, p. 297, 1955
(Harvard Soil Mechanies Series, no. 51).

259
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we add the load —kw, due to the reaction of the subgrade, to the given
lateral load ¢. Thus we arrive at the following differential equation for
the bent plate:

d* | l1d\[(dw , 1dw\ q—kw
Qm+;@>@w+;m>— D (178)
In the particular case of a plate loaded at the center with a load P,*

q is equal to zero over the entire surface of the plate except at the center.
By introducing the notation

(a)

Ar =

k
D
Eq. (178) becomes

d? 1d\[/dw | 1dw
Y SN Y (Tt =
! (dr2+ Td?“) (dﬂ - TdT>+w 0 ®)
Sinece k is measured in pounds per cubic inch and D in pound-inches, the
quantity [ has the dimension of length. To simplify our further dis-

cussion it is advantageous to introduce dimensionless quantities by using
the following notations:

(e

~ 8
I
n

ol
i
8

Then Eq. (b) becomes

d? 1d d% , 1dz
@9+5@>@ﬁ+5a>+z=0 @)

Using the symbol A for

d? 1d
de? ' zdx
we then write
AAz+2 =0 (e)

This is a linear differential equation of the fourth order, the general solu-
tion of which can be represented in the following form:

2= A X (x) + AX(x) + A X3(x) + A X4(2) (N
where A . .., A, are constants of integration and the functions
X4, . . ., X4 are four independent solutions of Eq. (e).

We shall now try to find a solution of Eq. (¢) in the form of a power

* This problem was discussed by H. Hertz, Wiedemann’s Ann. Phys. u. Chem., vol.
22, p. 449, 1884; see also his ** Gesammelte Werke,” vol. 1, p. 288, 1895, and A. I'éppl,
“Vorlesungen tiber technische Mechanik,” vol. 5, p. 103, 1922. It is worth noting that
Hertz’s investigation deals with the problem of a floating plate rather than with that
of a plate on an elastic foundation. Thus, in this case the assumption regarding the
constancy of k is fulfilled, k being the unit weight of the liquid.
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series. Let a.z” be a term of this series. Then, by differentiation, we
find
Ala,2z™) = nln — Da2v? 4 ne.x”? = nlazn?
and AA(a.x") = ni(n — 2)ia,2m "
To satisfy Eq. (e) it is necessary that each term a.z" in the series have a
corresponding term a,-4"* such that
n2(n — 2)%a,2"t + Gusz”t =0 (9)

Following this condition, all terms cancel when the series is substituted in
Eq. (e); hence the series, if it is a convergent one, represents a particular
solution of the equation. From Eq. (g) it follows that

— An—4a
n = ni(n — 2)2 (#)
Observing also that
AA(ag) = 0 and AA(aqx?) = 0 )

we can conclude that there are two series satisfying Eq. (e), viz.,

$4 xS
Xi(x) =1 _22-42+22-42'62‘82
L
_22.42.62.82.102.122+
and )
QJG xlo
Xo(z) = 2* — 42~62+42'62'82'102
x14

—42.62.82.102.122.142+ e
It may be seen from the notations (¢) that for small values of the dis-
tance r, that is, for points that are close to the point of application of the
load P, the quantity x is small, and series (j) are rapidly convergent.
It may be seen also that the consecutive derivatives of series () remain
finite at the point of application of the load (x = 0). This indicates that
these series alone are not sufficient to represent the stress conditions at
the point of application of the load where, as we know from previously
discussed cases, the bending moments become infinitely large.

For this reason the particular solution X; of Eq. (¢) will be taken in
the following form:

X;:; = Xilogx + Fi(x) (k)

in which F;(x) is a function of x which can again be represented by a
power series. By differentiation we find

4 d°X,

AAXy = x dx®

+ log 2 AAX, + AAF;(x)
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and substituting X; for z in Eq. (¢), we obtain

4dX1
X

+ log w(AAX, + X1) + AAF,(x) 4+ Fi(z) =0

Since X satisfies Eq. (¢) and is represented by the first of the series (j),
we obtain the following equation for determining Fj(x):

AAFS(&) + Fiylx) = f‘(ddi‘;‘ - 4 Zz 5424
e et )
Taking Fi(x) in the form of the series
Fs(x) = bar' + bgx® 4 bypx?® 4 - - - (m)
and substituting this series in Fq. (1), we determine the coeflicients by,
bs, b1s, . . . so that the resulting equation will be satisfied. Observing

that
AA(bg®) = 42-22- b,

we find, by equating to zero the sum of the terms that do not contain z,
that

2 bs =4 5
b _2.3.42— 3_
or tT T2t4 T 128

Equating to zero the sum of the terms containing z*, we find

by — — 20
5 1,769,472

In general, we find

b,;, = (_1)’”4_1 YA ! l: n—4 + n(n — l)(n — 2) :l

nZ(n_Q) 62n2

Thus the third particular solution of Eq. (e) is

25

X3=X110g$+ml —m

xs + “ e (n)
The fourth particular integral X, of Eq. (e) is obtained in a similar
manner by taking

Xi=Xylogx + Fu(x) = Xologa + 4~ e, ?()690“
1 A(4~4;5'° 1098

4. 64 +42-62. . 102)‘”10’*' e (0




PLATES ON ELASTIC FOUNDATION 263

By substituting the particular solutions (j), (n), and (o) in expression
(f) we obtain the general solution of Eq. (¢) in the following form:

°T A‘<1 - 2256-442 T 42?8(52 AT )
+ A (9”2 - 429{662 + o (32%];2 Sior T >
+ 4 [(1 - 22#42 RIDEr 42?862 8 >1"” t 28
B ﬁg‘;@?"z nE ] A [(”2 R ﬁeg + *’"’?33%
S e g M ] o

It remains now to determine in each particular case the constants of inte-
gration A,, . . ., Asso0 as to satisfy the boundary conditions.

Let us consider the case in which the edge of a circular plate of radius o
is entirely free. Making use of expression (52) for the radial moments
and expression (55) for the radial shear force @, we write the boundary

conditions as
d*w 1 dw
Gﬂ+V?W>m_O

d [d*w I dw
ar (dﬁ T ?1?),:@ =0

In addition to these two conditions we have two more conditions that
hold at the center of the plate; viz., the deflection at the center of the
plate must be finite, and the sum of the shearing forces distributed over
the lateral surface of an infinitesimal circular cylinder cut out of the plate
at its center must balance the concentrated force P. From the first of
these two conditions it follows that the constant 4; in the gencral solu-
tion (p) vanishes. The second condition gives

(9)

([, Qrdao) _ +P=0 (r)
or, by using notation (a),
dw | ldw .
—k{* — <d7‘2 + - E;) 27¢ + P =0 (8)

where e is the radius of the infinitesimal cylinder. Substituting Iz for w
in this equation and using for 2z expression (p), we find that for an infinitely
small value of z equal to ¢/l the equation reduces to

— kel

4{142 +P=0
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from which
P

s = g ®

Having the values of the constants A, and A, the remaining two con-
stants A, and A, can be found from Iqgs. (¢). I'or given dimensions of
the plate and given moduli of the plate and of the foundation these equa-
tions furnish two linear equations in 41 and A..

Let us take, as an example, a plate of radius ¢ = 5 in. and of such rigidity that

L= P s
= k— .

We apply at the center a load P such that

= 102 - 10~

4

__ P

8xkl3
Using this value of 4, and substituting lz for w, we find, by using expression (p) and
taking x = a/l = 1, that Eqgs. (¢) give

0.5004; + 0.2504: = 4.0624,
0.6874, — 8.4834, = 11.094,

4.062 - 102 - 10™*
11.09 - 102 - 1075

I

I

These equations give
A, =86-10 Ay = —64 1070

Substituting these values in expression (p) and retaining only the terms that contain
z to a power not larger than the fourth, we obtain the following expression for the
deflection:

4

x
w=1k=2>5 [86 <1074 (1 — ﬂ) — 64 - 10752 ++ 102 - 107522 log x]

The deflection at the center (x = 0) is then

Wmax = 43 - 107 % in.
and the deflection at the boundary (z = 1) is

Wmin = 39.1 - 1073 in.

The difference of these deflections is comparatively small, and the pressure distribution
over the foundation differs only slightly from a uniform distribution.

If we take the radius of the plate two times larger (¢ = 10 in.) and retain the
previous values for the rigidities D and k, z becomes equal to 2 at the boundary, and
Eqgs. (g) reduce to

0.8264, 4+ 1.9804,
2.6654, — 5.7454.,

1.2084,
16.3744

I

]

These equations give

A, = 3.934, = 400 - 10~5 A = -1.034, = —105- 103 (u)
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The deflection is obtained from expression (p) as

1/'4 5 :ES
=]z = 10501 — —105.10-5 [ 22 — —
w=1lz =51400" 10 PYRT 0 0 x 576
z8 5
. 105 gl z? — 6
4+ 102 - 10 [loba‘<:c 42-62)+3,456x]}

The deflections at the center and at the boundary of the plate are, respectively,

Wiaxy = 2.1072 in. and Wmin = 0.88 - 102 in.

It is thus seen that, if the radius of the plate is twice as large as the quantity [, the
distribution of pressure over the foundation is already far from uniform. The applica-
tion of the strain energy method to the problem of bending of a plate on elastic sub-
grade will be shown in Art. 80.

68. Application of Bessel Functions to the Problem of the Circular Plate. The
general solution (f) of Eq. (e) in the preceding article can also be represented in terms
of Bessel functions. To this end we introduce into q. (¢) a new variable { = z vV i;
thus we arrive at the equation

AA'z —2=0 (@)
in which the symbol A’ stands for
@ 14
agr - Edg
Now Eq. (@) is equivalent to equation
ANz +2) —(Az+2) =0 (b
and also to
A’z —2) + (A2 —2) =0 (c)

Hence Eq. (a) is satisfied by the solutions of the Bessel differential equation

JOR L Y. ;
24z =—+-— =
ag " gdg " ° @
as well as by the solutions of the equation
A ; d?z 1dz 0
2 — 2 = b — — g =
ag " gdr ©

which is transformable into Eq. (d) by substituting £ for &, Thus the combined solu-
tion of Egs. (d) and (e) can be written as

2 = Bily(x V1) + Bulo(xi V1) + BsKo(z Vi) + BiKo(zi V1) 2

Iy and K, being Bessel functions of the first and sccond kind, respectively, and of
imaginary argument, whereas By, Bs, . . . are arbitrary constants. The argument
z being real, all functions contained in Eq. (f) appear in a complex form. To single
out the real part of the solution, it is convenient to introduce four other functions, first
used by Lord Kelvin and defined by the relations!

Io(zx vV *1) =berx + beix

Ko(x \/?I—_—z) =kerz + kei z @

1 See, for instance, G. N. Watson, “Theory of Bessel Functions,” p. 81, Cambridge,
1948.
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Setting, furthermore,
B1 + Bg = Cll Bl - BQ = —'Czll
B; + B, Cd By — By = —Cul
where the new constants C'y, Cy, . . . are real, we obtain the following expression for
the deflections of the plate:
w=C beraz + Cabciz 4 Cs kei xz + 'y ker z (h)
All functions herein contained are tabulated functions,! real for real values of the
argument.
For small values of the argument we have
berz =1—2v/64 4+ - - -
bei z = 22/4 — 25/2,304 4 - - - (4
kerz = —logz +log 2 — vy 4+ z22/16 4 - - - Y
keiz = —(@*4) logz —»/4 4+ (1 +log 2 — y)x2/4 + - - -

I

in which y = 0.5772157 - - - is Luler’s constant and log 2 — v = 0.11593 - - - .
For large values of the argument the following asymptotic expressions hold:

. e’ .
bei x ~ —: 5in <v -

V/2rz )
e"d
ker r ~ ——cos | ¢ + 7—r,
\/2;1:/7r 8
. .
- sinfo + —
2z /% 8
in which ¢ = 2/ \/E
The general solution (k) can be used for the analysis of any symmetrical bending of
a circular plate, with or without a hole, resting on an elastic foundation. The four

constants C, corresponding in the most general case to four boundary conditions, must
be determined in each particular case.?

ol

\/ZW.T

67
ber x ~ —=— cos (o -

ol

@

. ¢
keixz ~ — —

1See “Tables of Bessel Functions Jo(z) and Ji(z) for Complex Arguments,”
Columbia University Press, New York, 1943, and “Tables of Bessel Functions
Yo(z) and Y,(2) for Complex Arguments,” Columbia University Press, New York,
1950. We have

ber x = Re [Jo(zet™'1)] beiz = — Im [J,(zei™/4)]

I

—_ gRe [¥Vo(zei®i)] — 1.2" Im [Jo(zei™14)]

~

ker z

kei x = glm [Yo(xei™'9)] — gRe [ o(zei™4)]

2 Many particular solutions of this problem arc given by F. Schleicher in his
book “Kreisplatten auf elastischer Unterlage,” Berlin, 1926, which also contains
tables of functions Z(x) = ber z, Z:(z) = — bel z, Zi(z) = —(2/x) kei z, and
Zyx) = —(2/7) ker z as well as the first derivatives of thoge functions. An abbrevi-
ated table of the functions Z and their first derivatives is given in Art. 118, where

they are denoted by the symbol ¢.
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We shall confine ourselves to the case of an infinitely extended plate carrying a
single load P at the point © = 0. Now, from the four functions forming solution (h),
the first two functions increase indefinitely with increasing argument in accordance
with Eqgs. (j); and the function ker z becomes infinitely large at the origin, as we can
conclude from Eqs. (7). Accordingly, setting C, = C, = C4 = 0, solution (k) is
reduced to

w = C; keiz (k)

In order to determine the constant €3, we caleulate, by means of Igs. (7), the shearing
force [see Egs. (193)]

o = D (B ) _CD (1 e
T T e \de? xdz) 1B \z 8 '

As z decreases, the value of @, tends to CiD/I3%z = (3D /l*r. On the other hand, upon
distributing the load P uniformly over the circumference with radius r, we have

Q. = —P/2xr. Equating both expressions obtained for Q,, we have
Y Plz
Cy = ~ 57.——1) 0]

Substitution of Csinto Eq. (k) yields, finally, the complete solution of Hertz’s problem
in the form
r

w = — :’25 kei x (179)

. . . N wD
and the corresponding reaction of the subgrade is given by p = kw = T The

variation of these quantitics along a meridional section through the deflection
surface of the plate is shown in Fig. 131, together with similar curves based on a theory
which will be discussed in Art. 61.

At the origin we have kel 2 = —x/4 and the deflection under the load becomes
i (180
Wiax = T
8D )

For the reaction of the subgrade at the same point we obtain

P

Pmax = Q’é

(181)

If we take an infinitely large plate with the conditions of rigidity and loading assumed
on page 264, the deflection under the load becomes

P
e = = —— = xlA, = (3.14)(5)(102 - 10-5) = 0.016 in.
v sp " g A= GIHOX ) "

as compared with the value of 0.02 in. obtained for a finite circular plate with the
radius a = 21
The distribution of the bending moments due to the concentrated load is shown in
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Fig. 131c. It is seen that the radial moments become negative at some distance from
the load, their numerically largest value being about —0.02P. The positive moments
are infinitely large at the origin, but at a small! distance from the point of application
of the load they can be easily calculated by taking the function kei x in the form (7).
Upon applying formulas (52) and (53) to expression (179), we arrive at the results

! As compared with the characteristic length I = \7 D/k.
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P 2l 1
M, =Z; [(1 + ») (log7 - 'y) - 5(1 - v):l

(182)
P 21 1
M, =— [(1 —i—v)(log—- —'y)—i——(l —-v)]
4 r 2

A comparison of the foregoing expressions with Eqs. (90) and (91) shows that the
stress condition in a plate in the viecinity of the load in Hertz’s case is identical with
that of a simply supported circular plate with a radius @ = 2le™ = 1.123!, except for

a moment ]l[: = M', =% (1 — »), which is superimposed on the moments of the
2

circular plate.

Let us consider now the case in which the load P is distributed over the area of a
circle with a radius ¢, small in comparison with {. The bending moments at the center
of a circular plate carrying such a load are

P a

M, =M, =— | (1 +»log—+1 (m)
4 9

This results from Eq. (83), if we neglect there the term c?/a? against unity. By

substituting a = 2le~7 into Eq. (m) and adding the moment —P/8x(1 — »), we obtain

at the center of the loaded circle of the infinitely large plate the moments

(1 + nP 2l 1
max — T - 1 — = -
M + (og S+ 2) (n)
1+ P /
or Mo = E 0 <log -t 0.616) (183)
Ar ¢

Stresses resulting from Eq. (183) must be corrected by means of the thick-plate theory
in the case of a highly concentrated load. Such a corrected stress formula is given on
page 275.

In the case of a load uniformly distributed over the arca of a small rectangle, we may
proceed as deseribed in Art. 37. The equivalent of a square arca, in particular, is a
circle with the radius ¢ = 0.57u«, u being the length of the side of the square (see page
162). Substituting this into Eq. (183) we obtain

1 I
Moo = 2 p (log Z 4 1.177) (0)
4r U

The effect of any group of concentrated loads on the deflections of the infinitely
large plate can be calculated by summing up the deflections produced by each load
separately.

59. Rectangular and Continuous Plates on Elastic Foundation. An
example of a plate resting on elastic subgrade and supported at the same
time along a rectangular boundary is shown in Fig. 132, which represents
a beam of a rectangular tubular cross section pressed into an elastic
foundation by the loads P. The bottom plate of the beam, loaded by
the elastic reactions of the foundation, is supported by the vertical sides
of the tube and by the transverse diaphragms indicated in the figure by
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dashed lines. It is assumed again that the intensity of the reaction p at
any point of the bottom plate is proportional to the deflection w at that
point, so that p = kw, k being the modulus of the foundation.

In accordance with this assumption, the differential equation for the
deflection, written in rectangular coordinates, becomes

] dw |, , Otw w g  kw
PRSI — oo Tiwep top “ D W
g
0 ¥ where ¢, as before, is the intensity of the lateral
- load.
______ Y Let us begin with the case shown in I'ig. 132
y If wo denotes the deflection of the edges of the

bottom plate, and w the deflection of this plate
p P with respect to the plane of its boundary, the
intensity of the reaction of the foundation at
any point is k(w, — w), and Eq. (@) becomes

=T "WO AAw = % (wo — w) (b)
EUSUSEYN RS
Wt

Taking the coordinate axes as shown in the
figure and assuming that the edges of the plate
parallel to the y axis are simply supported and the other two cdges are
clamped, the boundary conditions are

d%w
(w)I:U,x:a =0 (W)zzo,xna =0 (C’)

ow
y_ ={ — =0 d
(W)y—sby2 (ay )y=ib/2 (d)

The deflection w can be taken in the form of a series:
0 . mmwx ©
sin ——
_ 4kw, a . omwx

e 7 L
D TR + V. sin o (e)
m=1.35,... m a4 + B m=1,35, ...

The first series on the right-hand side is a particular solution of Eq. (b)
representing the deflection of a simply supported strip resting on an
elastic foundation. The second series is the solution of the homogenc-
ous equation

aw + o = 0 )
Hence the functions Y,, have to satisfy the ordinary differential equation

mir? |, mirt k
TV — h) R 1! IR L r" —
} ™ - a"l } m + ( at + ])) ¥ m 0 ({I)
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Using notations

mT ks
7 T pTR )
26% = Vit + N ol 2= Vi TN - (%)

and taking the solution of Eq. (g) in the form e, we obtain for 7 the
following four roots:

B+ vy —B+y B-—1y —B—wy
The corresponding four independent particular solutions of Eq. (g) are
ePnY COS YmYy ePnY COS YmlY ety sin vy e gin vy (F)
which can be taken also in the following form:

cosh By cos vy sinh B,y cos v,y
cosh By sin ymy sinh Bny sin vy

(k)
From symmetry it can be concluded that Y,, in our case is an even func-
tion of y. Hence, by using integrals (), we obtain

YV = A, cosh Bny c08 vny + B sinh B,y sin v,y

and the deflection of the plate is

©

. mmx | 4kwe 1
w = sin ——

2 . a Dr mirt k
m=1,35... " < o D

+ A, cosh B,y cos vy + B sinh B,y sin v,y O]

This expression satisfies the boundary conditions (¢). To satisfy con-
ditions (d) we must choose the constants A,, and B,, so as to satisfy the
equations

—Llﬂw“ 1 ,me . ’Ymb

+ A.. cosh 5 cos 5

Dr [mwt | k
m <a,4 + 13)

+ B, sinh P70 sin 70 _ ¢

2 2 (m)
(ABn + Boyn) sinh %’"b cos 7’2';”
- (AM'Ym — B,B») cosh ég-(—) sin t%'fl) = ()

Substituting these values of A, and B, in expression (I), we obtain the
required deflection of the plate.

The problem of the plate with all four edges simply supported can be
solved by using Eq. (a). Taking the coordinate axes as shown in Fig. 59
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(page 105) and using the Navier solution, the deflection of the plate is

mnrx . Nw
w = A 8in —= sin Y (n)
a b
m=1mn=1
In similar manner let the series
-] -]
mmx nw
q= G SIN o sin ”—bi/ (o)

m=1 n=1

represent the distribution of the given load, and the series

p = kw = EZkAmsianmsinn—zy (p)

represent the reaction of the subgrade. Substituting the series (n) in
the left-hand side and the series (o) and (p) in the right-hand side of
Eq. (a), we obtain

amn
A = N (9
Y T
As an example, let us consider the bending of the plate by a force P
concentrated at some point (£,7). In such a case

4P . m .
Umn = — SIN m sin 2271 (r)

ab a b
by Eq. (b) on page 111. By substitution of expressions (g) and (r) into
Eq. (n) we finally obtain
© © - mTl’E - n—ﬂ"ﬂ
4P ST s mwx nry
w = — = sin —— sin (s)
ab m? nt a b
7I'"D '&72" + F—Z + k

m=1 n=1

Having the deflection of the plate produced by a concentrated force,
the deflection produced by any kind of lateral loading is obtained by the
method of superposition. Take, as an example, the case of a uniformly
distributed load of the intensity ¢. Substituting ¢ d¢ dn for P in expres-
sion (s) and integrating between the limits 0 and @ and between 0 and b,
we obtain

™ mnx nwy

16¢ sin == sin ==
w= = 3 2\? @
mn [r‘*D <% + 1> -+ k]

m=13,5,... n=135,... b2
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When £ is equal to zero, this deflection reduces to that given in Navier
solution (131) for the deflection of a uniformly loaded plate.!

Let us consider now the case represented in Fig, 133. A large plate
which rests on an elastic foundation is loaded at equidistant points along
the = axis by forces P.* We shall take the coordinate axes as shown in

Fic. 133

the figure and use Eq. (f), since there is no distributed lateral load. Let
us consider a solution of this equation in the form of the series

o0
mmrx
w = wy + Z Y, cos a (w)

in which the first term

Px Ay . Ny
W = — e=™M/VZ [ cos S 4 sin —=
‘T 9 V2 ak ( /2 V2

represents the deflection of an infinitely long strip of unit width parallel
to the y axis loaded at ¥ = 0 by a load P/a [sec Eq. (283), page 471].
The other terms of the series satisfy the requircment of symmetry that
the tangent to the deflection surface in the & direction shall have a zero
slope at the loaded points and at the points midway between the loads.
We take for functions Y, those of the particular integrals (j) which
vanish for infinite values of y.  Tence,

Y = Ape ¥ cos vny + Bue P sin vy

To satisfy the symmetry condition (6w/dy),—0 = 0 we must take in this
expression

B, = BnAm
’YTIL

1The case of a rectangular plate with prescribed deflections and moments on two
opposite edges and various boundary conditions on two others was discussed by H. J.
Fletcher and C. J. Thorne, J. Appl. Mechanics, vol. 19, p. 361, 1952, Many graphs
are given in that paper.

* This problem has been discussed by H. M. Westergaard; see Ingenigren, vol. 32,
p. 513, 1923. Practical applications of the solution of this problem in concrete road
design are discussed by H. M. Westergaard in the journal Public Roads, vol. 7, p. 25,
1926; vol. 10, p. 65, 1929; and vol. 14, p. 185, 1933.
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Hence, by introducing the new constants A,, = A./vm, We represent the
deflections (u) in the following form:

o

w = wo + A;, cos ﬁgﬁ eV (Y €OS Yml + B SN Yuly) (V)
m=246,...

In order to express the constants A/, in terms of the magnitude of loads
P, we consider the shearing force @, acting along the normal section of
the plate through the x axis. From symmetry we conclude that this
force vanishes at all points except the points of application of the loads
P, at which points the shearing forces must give resultants equal to
—P/2. Tt was shown in the discussion of a similar distribution of
shearing forces in Art. 54 (see page 248) that the shear forces can be
represented by the series

©

P P mwx
e —1)m/2
Q, 55 (—1)™2 cos .

m=240,...

The shearing force, as calculated from expression (v), is

d [ow *w
@ = “Déa(a‘zv'f + aJ)

— £ _ ’ 9 2 mnx
=5, 2D 2 AL Bwyn(BL + 72) cos —

m=2,46,...

Comparing these two expressions for the shearing force, we find

YR GV
" 2aDByn(Bh + Vi)
or, by using notations (),

P(=D)m3

aD\ VAL -l

Substituting this in expression (v), we finally obtain

Al =

P)\g _1 m/2 mmx
w = wy + — (=1) o8 p e P (v, COS Yy

al VN

+ Bm sin vay) (W)

The maximum deflection is evidently under the loads P and is obtained
by substituting = a/2, ¥ = 0 in expression (w), which gives

©

2
P A Ym (184)

Tk |k B,y

Winax
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The deflection in the particular case of one isolated load P acting on
an infinitely large plate can also be obtained by setting ¢ = « in formula
(184). In such a case the first term in the formula vanishes, and by using
notations (¢) we obtain

Py 2 (VA —
5 2wk 2 a M+ un

m=24,6,...

Waax =

__Px - \/7\T5+-7—u2d
T 22k /0 TN
Using the substitution
w1
N oy A+ 1
we find
wo = PN [t 1 _de PN
" 9N 20k Jo V214wl 8k
in accordance with the result (180). With this magnitude of the deflec-
tion, the maximum pressure on the elastic foundation is

Px? P |k
(Phnax = ktomax = =g~ = & \fﬁ (186)

The maximum tensile stress is at the bottom of the plate under the point
of application of the load. The theory developed above gives an infinite
value for the bending moment at this point, and recourse should be had
to the theory of thick plates (see Art. 26). In the above-mentioned
investigation by Westergaard the following formula for caleulating maxi-
mum tensile stress at the bottom of the plate is established by using the
thick-plate theory:

2 23
(O'T)max = 0275(1 + V) i{ﬁz 1()g]0 ;_v (x)

(185)

Here h denotes the thickness of the plate, and

b V1.6¢® + B — 0.675h when ¢ < 1.724h
. when ¢ > 1.724h

il

= C

where ¢ is the radius of the cireular area over which the load P is assumed
to be uniformly distributed. For ¢ = 0 the case of the concentrated
force is obtained.

In the case of a square loaded area u by u, we have to replace ¢ by
0.57u (see page 162).

The case of equidistant loads P applied along the edge of a semi-infinite
plate, us shown n Fig, 134, can also be treated in a similar way. The
final formula for the maximum tensile stress at the bottom of the plate
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under the load when the distance ¢ is large is

E 3
() mex = 0.529(1 + 0.54v) }1; [10g10 (%l};b;) - 0.71} )]

where b is calculated as in the previous case, and c¢ is the radius of the
semicireular area over which the load P is assumed to be uniformly
distributed. Formulas (z) and (y) have proved very useful in the design
of concrete roads, in which case the

cirele of radius ¢ represents the area g% %
of contact of the wheel tire with the 4 !

road surface.?
80. Plate Carrying Rows of Equidistant

Columns. As a last example, let- us con- e

sider an infinite plate or mat resting on ~~ 0 ¢ X

elastic subgrade and carrying equidistant 4 ——"—\\\N

and equal Joads P, each load being distrib- o T, ;

uted uniformly over the area u by v of a 2713 2

rectangle, as shown in Fig. 135, The i
Z% ’
4

= K- [ A a----
Fra. 134 Fia. 135

bending of such a “reversed flat slab’” may be treated by means of the previously dis-
cussed Westergaard’s solution, using simple series.? Much simpler, however, and,
except for the case of a highly concentrated load, alse adequate is the solution in
double series, making use of Navier’s method.

Conditions of symmetry compel us to represent the lateral load due to the columns
in form of a cosine series:

2mmrx 2nmy
q = Qn COS = COS
a b

(a)

m=0 n=0

The intensity of the given load is equal to P/uv within the shadowed rectangles in
Fig. 135 and is zcro clsewhere.  Thus, proceeding in the usual manner, i.¢., multiplying

2mnx 2nmy . . .
™ cos —bﬂ-‘—/ dz dy and integrating between the limits —a/2;, +a/2

Eq. (a) by cos

! The problem of stress distribution near the load applied at a corner of a large plate
has not yet heen solved with the same reliability as the problems discussed above.
Several empiric and semiempiric stress formulas regarding that casc may be found in
“Concrete Pavement Design,” p. 79, Portland Cement Association, Chicago, 1951.
Noteworthy experimental results concerning this problem-were obtained by M. Dantu,
Ann. ponts et chaussées, vol..122, p. 337, 1952. See also L. D. Black, Trans. Eng.
Inst. Canada, vol. 2, p. 129, 1958, and D. E. Nevel, bid., p. 132.

2 8ee W. Milller, /ngr.-Arch., vol. 20, p. 278, 1952, and Osterr. Ingr.-Arch., vol. 6,
p. 404, 1952.
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for x; —b/2, +b/2 for y, we have

4Pemn . mmwu . MV
2 Emn n_7r_.51n__7r_ ()

Amn = s
TrPmnuy a b

where e¢nn = 1 form £ 0,n =0
emn = ¥ form =0,n # G or m#=0,n =20
enn = + form =n =0
In the particular case of m = 0 or n = 0 the coefficient itself is readily obtained as a
limit value of the expression (b).
Now, in accordance with Eq. (a) we take for deflections the series

0 %

2marx 2nmy
w = A omn cO8 cos . (c)
. a

m=0 n=0

and the relation between the coefficients @m. and 4,,, is easily established by the same
reasoning as before (see page 272). Thus, using the notation

2mn 2nr

an = ——  fa=— b, =al + 8 (@
a b
we obtain
Qinn
App = —f——
Dy, + & ©
Substituting this in the series (¢) and observing Eq. (b) we have the final result?
o . ommu . nw p
ma SIN —— 8IN ~ COS anX COS By
4P PR p e d "
Y= mn(Dvt, + k) f
m=0n=0

The bending moments of the plate are now obtained by the usual differentiation, and
the distribution of the pressure between the plate and the subgrade is found by multi-
plication of expression (f) by the modulus £.

The particular case k¥ = O corresponds to a uniformly distributed reaction of the
subgrade, i.e., to the case of a “reversed flat slab” uniformly loaded with ¢ = P/ab.
It is seen from Eq. (f) that the introduction of the modulus tends to reduce the deflec-
tions and also the bending moments of the plate.

The case of a rectangular plate of finite dimensions resting on an clastic foundation
and submitted to the action of a concentrated load has been discussed by H. Happel.2
The Ritz method (see pagi 344) has been used to determine the deflections of this
plate, and it was shown in the particular example of a centrally loaded square plate
that the series representing the deflection converges rapidly and that the deflection
can be calculated with sufficient accuracy by taking only the first few terms of the
series. ?

! Due to V. Lewe, Bawuingenieur, vol. 3, p. 453, 1923.

2 Math. Z., vol. 6, p. 203, 1920. See also F. Halbritter, Bautechnik, vol. 26, p. 181,
1949.

# The problem of a square plate on an elastic foundation has also been investigated
experimentally; see the paper by J. Vint and W. N, Elgood, Phil. Mag., ser. 7, vol. 19,
p. 1, 1935; and that by G. Murphy, Jowa State Coll. Eng. Expt. Sta. Bull. 135, 1937.
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61. Bending of Plates Resting on a Semi-infinite Elastic Solid. So far, the settling
of the subgrade at some point of its surface has been assumed as proportional to the
pressure between the plate and the subgrade at the same point, and consequently as
independent of the pressure elsewhere. This is correct in the case of a floating plate,
considered by Hertz (zee page 260), but in the case of a coherent subgrade such a
hypothesis approximates but crudely the actual behavior of the subgrade; a better
approximation can sometimes be obtained on the basis of the following assumptions:

1. The foundation has the properties of a semi-infinite elastic body.

2. The plate rests on the subgrade without friction.

3. A perfect contact between the plate and foundation also exists in the case of a
negative mutual pressure.

This last supposition appears arbitrary; however, a negative pressure between plate
and subgrade actually is compensated, more or less, by the weight of the plate.

The elastic propertics of the elastic foundation may be characterized, if isotropy is
assumed, by a Young modulus F, and a Poisson ratio ».. The approximate numerical
values' of these constants, depending on the nature of the subgrade and based on
results of dynamical tests, are given in Table 63, together with the value of the
constant

. E,
ky = ————
*T 20 - A @
used in the following,
TasLe 63. VaLues or Krastic CoxstaNts DEPENDING ON
NATURE 0OF FOUNDATION
Subgrade E,, psi vy ka, psi

Clay...... ... ... ... 11,000 0.17 5,700
Loess and elay. ... ... . 13,000 0.42 7,900
Medium sand .. .. ... .. .. 14,000-18, 500 0.33-0.23 7,900-9,800
Sand and gravel.... ... . 40,000 0.31 22,000
Liassic plastic clay..... .. 38,000 0.44 23,500
Lime (air-slaked)... ....| 165,000-190,000 0.32-0.38 92,000-110,000
Sandstone....... ... R 1,600,000 0.26 860,000

We restrict the further consideration to the case of an infinitely large plate in a state
of axial symmetry. Using polar coordinates r, 6, we can write the plate equatjon as

DAAw(r) = q(r) — p(r) b)

where q(7) denotes the given surface loading and p(r) the reaction of the subgrade.
Let Kqo(r,p,¢) be the deflection at the point (r,0) of the subgrade surface due to a
normal unit load applied on this surface (p,¢). The form of the “influence function”’

K, depends merely upon the nature of the foundation. Making use of some properties
of the Bessel functions, it can be shown? that Eq. (b) is satisfied by the expression

® Q(Q)K(a)fo(ar)a da
w(r) :/ 1 T DatK (@) (c)

! Due to E. Schultze and H. Muhs, “Bodenuntersuchungen fiir Ingenieurbauten,”
Berlin, 1950. Scc also Veriffentl. Degebo, Heft 4, p. 37, 1936,

2 The solution of the problem in this general form is due to D. L. Holl, Proc. Fifth
Intern. Congr. Appl. Mech., Cambridge, Mass., 1938.
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In Eq. (¢) J, denotes the Besscl function of zero order; the term depending on the
nature of the subgrade is

K(a) = f: 2wsKo(8)J o(as) ds (@)

in which the form of K, is defined by
Ko(s) = Ko[(r? 4 p® — 2rp cos ¢)3]
s being the distance between points (,0) and (p,¢). Finally
Qe = [ a6 oeor dp ©

is the term depending on the intensity q(p) of the symmetrical loading at r = p.
In the particular case of a load P uniformly distributed along the periphery of a
cirele with a radius ¢, we have

P
Qla) = EJo(ch) 6))

In the case of the load P distributed uniformly over the area of the same circle, Eq.
(e) vields

P
Q) = — Ji(ac) ()]
gotad

where the Bessel function 1s of the order one.  Finally, where a load is concentrated
at the origin (p = 0), we obtain from LEq. (/)

I~

Qla)

®)

b

s

As for the distribution of the reactive pressure, the respective function p(r) is
obtained from Eq. (b), the term

g(r) = ,/0 Q(a) T o(ar) e dox ©)

being previously expressed through its Fourier-Bessel transform (e). Thus, we obtain
_ = 9@@(&7‘)& de .

pir) = ﬁ 1 + Da'K(a) @)

Now let us consider two particular cases with respeet to the physical nature of the
subgrade. For a floating plate (Art. 57) the influence function K(s) is zero everywhere
except at s = 0, where the unit force is applied. With regard to Eq. (d) the quan-
tity Ko(e) then must be a constant. In order to get from Eq. (¢) the expression
w(r) = p(r)/k, this in accordance with the definition of the modulus, we have to
assume Ko(a) = 1/k. Using the previous notation ¢ = D/k (page 260), we obtain
from Kq. (¢) the expression

wi) =+ T ®

1 ® Q(a).]o(fn"la da
k

which actually satisfies the differential equation (178) of the floating plate.
In the case of an isotropic semi-infinite medium we have, by a result due to Bous-
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sinesq,! Ko(s) = (1 — »})/xEws and, by Eq. (d), K(a) = 2(1 — »})/Eoa, or
1
¢ = —
K(a) (koc)

where ko is the elastic constant defined by Iiq. (a). Writing for brevity,

ko Ly 1
T 0
D 2D - B
we finally obtain the solution (¢) in the morc special form?
I I J d
wlr) = - Qled (o) de (m)

ko o 1+ aalg

In the particular case of a load concentrated at the origin, expression (m) in con-

nection with (k) yields
” Ar
, Jol =} dA
P ’ (z0>

= — — 187
Y= Jo 1+ 28 (187)
where A is written for alo. Therefore, the deflection under the load is
re [7 ax PEA3 PL
max = 7 ——— = e == (J Y2 —
v 27D A 1A 9D 0-1927 (188)

against the result 0.125P02/D of Hertz. The distribution of the pressure is readily
obtained from the general expression (7). We have at any point

® AT
Jo\ — JAdA
P 0<l0>

PTod Jo 14w (189)

and especially under the load

P [® adan PA3 P
max T 5 T a T T, T = 0.192 e 190
P 2l [) T+% o A (190)

in comparison with the value of 0.125P/i% obtained by Hertz. If we assume equal
values of Wmax in both cases, formula (190) yields a value for pmax which is 2.37 times
as large as the value from Hertz’s formula (181). In such a case the relation
! = 1.241l; must hold, and curves of the respective deflections as calculated from
Eqgs. (179) and (187) are shown in Fig. i31a. Figure 131b shows in like manner the
variation of the pressure; this time, in order to obtain equal values for pmax in both
cases, it must be assumed that I = 0.8061,.

It can be shown, finally, that the magnitude of bending moments in the vicinity of

1See, for example, 8. Timoshenko and J. N. Goodier, “Theory of Elasticity,”
2d ed., p. 365, New York, 1951.

2 For this result see also 8. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 250, 1932, and
vol. 17, p. 142, 1949; K. Marguerre, Z. angew. Math. Mech., vol. 17, p. 229, 1937,
A. H. A. Hogg, Phil. Mag., vol. 25, p. 576, 1938.
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the concentrated load is the same for foundations of both kinds if expressed in terms
of the dimensionless argument x = r/l and x = r/l,, respectively. We conclude from
this fact that expressions for bending moments, such as given by Eq. (183), can also be
used for a plate resting on an isotropic elastic medium if we replace [ by lo. Proceeding
in this manner with the stress formula () of Westergaard (page 275), we arrive at the
formula

3

P Eh .
Omax = 0.366(1 + ») e log1o ful; — 0.266 (n)

in which ko is given by Eq. (a), and b denotes the same quantity as on page 275.

The problem of the bending of a finite circular plate leads to an infinite set of linear
equations for the coefficients of the series, which has to represcnt the deflections of
such a plate.!

The use of the method of finite differences should also be considered in handling the
problem of finite circular plates.?

The bending of an infinite plate supported by an elastic layer, which rests in its turn
on a perfectly rigid base,? and the problem of a semi-infinite pavement slab* have also
been discussed.

Stresses due to a highly concentrated surface load should be corrected in accordance
with the general theory of thick plates. However, a special theory of thick plates
supported clastically has also been established.?

t8ee H. Borowicka, Ingr.-Arch., vol. 10, p. 113, 1939; A. G. Ishkova, Doklady
Akad. Nauk S.8.8.R., vol. 56, p. 129, 1947; G. Pickett and F. J. McCormick, Proc.
First U.S. Natl. Congr. Appl. Mech., p. 331, Chicago, 1951. The effect of raising the
outer portion of the plate submitted to a central load was discussed by II. Jung,
Ingr.-Arch., vol. 20, p. 8, 1952. For hending of rectangular plates see M. I. Gor-
hounov-Posadov, Priklad. Mat. Mekhan., vol. 4, p. 68, 1940.

2 A. Habel, Bauingenieur, vol. 18, p. 188, 1937, for application to rectangular plates
see G. Pickett, W. C. Janes, M. K. Raville, and F. J. McCormick, Kansas State Coll.
Eng. Expt. Sta. Bull. 65, 1951.

3 A. H. A. Hogg, Phil. Mag., vol. 35, p. 265, 1944.

+G. Pickett and 8. Badaruddin, Proc. Ninth Intern. Congr. Appl. Mech., vol. 6,
p- 396, Brussels, 1957,

5 The first discussion of the statical and dynamical behavior of such plates is due to
K. Marguerre, Ingr.-Arch., vol. 4, p. 332, 1933; see also L. Szab6, Ingr.-Arch., vol. 19,
pp. 128, 342, 1951; Z. angew. Math. Mech., vol. 32, p. 145, 1952. For application of
E. Reissner’s theory see P. M. Naghdi and J. C. Rowley, Proc. First Midwest Conf.
Solid Mech. (Univ. Illinois), 1953, p. 119, and D. Frederick, J. Appl. Mechanics,
vol. 23, p. 195, 1956.



CHAPTER 9

PLATES OF VARIOUS SHAPES

62. Equations of Bending of Plates in Polar Coordinates. In the
discussion of symmetrical bending of circular plates polar coordinates
were used (Chap. 3). The same coordinates can also be used to advan-
tage in the general case of bending of circular plates.

If the r and 8 coordinates are taken, as shown in Fig. 136a, the relation
between the polar and cartesian coordinates is given by the equations

r? = 2?2 4 y2 6 = arcmng-_ (a)

from which it follows that

or x ar

T =2 = cos I Y

e - = ¢cos o 3y , = sin 0 "
9 _ _y _ _smf 96z cosd

ox r? r dy oy

Using these expressions, we obtain the slope of the deflection surface of a
plate in the z direction as

dw _ dw or 0w 00
dr  dr oz ' 98 ox

dw 1dw .
Weos@—;%—sme ()

A similar expression can be written
for the slope in the y direction.
To obtain the expression for curva-
ture in polar coordinates the second derivatives are required. Repeating
twice the operation indicated in expression (c), we find

Pw _ (2, "6——1"' (}i awcosé)—la—wsinﬁ
artr ~ \ar 9% T A Y.

Fra. 136

_w 9 — 2 d*w sin § cos § | dwsin® §
” o OF agor 7 o r
dwsin 0 cos § | d*wsin? 0
t2% g @

282
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In a similar manner we obtain

Sw  Fw . o*w sin 8 cos 8  Ow cos? 8
I R T e
- 2@@005 6 , 9'wcos® 0 (e)
a6 r? a0* 2
*w F*w d%w cos 20  dw cos 26
éx—gy»=5;2—smf)cos0+w———-r ~3
dJwsin § cos 8  d*wsin 6 cos §
B R T i e

With this transformation of coordinates we obtain

dw  Jw  Jdw |, 10w 1 w
S TR R e P T @
Repeating this operation twice, the differential equation (103) for the
deflection surface of a laterally loaded plate transforms in polar coordi-
nates to the following form:

02 190 1 92 w 1 0w 1w\ ¢
AAw_(W+?é?+?iéﬁ)<éﬁ+?b’F+ﬁW“>“"_15 (191)

When the load is symmetrically distributed with respect to the center of
the plate, the deflection w is independent of 8, and Eq. (191) coincides
with Lq. (58) (see page 54), which was obtained in the case of sym-
metrically loaded circular plates.

Let us consider an element cut out of the plate by two adjacent axial
planes forming an angle d@ and by two cylindrical surfaces of radii » and
r -+ dr, respectively (Fig. 136b). We denote the bending and twisting
moments acting on the element per unit length by M,, M, and M,, and
take their positive directions as shown in the figure. To express these
moments by the deflection w of the plate we assume that the = axis coin-
cides with the radius . The moments M,, M,, and M,, then have the
same values as the moments M., M,, and M., at the same point, and by
substituting @ = 0 in expressions (d), (e), and (f), we obtain

0w 0w 0w tow 1 0w
M, = _D(6x2 +V6y‘“’>9=0— —D{W V(7W+ﬁa—erf>]
- Fw ewy __plow  1ow 8w o
My=-D (ay2 + V(9.152>0=10 B D(r ar trag T cw) (192)
w } 1 *w 1 dw
M= (1 = ”)D<m7,)g_o = (= ”)D<;:—“ar 30 “’ﬁ)

In a similar manner, from formulas (108), we obtain the expressions for
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the shearing forces!

d(Aw)
=D r a6

3
Q- = — Do (Aw) and Q. = (193)

where Aw is given by expression (g).
In the case of a clamped edge the boundary conditions of a circular
plate of radius a are

dw
=0 (3) -0 #)
In the case of a simply supported edge
(w>r=a =10 (Mr)r=a =0 ('L)
In the case of a free edge (see page 87)
. _ _ B oM B .
(M) =0 V= (QT m) ~0 )

The general solution of Eq. (191) can be taken, as before, in the form
of a sum

w = Wy + Wy (k)

in which wy is a particular solution of Eq. (191) and w, is the solution of
the homogeneous equation

a2 190 1 92 32w1 16’1,01 1 62’11)1 _
(w T oo +;éa—az> (E«? toar Trge )0 (199

This latter solution we take in the form of the following series:?
wy = Ry + z R, cos m8 + E R, sin m@ (195)
m=1 m=1

in which Ro, Ry, . . ., R{, R;, . . . are functions of the radial distance
ronly. Substituting this series in Eq. (194), we obtain for each of these
functions an ordinary differential equation of the following kind:

2 1 m2 2 2
(d n d m><dRm+l@ﬂ_’”Rm)__.O

drr U rdr )\ drr 7 dr rr
The general solution of this equation for m > 1 is
R, = A, + er—”; + Cprmtt + D, r—mt? )
1 The direction of @, in Fig. i36b is opposite to that used in Fig. 28. This explains
the minus sign in Eq. (193).

2 This solution was given by A. Clebsch in his “Theorie der Elasticitit fester
Korper,” 1862, :
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For m = 0 and m = 1 the solutions are

Ro = Ao + B0T2 + Co IOg r + 1)07'2 ].Og r
and Ry = A + By + Cr—' + Dyr log 7 (m)

Similar expressions can be written for the functions R/. Substituting
these expressions for the functions R, and R, in series (195), we obtain
the general solution of Eq. (194). The constants A4,,, Bn, . . . , D, in
each particular case must be determined so as to satisfy the boundary
conditions. The solution R, which is independent of the angle 8, repre-
sents symmetrical bending of circular plates. Several particular cases
of this kind have already been discussed in
Chap. 3.

63. Circular Plates under a Linearly
Varying Load. If a circular plate is acted
upon by a load distributed as shown in Fig,
137, this load can always be divided into
two parts: (1) a uniformly distributed load
of intensity 1(p: + p1) and (2) a linearly
varying load having zero intensity along the
diameter C'D of the plate and the intensities
—p and +p at the ends A and B of the
diameter AB. The case of uniform load
has already been discussed in Chap. 3. We
have to consider here only the nonuniform
load represented in the figure by the two shaded triangles.!

The intensity of the load ¢ at any point with coordinates r and 6 is

__ prcos?
T a

(@)

The particular solution of Eq. (191) can thus be taken in the following
form:

5
szAzl cos 6
a

This, after substitution in Eq. (191), gives

1
4 = 192D
__précos @
Hence Wo = 5o (b)

As the solution of the homogeneous equation (194) we take only the term
of series (195) that contains the function R, and assume

wy = (A -+ Byrd + Cir—t + Dyr log ) cos 0 (c)

1 This problem has been discussed by W. Fliigge, Bauingenieur, vol. 10, p. 221, 1929.
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Since it is advantageous to work with dimensionless quantities, we intro-
duce, in place of 7, the ratio

Q=

p =
With this new notation the deflection of the plate becomes
r 4
w = wo+ wn = 05 (0% + Ap + Bo® + Cp~' + Dplogp) cos 6 (d)

where p varies from zero to unity. The constants 4, B, . . . in this
expression must now be determined from the boundary conditions.

Let us begin with the case of a simply supported plate (Fig. 137). In
this case the deflection w and the bending moment M, at the boundary
vanish, and we obtain

W1 =0  (M)pe1 =0 ' (e)

At the center of the plate (p = 0) the deflection w and the moment M,
must be finite. Ifrom this it follows at once that the constants ¢ and D
in expression (d) are equal to zero. The remaining two constants A and
B will now be found from Eqs. (e), which give

(W) pmr = 1921)

(M) o1 = C[4(5 + ») + 203 + »)B] cos 6 = 0

192

Since these equations must be fulfilled for any value of 6, the factors
before cos 6 must vanish. This gives

1+A+B=0
46+ ») + 28+ »B =0

and we obtain
z(_S + v) 4 = 7+ v
3+ v T 34w
Substituting these values in expression (d), we obtain the deflection w
of the plate in the following form:

B = —

. _ putp(l — p?) e oo

w = 10903 F V)D[7+ (3 4+ v)p*| cos 8 6]
For calculating the bending moments and the shearing forces we substi-
tute expression (f) in Egs. (192) and (193), from which

AL:€§®+w»U—ﬁMm0

/ pa? . , (9)
M, = BEFH pl(5 + »)(1 + 3») — (1 + 5»)(3 + v)p?] cos 6
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= ___Z)_a___ — 2
Q- 243 I 7) 206 + ») — 9(3 + »)p?] cos 0 o
- P2 s _ 3 2 & )
Q. 513 1 ) (205 + ») — 3(3 + »)p? sin ¢
It is seen that (M,),.. occurs at p = 1/4/3 and is equal to
2 jned
M) = PEG+ 1)
(M) 723
The maximum value of M, occurs at
o= VBT AT 3/VITLF 593 F7)
and is equal to
_pa? (5 + »( + 3v)
(M es = Bz 2T E )
The value of the intensity of the vertical reaction at the boundary ist
oM, pa
—V = —( = r°
! Q. + .y 1 cos 8

The moment of this reaction with respect to the diameter CD of the
plate (Fig. 137) is
“x/2 3,
TP o5 0 a2 cos = e
4/0 40050(1 cos 0 de 1
This moment balances the moment of the load distributed over the plate
with respect to the same diameter.
As a second example, let us consider the case of a circular plate with a
free boundary. Such a condition is encountered in the case of a circular

foundation slab supporting a chimney. As the result of wind pressure,
a moment M will be transmitted to the

slab (Fig. 138). Assuming that the reac- "‘b “““ a == ’[
tions corresponding to this moment are — 77 —
distributed followi linear law, ¢ -

1striputea iollowing a limear law, as L M W_E

shown in the figure, we obtain the same
kind of loading as in the previous case;
and the general solution can be taken in the same form (d) as before.
The boundary conditions at the outer boundary of the plate, which is
free from forces, are

(M1 =0 (V)por = <Q, - i‘jg‘)pﬂ =0 (@)

Fr;. 138

The inner portion of the plate of radius b is considered absolutely rigid.
It is also assumed that the edge of the plate is clamped along the circle

t The reaction in the upward direction is taken as positive.
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of radius b. Ience for p = b/a = 8 the following boundary condition

must be satisfied:
Jw w .
P Jo=p P Jo=8

Substituting expression (d) in Eqgs. (7) and (§), we obtain the following
equations for the determination of the constants:

464+ +283+»B+20—vC+ A+ D=0
417+ ) + 2683+ B +20 —»C - B —»D =20
484 4- 232B — 282C + D =0
From these equations

5o ok H )+ (1= pE 89
G+ T (L=
T i G o el N
G+ 7+ (-

Substituting these values in expression (d) and using Eqs. (192) and (193),
we can obtain the values of the moments and of the shearing forces. The
constant A does not appear in these equations. The corresponding term
in expressiou (d) represents the rotation of
the plate as a rigid body with respect to the

C = = 12

A \ L"ﬁ-a--——;l\ diameter perpendicular to the plane of Fig.
(a) 138. Provided the modulus of the founda-
tion is known, the angle of rotation can be
b calculated from the condition of equilibrium
v of the given moment M and the reactions of
(b the foundation.

Using expression (d), the case of a simply

# supported circular plate loaded by a moment
%%E M at the center (Fig. 139a) can be readily
(C)M 7 solved. In this case we have to omit the

Fo. 139 term containing p% which represents the dis-

tributed load. The constant C must be taken

equal to zero to eliminate an infinitely large deflection at the center.

Expression (d) thus reduces to
w = (4p + Bp® + Dp log p) cos § (k)
The three constants 4, B, and D will now be determined from the follow-
ing boundary conditions:
(W)pz1 =0 M1 =0

. . !
—a [T (M sin 00+ a* [ 77 (Q)pur cos 0.d0 + M = 0 ®

The first two of these equations represent the conditions at a simply sup-
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ported edge; the last states the condition of equilibrium of the forces and
moments acting at the boundary of the plate and the external moment M.
From Egs. (I) we obtain

4o _LtrMa _1tevMa 5 Ma
3+ v8D 3+ v8D Ar D
Hence
Ma

W= =g p gy AT = ) 26+ ) log gl cos 6 (m)

Because of the logarithmic term in the brackets, the slope of the deflec-
tion surface calculated from expression (m) becomes infinitely large. To
eliminate this difficulty the central portion of radius b of the plate may
be considered as absolutely rigid.! Assuming the plate to be clamped
along this inner boundary, which rotates under the action of the moment
M (Fig. 139D), we find

Ma .3
+ A+ A =89% + 206 + 7 + (1 — »piologp
= B0 + 9B = B+ o cos b (n)

where 8 = b/a. When 8 is equal to zero, Eq. (n) reduces to Eq. (m),
previously obtained. By substituting expression (n) in Eq. (192) the
bending moments M, and M, can be calculated.

The case in which the outer boundary of the plate is clamped (Fig.
139¢) can be discussed in a similar manner. This case is of practical
interest in the design of elastic couplings of shafts.? The maximum
radial stresses at the inner and at the outer boundaries and the angle of
rotation ¢ of the central rigid portion for this case are

o h M
@me-aaEw wﬁhm—-alaEw ¢ = T

where the constants «, a;, and «a; have the values given in Table 64.

w

TapLE 64
8 =b/a @ a ‘ 223
0.5 14.17 7.0 . 12.40
0.6 19.54 | 12.85 | 28.48
0.7 36.25 | 25.65 | 77.90
0.8 82.26 | 66.50 | 314.00

t Experiments with such plates were made by R. J. Roark, Univ. Wisconsin Bull.
74, 1932,
2 H, Reissner, Ingr.-Arch., vol. 1, p. 72, 1929.
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84. Circular Plates under a Concentrated Load. The case of a load
applied at the center of the plate has already been discussed in Art. 19.
Here we shall assume that the load P is applied at point A at distance b
from the center O of the plate (Fig. 140).2 Dividing the plate into two
parts by the cylindrical section of radius b as shown in the figure by the
dashed line, we can apply solution (195) for each of these portions of the
plate. If the angle 8 is measured from the radius OA, only the terms
containing cos m# should be retained. Hence for the outer part of the
plate we obtain

w = Ry + E R., cos mé (a)
m=1
where Ro= Ay + Byr*+ Cologr + Dgr?logr
R1 = Aﬂ' + Bﬂ's + 017'——1 + DlT 10g T

R = Aur™ + Bur=m + Ct™® + Dyt

Il

Q)

Similar expressions can also be written for the functions R§, Rj, R.,
corresponding to the inner portion of the plate. Using the symbols A},
B’, . . . instead of A,, Bn, . .. for the con-
stants of the latter portion of the plate, from the
condition that the deflection, the slope, and the
moments must be finite at the center of the plate,
we obtain

¢y = Dy =0
¢! =Dl =0
B, = D, =0

Hence for each term of series (@) we have to
Fie. 140 determine four constants for the outer portion of
the plate and two for the inner portion.

The six equations necessary for this determination can be obtained
from the boundary conditions at the edge of the plate and from the
continuity conditions along the circle of radius b. If the outer edge of
the plate is assumed to be clamped, the corresponding boundary con-

1 This problem was solved by Clebsch, op. c¢it. See also A. Foppl, Sitzber. bayer.
Akad. Wiss., Jahrg., 1912, p. 155. The discussion of the same problem by using
bipolar coordinates was given by E. Melan, Eisenbau, 1920, p. 190, and by W. Fligge,
“Die strenge Berechnung von Kreisplatten unter Einzellasten,” Berlin, 1928. See
also the paper by H. S8chmidt, Ingr.-Arch., vol. 1, p. 147, 1930, and W. Miiller, Ingr.-
Arch., vol. 13, p. 355, 1943.
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ditions are
dw
=0 (59) -0 ©

Denoting the deflection of the inner portion of the plate by w; and
observing that there are no external moments applied along the circle of
radius b, we write the continuity conditions along that circle as

ow _dwy w6
ar o or? ar?
The last equation is obtained from a consideration of the shearing force
Q. along the dividing circle. This force is continuous at all points of the
circle except point A, where it has a discontinuity due to concentrated
force P. Using for this force the representation in form of the series!

w = W,

forr = b (d)

)

5} (% -+ 2 cos m0> (e)

m=1
and for the shearing force the first of the expressions (193), we obtain

®

i} lé] P /1
D 5 (AU)),-;(; - D (—97 (Awl)T:b = 1}7) <§ + 2 [H03] mG) (f)
m=1
From the six equations (¢), (d), and (f), the six constants can be calcu-
lated, and the functions R, and R], can be represented in the following
form:

_r . . r . (a® 4 b)(a® — r?)
fo = &m[(’ O o g T
P b (a + ) (a? — b))
By = &b [(rz b dog g+ 2a?
_ Pt il 2(a® = bY)r (20 — b & a
Br=—1&D|7 T~ a%? b2 108 r]
;o Pb® | 2(a® — bH)r (@* = b))%  4r  a
Bi =~ 16D [ ottt e 72 108 E]
R _ 1)bm an ( B 1)b2 B . + ( . 1) ,
™ 8m(m — DnD me ma " !
_mn — 1) b%? Lf, m—1 \|
m (ﬁ} - 7( m 1" );
;o Pbm rrn _ - . a2m
R, = Smin — DaD l [(m 1o ma* + P

rm-}—" m b‘.! 1 a 2m
_+ 0” —-1) 2m O E N Y P
a m -+ la m 4+ 1\b
* This series is analogous to the series that was used in the case of continuous plates
(see p. 248).
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Using these functions, we obtain the deflection under the load as

P (e - D
(w)r:b.9=0 = E;D AN e

(196)

For b = 0 this formula coincides with formula (92) for a centrally loaded
plate. The case of the plate with simply sup-
ported edge can be treated in a similar
manuer.
The problem in which a circular ring plate
is clamped along the inner edge (r = b) and
Fic. 141 loaded by a concentrated force P at the outer
boundary (Ifig. 141) can also be solved by
using series (a). In this case the boundary conditions for the clamped
inner boundary are

we=0 (%), -0 ©

For the outer boundary, which is loaded only in one point, the conditions
are

— 5
(M 1) r—a ~w0 r=|—239
P N

(V)iea = = (5 + E cos m6> 4 \

m=1

(h) 3

Calculations made for a particular I \ 54
caseb/a = £ show!that the largest 2 = r==g
bending moment M, at the inner 2"%—'-’ k \
boundary is

D
(M)rpome = —4.45 L
21

The variation of the moment along
the inner edge and also along a T za
cirele of radius r = 5a/6 is shown 8
in Fig. 142. It can be seen that
this moment diminishes rapidly as the angle 6, measured from the point
of application of the load, increases.

The general solution of the form (a) may be used to advantage in
handling circular plates with a system of single loads distributed sym-
metrically with respect to the center of the plate,® and also in the case of

Fia. 142

t H. Reissner, loc. cit.

2 By combining such reactive loads with a given uniform loading, we may solve the
problem of a flat slab bounded by a circle; see K. Hajnal-Konyi, “Berechnung von
kreisférmig begrenzten Pilzdecken,” Berlin, 1929.
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annular plates. For circular plates having no hole and carrying but one
eccentric load, simpler solutions can be obtained by the method of com-
plex variables,! or, when the plate is clamped, by the method of inversion.?
In this latter case the deflection surface of the plate is obtained in the form

Pa? " e
w:m[<1~x>(1 £)

x? + £ — 2xfcos b
1 + 22t — 22¢ cos 0] (197)

+ (@ 4+ £ — 2z cos 6) log

where x = r/a and ¢ = b/a (Tig. 140). Expression (197) holds through-
out the whole plate and yields for = £, 8 = 0, that is, under the load,
the value (196), previously obtained by the series method.

65. Circular Plates Supported at Several Points along the Boundary. Considering
the ease of o load symmetrically distributed with respect to the center of the plate, we
take the general expression for the deflection surface
in the following form!3

w = wo + W (a)

in which wo is the deflection of a plate simply sup-
ported along the entire boundary, and w; satisfies the
homogeneous differential equation

Adw; =0 ®

Denoting the concentrated reactions at the points of
support 1, 2, 3, . . . by N1y, Ny, . . ., N;and using
series (h) of the previous article for representation of concentrated forces, we have
for each reaction N; the expression

F1c. 143

o

N; (1 z )
—\ =+ cos mb; (c)
Ta \2

m==1
where 0; =0 — ~;

v: being the angle defining the position of the support 7 (Fig. 143). The intensity
of the reactive forces at any point of the boundary is then given by the expression

* The simply supported plate was treated in that manner by E. Reissner, Math.
Ann., vol. 111, p. 777, 1935; for the application of Muscheli§vili’s method see A. I.
Lourye, Bull. Polytech. Inst., Leningrad, vol. 31, p. 305, 1928, and Priklad. Mat.
Mekhan., vol. 4, p. 93, 1940. See also K. Nasitta, Ingr.~Arch., vol. 23, p. 85, 1955, and
R. J. Roark, Wisconsin Univ. Eng. Expt. Sta. Bull. 74, 1932.

2 J. H. Michell, Proc. London Math. Soc., vol. 34, p. 223, 1902.

3 Several problems of this kind were discussed by A. Nadai, Z. Physik, vol. 23, p.
366, 1922, Plates supported at several points were also discussed by W. A. Bassali,
Proc. Cambridge Phil. Soc., vol. 53, p. 728, 1957, and circular plates with mixed bound-
ary conditions by G. M. L. Gladwell, Quart. J. Mech. Appl. Math., vol. 11, p. 159,
1958,
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@

?
—\z-+ cos mé; )
7T \2

1

in which the suimmation is extended over all the concentrated reactions (c).

The general solution of the homogencous cquation (b) is given by expression (195)
(page 284). Assuming that the plate is solid and omitting the terms that give infinite
deflections and moments at the center, we obtain from expression (195)

wy, = Ayg + Byt + E (Apr™ + Crr™™?) cos mé

m=1
@
+- 2 (A'mr"‘ + C:,,r’"“) sin m8 (e)
m=1

For determining the constants we have the following conditions at the boundary:

a2 1 ow 1 90%w
(A’Ir)rza = -D [75’,2 + V<7-5 +:2 ﬁ’)]r:a =0

v ol 6}
ORI NN 76
(V)tea = (Qr - 60>f=a = z — (2 + 2 cos m0i>
1 1

m=

in which M, and Q, are given by Eqs. (192) and (193).

Let us consider a particular case in which the plate is supported at two points which
are the ends of a diameter. We shall measure 6 from this diameter. Then v, = 0,
vz = m, and we obtain

a 1 4+» w2
- T lojogz—14 " (210g2 - =
w=wot oG T ab { o8 tro v< o8 12)

©

1 2(1 + ») o
- E I:M(m -1 * (1 —»)(m — m?  mlm + 1)} p™ 008 m@} (@)

m=24,6,...

in which wo 1s the deflection of the simply supported and symmetrically loaded plate,
P is the total load on the plate, and p = r/a. When the load is applied at the center,
we obtain from expression (g), by assuming » = 0.25,

0.116 2%
D

I

(W) p—o

( )Pm Ll .
w 1,8 0.118
/2 D

For a uniformly loaded plate we obtain

qa’
(’w)pao = (0.269 3

a4
(W) pertsfarrsz = 0.371 qb—
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By combining two solutions of the type (g), the case shown in Fig. 144 can also be
obtained.
When a circular plate is supported at three points
120° apart, the deflection produced at the center of the
plate, when the load is applied at the center, is

Pq?
(w)p—0 = 0.0670 o Fic. 144

When the load is uniformly distributed, the deflection at the center is

2

Pa
(w)p-0 = 0.0362 o

where P = za%q.

The case of a circular plate supported at three points was investigated by experi-
ments with glass plates. These experiments showed a very satisfactory agreement
with the theory.!

66. Plates in the Form of a Sector. The general solution developed for circular
plates (Art. 62) can also be adapted for a plate
in the form of a sector, the straight edges of
which are simply supported.? Take, as an ex-
ample, a plate in the form of a semicircle simply
supported along the diameter AB and uni-
formly loaded (Fig. 145). The deflection of this
plate is evidently the same as that of the circular
plate indicated by the dashed line and loaded as
shown in Fig. 145b6. The distributed load is
represented in such a case by the series

l ow
(a) (B 4q .
FiG. 145 7= e me (@)
m=1.35....

and the differential equation of the deflection surface is

©

1 4q .

Adw = — — sin mé (b)

D mar
m=1,35,...

The particular solution of this equation that satisfies the boundary conditions along
the diameter AB is

-4
4qr? i
= —— e ——————— g} If
we 2 m (16 — m2(4 — m2)D sy e}
m=1,3,5, ...
The solution of the homogenecous differential equation (194) that satisfies the condi-

! These experiments were made by Nddal, ¢bid.

2 Problems of this kind were discussed by Nédai, Z. Ver. deut. Ing., vol. 59, p. 169,
1915. See also B. G. Galerkin, “Collected Papers,”’ vol. 2, p. 320, Moscow, 1953,
which gives numerical tables for such cases.
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tions along the diameter AB ig

wy = z (Arm 4+ Brm*?) sin mé (d)

m=13.5,...

Combining expressions (¢) and (d), we obtain the complete expression for the deflection
w of a semicircular plate. The constants A, and B,, are determined in each particular
case from the conditions along the circular boundary of the plate.

In the case of a simply supported plate we have

(W)rea = 0
a*w Low | 19w _ (e)
[07’2 T (r or + r? 662>],=a =0

Substituting the sum of series (¢) and (d) for w in these equations, we obtain the
following equations for calculating A, and B,.:

490
T mr(16 — m?) (4 — mH)D
Apamm(m — 1) — vm(m — 1)] + Bpa™™2(m + 1)im + 2 4+ »(2 — m)]
4qa*12 + »(4 — m?)]
=T mr(16 — m2)(4 — m2)D

Ama™ + Bpham+t =

From these equations,
qai(m + 5 + v)
amma(16 — m?)(2 + m)[m + £(1 + »)ID
qat(m + 3 + v)
- a™timr(4 + m)(4 — mBHim + 510 + 1D

Ap =

B, =

With these values of the constants the expression for the deflection of the plate
hecomes

)

w — @ 47t ) 1
D at mw(16 — m2) {4 — m?)

m=1.3,5,...

ym m45 -+
am ma(16 — m?)(2 + m)m + (1 + »)]
pmte m+3+»

T amtma(d + m)(d — m[m + 31 + 2]

sin m@

With this expression for the deflection, the bending moments are readily obtained
from Eqs. (192).

In a similar manner we can obtain the solution for any sector with an angle n/k, k
being a given integer. The final expressions for the deflections and bending moments
at a given point can be represented in each particular case by the following formulas:

w=og— Mf = 511!12 Mt = ﬁlqaz (f)
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taken on the axis of symmetry of a scctor are given in Table 65.

297

Several values of these factors for points

TapLE 65. VALUES oF THE FACTORS «, 8, AND $; FOR VARIOUS ANGLES w/k
OF A SEcTOR SiMPLY SUPPORTED AT THE BOUNDARY

y = 0.3
rja = i r/a =} rja =} rfa =1
k| \ —
o 8 Bt o ‘ 8 1 @ 8 B lelB| #
#/4} 0.00006) —0.0015| 0.0093 | 0.00033 ‘ 0.0069 | 0.0183 | 0.00049 | 0.0161,0.0169}0 0] 0.0025
7/310.00019 —~0.0025 | 0.0177 ; 0.0008C | 0.0149, 0.0255; 0.00092 | 0.0243 [ 0.0213] 0|0 0.0044
=/2 | 0.00092 0.0036 | 0.0319] 0.00225!10.0353]0.035210.00203|0.0381]0.0286|0[0| 0.0088
= | 0.00589 0.0692 [ 0.0357 | 0.0G0811 | 0.0868 | 0.0515{0.00560 | 0.06170.0468|0{0|0.0221

The case in which a plate in the form of a sector is clamped along the circular
boundary and simply supported along the straight edges can be treated by the same

method of golution as that used in the preceding case.

The values of the coefficients

« and g for the points taken along the axis of symmetry of the sector are given in

Table 66.

TasLe 66. VaLums oF THE COBFFICIENTS o« AND 8 FOR VARIOUS ANGLES 7/k
ofF A SEcTOR CramMrED aALoNG THE CIRCULAR BOUNDARY AND SiveLy
SUPPORTED ALONG THE STRAIGHT IEDGES

y = (0.3
r/a =+ r/a = % rfa =% r/a =1
~/k — ‘
o 8 o B a k 8 [3 B

/4| 0.00005 | —0.0008 | 0.00026 | 0.0087 | 0.00028 | 0.0107 | 0 | —0.0250
7/3 | 0.00017 | —0.0006 | 0.00057 | 0.0143 | 0.00047 | 0.0123 | 0 | —0.0340
x/2 1 0.00063 0.0068 | 0.00132 | 0.0272 | 0.00082 | 0.0113 } 0 | —0.0488
T ‘ 0.00293 0.0473 | 0.00337 | 0.0446 | 0.00153 | 0.0016 | O | —0.0756

It can be seen that in this case the maximum bending stress occurs at the mid-point
of the circular edge of the sector.
If the circular edge of a uniformly loaded plate having the form of a sector is entirely
free, the maximum deflection occurs at the mid-point of the unsupported circular edge.
For the case when »/k = x/2 we obtain

0.0633 1%
Wmax = U. N _—
%D

The bending moment at the same point is

4

M, = 0.1331¢a?

In the general case of a plate having the form of a circular sector with radial edges



298 THEORY OF PLATES AND SHELLS

clamped or free, approximate methods must be applied.! However, the particular
problem of a wedge-shaped plate carrying a lateral load can be solved rigorously (see
Art. 78). Another problem which allows an exact solution is that of bending of a
plate clamped along two circular ares.? Bipolar coordinates must be introduced in
that case and data regarding the clamped semicircular plate in particular are given
in Table 67.

TaBLE 67. VALUES or THE FACTORS «, 8, AND 8, [IE@s. (f)] FOR A SEMICIRCULAR
Prate Cramrep ALONG THE Bounpary (Fig. 145a)
v = 0.3

r/a =0 r/a = 0483 | r/a = 0486 | r/a = 0.525 |r/a = 1
|

Load distribution

S N B S Buax | o B1 max 8
Uniform load q...... J—0.0?t}lj 0.0355 0.00202 0.0194 —0.0584
Hydrostatic load qy/a ‘—0.0276] ................... —0.0355

Bipolar coordinates can also be used to advantage in case of a plate clamped between
an outer and an inner (eccentric) circle and carrying a single load.?

67. Circular Plates of Nonuniform Thickness. Circular plates of nonuniform
thickness are sometimes encountered in the design of machine parts, such as dia-
phragms of steam turbines and pistons of reciprocating engines. The thickness of
such plates is usually a function of the radial distance, and the acting load is sym-
metrical with respect to the center of the plate. We shall limit our further discussion
to this symmetrical case.

Proceeding as explained in Art. 15 and using the notations of that article, {from the
condition of equilibrium of an element as shown in Fig. 28 (page 52) we derive the
following equation:

M, + -~ r—M 4+ Qr = (a)
dr

18ee G. F. Carrier and F. 8. Shaw, Proc. Symposia Appl. Math., vol. 3, p. 125, 1950;
H. D. Conway and M. K. Huang, J. Appl. Mechanics, vol. 19, p. 5, 1952; H. R. Hassé,
Quart. Mech. Appl. Math., vol. 3, p. 271, 1950. The case of a concentrated load has
been discussed by T. Sckiya and A. Saito, Proc. Fourth Japan. Congr. Appl. Mech.,
1954, p. 195. For plates bounded by two radii and two arcs and clamped see G. F.
Carrier, J. Appl. Mechanics, vol. 11, p. A-134, 1944. The same problem with various
edge conditions was discussed by L. I. Deverall and C. J. Thorne, J. 4ppl. Mechanics,
vol. 18, p. 359, 1951. The bending of a uniformly loaded semicircular plate simply
supported around the curved edge and free along the diameter (a “diaphragm’ of a
steam turbine) has been discussed in detail by D. F. Muster and M. A. Sadowsky,
J. Appl. Mechanics, vol. 23, p. 329, 1956. A similar case, however, with a curved
edge clamped, has been handled by H. Miggenburg, Ingr.-Arch., vol. 24, p. 308, 1956.

2 Green’s function for these boundary conditions has been obtained by A. C. Dixon,
Proc. London Math. Soc., vol. 19, p. 373, 1920. Tor an intercsting limiting case sce
W. R. Dean, Proc. Cambridge Phil. Soc., vol. 49, p. 319, 1953. In handling distributed
loads the use of the rather cumbersome Green function may be avoided; see S.
Woinowsky-Krieger, J. Appl. Mechanics, vol. 22, p. 129, 1955, and Ingr.-Arch., vol. 24,
p. 48, 1956.

3 This problem was discussed by N. V. Kudriavtzev, Doklady Akad. Nauk S.8.8.RE.,
vol. 53, p. 203, 1946.
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in which, as before,

d ®)
Mg = D <f + v "f)
r dr
d
where @ = - E’jﬁ {c)

and @ is the shearing force per unit length of a circular section of radius . In the case
of a solid plate, @ is given by the equation

,
= q 2zr dr (d)
2%r Jo
in which ¢ is the intensity of the lateral load.
Substituting expressions (b), (c), and (d) in Eq. (a) and observing that the flexural
rigidity D is no longer constant but varies with the radial distance r, we obtain the
following equation:

d (de @ dD (de @ 1 r L
Pa (m« 'h->+ ar (dr +”r> = ﬁ, ard ©

Thus the problem of bending of circular symmetrically loaded plates reduces to the

solution of a differential equation (¢) of the second order with variable coeflicients.

To represent the equation in dimensionless form, we introduce the following notations:
¢ = outer radius of plate

h = thickness of plate at any point
ho = thickness of plate at center
r h
th — = =
en o= n Y (2]

We algo assume that the load is uniformly distributed. Using the notation

_ 6@ — »%a%g
P= "0 @

Eq. (e) then becomes

de 1 d log y3\ do 1 v d log y* px
dx? + (z + dz dz 2 x dx £T 7 3 (198)

In many cases the variation of the plate thickness can be represented with sufficient
accuracy by the equation!

y = et n)

in which 8is a constant that must be chosen in each particular case so as to approximate
as closely as possible the actual proportions of the plate. The variation of thickness

! The firgt investigation of bending of circular plates of nonuniform thickness was
made by H. Holzer, Z. ges. Turbinenwesen, vol. 15, p. 21, 1918. The results given in
this article are taken from O. Pichler’s doctor’s dissertation, ‘‘ Die Bicgung kreissym-
metrischer Platten von verdnderlicher Dicke,” Berlin, 1928. See also the paper by
R. Gran Olsson, Ingr.-Arch., vol. 8, p. 81, 1937.
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along a diameter of a plate corresponding to various values of the constant 8 is shown
in Fig. 146. Substituting expression (k) in Eq. (198), we find

d%p 1 de 1 . .
LAY = —_— - — + - Bzii2
dx? <x 6:5) dx (902 Vﬂ) ¢ pe ®

It can be readily verified that

vom = P e )

8 — w8
is a particular solution of Iiq. (). One of the two solutions of the homogeneous equa-
tion corresponding to liq. (¢) can be taken in the form of a power series:

©

_ gl +nB+w - @ -1+
“"““‘[szE 2-4-4-6-6---2n-2n(2n +2) ° (%)
1

n=

in which @, is an arbitrary constant. The second solution of the same equation
becomes infinitely large at the center of the plate, 7.e., for z = 0, and therefore should

y B=-4
g /B=_3
//ﬂ=‘
v//Bz—}
b -~-ﬁ=o
f ::g: )
N =
¥ i \\\\B= 3
0 05 10 B=4
F1a. 146

not be considered in the case of a plate without a hole at the center. If solutions
(7) and (k) are combined, the general solution of Eq. (¢) for a solid plate can be put in
the following form:

¢=p [Cw - 23“}55 9‘9’2”] 0}

The constant C in each particular case must be determined from the condition at the
boundary of the plate. Since series (k) is uniformly convergent, it can be differen-
tiated, and the expressions for the bending moments can be obtained by substitution
in Egs. (b). The deflections can be obtained from Iiq. (¢).

In the case of a plate clamped at the edge, the boundary conditions are

(w)x=1 =0 (¢)x=l =0 (WL)

and the constant C in solution (J) is
B2

C=——
(3 - V)B(‘Pl)x=l (n)

To get the numerical value of C for a given value of 8, which defines the shape of the
diametrical section of the plate (see Fig. 146), the sum of series (k) must be calculated
for x = 1. The results of such calculations are given in the above-mentioned paper
by Pichler. This paper also gives the numerical values for the derivative and for the
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integral of series (k) by the use of which the moments and the deflections of a plate
can be caleulated.
The deflection of the plate at the center can be represented by the formula

o)
i (

in which « is a numerical factor depending on the value of the constant 8. Several
values of this factor, calculated for » = 0.3, are given in the first line of Table 68.

TanLE 68. NUMERICAL FACTORS o AND o FOR CArncvrarming DEFLECTIONS
AT THE CENTER OF CIRCULAR PLATES OF VARIABLE THICKNESS

v = 0.3
| } 0 s ! ( iy !
g | 4 3 I 2 - 0 : -1, -2 -3 | —4
; i | ; | |
—— e e e e e e | S
a [ 0.0801{0.0639 0.0505{0.0398%0.0313 0.0246 00192“0.0152 0.01195
o J 0.2233 ) 0.1944 1 0.1692,0.1471 1 0.1273{0.1098 | 0.0937 ’ 0.07911] 0.06605
] !

The maximum bending stresses at various radial distances can be represented by the
formulag
3qa? 3qa?
e (6)max = 71 5 (»)

(Ur)max = i'}’

The values of the numerical factors y and ~, for various proportions of the plate and
for various values of x = r/g are given by the curves in Figs. 147 and 148, respectively.

}——B=4

\ e
\\ e

0 %

=0 —

02 NS e L

A R B=2. =
0.4 L

0 0.2 04 06 08 1.0

b S

>_B:_1
B=-2
B=-3

\B____q_

-~ =2

Fia. 147

For B = 0 these curves give the same values of stresses as were previously obtained for
plates of uniform thickness (see Fig. 29, page 56).
In the case of a plate simply supported along the edge, the boundary conditions are

(w)f-?l =0 (Mr);rml =1 (q‘)_
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Investigation shows that the deflections and maximum stresses can be represented
again by equations analogous to ligs. (o) and (p). The notations o', v/, and v, will
be uged for constants in this case, instead of «, v, and v as used for clamped plates.
The values of o’ arve given in the last line of Table 68, and the values of 4’ and v, are
represented graphically in Figs. 149 and 150, respectively.
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=
: 0.6
Fia. 150

To calculate the deflections and stresses in a given plate of variable thickness we
begin by choosing the proper value for the constant g as given by the curves in Fig.
146. When the value of 8 has been determined and the conditions at the boundary
are known, we can use the values of Table 68 to calculate the deflection at the center
and the curves in Figs. 147, 148 or 149, 150 to calculate the maximum stress. If the
shape of the diametrical section of the given plate cannot be represented with satis-
factory acecuracy by one of the curves in Fig. 146, an approximate method of solving the
problem can always be used. This method consists in dividing the plate by con-
centric circles into several rings and using for each ring formulas developed for a ring
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plate of constant thickness. The procedure of caleulation is then similar to that
proposed by R. Grammel for calculating stresses in rotating disks.!

68. Annular Plates with Linearly
Varying Thickness. Let us consider a
circular plate with a coneentrie hole and P
a thickness varying as shown in Fig. 151. g~
The plate carries a uniformly distributed
surface load ¢ and a line load p = P/2xb
uniformly distributed along the edge of
the hole.? Letting Dy = Eh}/12(1 — »%)
be the flexural rigidity of the plate at
r = b, we have at any distance r from

R |
the center L )Ew" Fomm
_ Dor® S L’ ettt

D= 59 (@) Fra. 151

Substituting this in Eq. (e) of Art. 67 and taking into account the additional shear
force P/2xr due to the edge load, we arrive at the differential cquation

d2p de qb® b2 Pp3
=t LBy De= — L (1 -L1) - =
! dr? b dr + G e 2Do< /'2> 2xDor? ®)

The solution of the homogeneous equation corresponding to Eq. (b) is readily
obtained by setting ¢ = r®. Combining this solution with a particular solution of
Eq. (), we get

qb? gbt Pbh?
= Ar*1 4 Bre 4 - e i P —
¢ 2001 —39)  6(1 = Dot T end = Dz ©
in which

@ = —1.54+ V325 —3r  ar = —15 - /325 — 3, (@

In the special case » = %, expression (¢) has to be replaced by

B g r gb® Pbs

A4+ - e - L L

¢S A Y T 60 %% T 1wt T deDer )

The arbitrary constants 4 and B must be determined from the respective conditions
on the boundary of the plate. Writing, for brevity, ¢, for (), and My for (M), ..,
and introducing likewise ¢4, Mo, the last column of Table 69 contains the boundary
conditions and the special values of ¢ and P assumed in six different cases. The same
table gives the values of coefficients k and %, calculated by means of the solution () and
defined by the following expressions for the numerically largest stress and the largest
deflection of the plate:

1 R. Grammel, Dinglers Polytech. J., vol. 338, p. 217, 1923. The analogy between
the problem of a rotating disk and the problem of lateral bending of a circular plate of
variable thickness was indicated by L. Féppl, Z. angew. Math. Mech., vol. 2, p. 92,
1922. Nonsymmetrical bending of circular plates of nonuniform thickness is dis-
cussed by R. Gran Olsson, Ingr.-Arch., vol. 10, p. 14, 1939.

2 This case has been discussed by H. D. Conway, J. Appl. Mechanics, vol. 15, p. 1,
1948. Numerical results given in Table 69 are taken from that paper.
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TasLE 69. VarLuBs oF CoErricIENTS IN Fqs. (f) For VARIOUS VALUES OF THE
Ratio a/b (Fig. 151)
1

v = )

Case a/b Bound-
(number Coefhi- ary
corresponding cient | T condi-
to Table 3) | I 1.25 15 | 2 3 4 5 tions

} k1 0.00372(0.04530.401 2.12 { 4.25 1 6.28 | M,

il
=}

q k 0.249 (0.638 3.96 '113.64 26.0 140.6 P = Q*
s | [ | o0
|
|

7 . ko |0.149 0.991 2.23 (5.57 7.78| 9.16 | P =0

} 4 kr  |0.00551|0.0564,0.412 | 1.673] 2.79 | 3.57 | M, =0

| | *
a k 10.1275 0.515 '2.05 | 7.97 17.35 |30.0 = P = Q*
eI | | =0

N ki 0.001050.01150.0034] 0.537, 1.2611 2.16 = ¢ = 0
| : | |
—+—t
iy k ‘04159 0.396 |1.091 | 3.31 , 6.55 |10.78 = 4 =0
e =0

0.001740.0112{0.0606) 0.261 0.546 0.876. ¢, = 0

| i |

| X
| I
, ’ 0.933 2.63 | 6.88 |11.47 ]16.51 ¢ =0
8 .‘ ! ] | | N~ 0
' b | ki [0.00816/0.05830.345 | 1.358 2.39 \ 8.27 | Mo =0
- | o
— | —
g k[0.0785 "0.208 052 | 1.27 | 1.94| 252 | P =0

I

r Pa

| i | a

i=s A ool 0.0t oz o
A ks ‘0.00092'0.008 ‘0.0495; 0.193' 0.346, 0.482 0

* Where Q = wq(a? — b?).
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2 P
(Ur)max = kq—a;' or (O'T)msxx = k—a
hi hi o5
=k 4 r Wiax = K Fa? !
Wmax = K1 Eh;; 0 max = Ki Eh‘;

Numerical results valid for similar plates with constant thickness have been given
in Table 3.

69. Circular Plates with Linearly Varying Thickness. In discussing the bending
of the circular plate shown in Fig. 152, we have to consider two portions of the plate
separately.

1. The annular area b <7 < a. DProvided » # %, the slope ¢ = dw/dr again is
given by the cxpression (c¢) of Art. 68 without, however, its next to last term,

2. The inner area r <b. Here we

P have dD/dr = 0, and Eq. (e) of Art. 67 is
: i U L £ L‘L LL‘J L lJ ; .- reduced to
3 */“4’/*/7&% i°¢77</7// 7 N hy L, P dey _ qr® Pr
3 ! N A e T
e w

where the subscript ¢ refers to the inner

f P| portion of the plate. The general solu-
- L}(«Zc tion of Eq. (a) is
\ v -
N Z ho 7 - Tih B; gr?
¥ @_& po= ATt T e,
(b) Pr
Fre. 152 ~gp, Zlgr+ 1D ®)

The constants A, B in Eq. (¢) of Art. 68, and A;, B; in Eq. (b) above can be obtained
from the boundary condition
(Qa)r:u =10
and the conditions of continuity
de  des

Do = 0 — e = —— =
(¢i)r=0 (¢ — ¢drs =0 (dr dr),;,, 0

Tables 70 and 71 give the deflection wn.x and values of bending moments of the plate
in two cases of loading. To calculate the bending moment at the center in the case
of a central load P, we may assume a uniform distribution of that load over a small
cirecular area of a radius ¢. The moment M, = M, at »r = 0 then can be expressed
in the form

r c?
/ = ¥, — e —— — 2
Myux = My o 1 T2 + yiF (e)
In this formula M, is given by Eq. (83), which holds for a supported plate of constant
thickness; the second term represents the effcet of the edge moment; and the third
term, due to the nonuniformity of the thickness of the plate, is given by Table 71.

! Clamped and simply supported plates of such a shape were discussed by H. Favre,
Bull. Tech. Suisse romande, vol. 75, 1949. Numerical results given below are due
substantially to H. Favre and E. Chabloz, Bull. Tech. Suisse romande, vol. 78, 1952.
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TasLe 70. DErFLECTIONS AND BENDING MoMENTS oF CraMpPED CIRCULAR
Prates LoapeEp UntrorMLY (Fig. 152a)

vy = 0.25
‘ gat M, = Bqa? M, = Biga?
é Wmax = a'ﬁ—;;
a Bl =0 r=2=% r=a r=20 r==~b r=aqa
o B B B B | B1 B1
0.2 0.008 0.0122 0.0040 | —0.161 ‘ 0.0122 0.0078 | —0.040
0.4 0.042 0.0332 0.0007 | —0.156 ! 0.0332 0.0157 | —0.039
0.6 0.094 0.0543 | —0.0188 | —0.149 | 0.0543 0.0149 | —0.037
0.8 0.148 0.0709 | —0.0591 | —0.140 | 0.0709 0.0009 | —0.035
1.0 0.176 0.0781 | —0.125 —0.125 | 0.0781 | —0.031 —0.031

TaBLE 71. DerLECcTIONS AND BrNbpING MoMmexts oF CrLamrep CIRCULAR
PrLares UNDER A CENTrAL Loap (Fig. 152b)

v = 0.25
| Y 1 =

, Pat| . - 1, M, = gP M, = 8P

Y Wmax = @ 3 _ -

a Eh r=0 r==>b r=a r==% r=a
o o 71 B 8 B B
0.2 0.031 —0.114 —0.034 —0.129 —0.028 —0.032
0.4 0.093 —0.051 —0.040 —0.112 —0.034 —0.028
0.6 0.155 —0.021 —0.050 —0.096 —0.044 f —0.024
0.8 0.203 —0.005 —~0.063 —0.084 —0.057 —0.021
1.0 0.224 0 —0.080 —0.080 : —0.020 ‘ —0.020

*In Eq. (¢).

In the case of a highly concentrated load requiring the use of the thick-plate theory,
the stress at the center of the bottom surface of the plate is given by the expression

GP’Y]

Omax = 0o + Tg“ (d)
in which oo may be calculated by means of expression (97).

Assuming next a variation of the flexural rigidity of the plate in accordance with

the law
D=Do<l —1>" ()
ao

where @, denotes a length at least equal to the radius of the plate, we arrive in
general at a slope ¢ expressible in terms of the hypergeometric function.! The par-
ticular assumption m = 1/» leads, however, to a solution in a closed form. Taking,
in addition, » = 4 we arrive again at a plate with linearly variable thickness.?

1 R. Gran Olsson, Ingr.-Arch., vol. 8, p. 270, 1937.
2 See especially H. D. Conway, J. Appl. Mechanics, vol. 18, p. 140, 1951, and vol. 20,
p. 564, 1953.



PLATES OF VARIOUS SHAPES 307

Symmetrical deformation of plates such as shown in Fig. 153 also can be investi-
gated by means of a parameter method akin to that described in Art. 39. Some
numerical results! obtained in that way
are given in Tables 72 and 73.

-q
F.

For bending moments and tensile | ‘ ‘iI& ‘ & ‘ ; ‘ } TL ‘ :
stresses under central load P (Tig. 153b) 7 X _hi.
expressions o 7

j[max =M, -+ 'ng (f) (l() _______ [P — )l
6F a
and Omax = 04 -+ ;YQ (g)
hy p
tt
analogous to Eqgs. (¢) and (d) may be > [ k-2¢

I !
used. M, again is given by expression M?h’ 7 —;’{
(83), oo denotes the value calculated by % g’ /g !

means of expression (96), and v; is given AN
in Table 73. (b}

Of practical interest is also a combina-
tion of loadings shown in Fig. 153a and P
b. Taking ¢ = —P/7a% we have the |
state of equilibrium of a circular footing >irelc
carrying a central load P and submitted !
at the same time to a uniformly distrib- 7;‘/ ho __;”1
uted soil reaction (Fig. 153¢). Some K3
data regarding this case, in particular T FL rf T T f TPTJ Tj f
the values of the factor ~,, to be used in [ g-=m=== 7a2
formulas (f) and (g), are given in Table (c)
747 Fiac. 153

TasLe 72. DerLECTIONS AND BENDING MOMENTS oF SIMPLY SUPPORTED
Prares unpErR UntrorMm Loap (Fig. 153a)

vy = 0.25
qa* M, = Bga® M, = Bga?
iiq wmax aEh3 T T T 7
hi | I r=0 r=a/2 r=20 r=a;2 r=a
R . [, N }__ Bi ”‘k B B
1.00 0.738 i 0.203 0.152 i 0.203 0.176 0.094
i ‘
1.50 ‘ 1.26 i 0.257 0.176 | 0.257 i 0.173 0.054
i i
2.33 i 2.04 ’ 0.304 0.195 ‘ 0.304 0.167 0.029

! Due, as well as the method itself, to H. Favre and E. Chabloz, Z. angew. Math. u.
Phys., vol. 1, p. 317, 1950, and Bull. Tech. Suisse romande, vol. 78, 1952,

? For further results concerning circular plates with varying thickness see W. Gittle-
man, Adreraft Eng., vol. 22, p. 224, 1950, and J. Paschoud, Schweiz. Arch., vol. 17, p.
305, 1951, A graphical method of design has been given by P. F. Chenea and P. M.
Naghdi, J. Appl. Mechanies, vol. 19, p. 561, 1952,
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TABLE 73. DEFLECTIONS AND BENDING MoMENTS OoF SIiMPLY SUPPORTED
CircuLaR PraTeEs UNpeEr CeENTRAL Loap (Fig. 153b)

v = 0.25
é ‘
: PaZAM' =M,(M,=BP‘( M, = 8P
ho Wmax = @« 3 ‘,'7" R o
- ER! ‘
hy " r=0 |r=a/2|r=a/2 r=a
: \ : |
a ; Yz J B ; B lA B
T P i o
1.00 . 0.582 0 ©0.069 | 0.129 | 0.060
1.50 0.93 0.020 @ 0.088  0.123 ; 0.033
2.33 1.39 0.039 | 0.102 | 0.116 | 0.016

TapLe 74. Bexving Monments oF A CiRcULAR FooTing Prate witH CENTRAL
Loav axp Unirormny DisTrIBUTED SoIiL Pressure (Fig. 153c¢)

» = 0.25
M. = M, 1M,=5P M, = /P
ho e e o
I r=20 'r=a/2 r=a/21 r=a
| {
S B B B B
1.00 —0.065 | 0.021 | 0.073 | 0.030
150 —0.053 ' 0.032 | 0.068 | 0.016
2.33 ~0.038  0.040  0.063 | 0.007

I

70. Nonlinear Problems in Bending of Circular Plates. From the
theory of bending of bars it is known that, if the conditions at the sup-
ports of a bar or the loading condi-
tions are changing with the deflection
of the bar, this deflection will no
longer be proportional to the load,
and the principle of superposition

cannot be applied.! Similar prob-
(m lems are also encountered in the case
Mg Mg of bending of plates.? A simple ex-
ample of this kind is shown in Fig.
154. A circular plate of radius a is
pressed by a uniform load ¢ against an absolutely rigid horizontal founda-
tion. If moments of an intensity M, are applied along the cdge of the plate,
a ring-shaped portion of the plate may be bent as shown in the figure,

1 An example of such problems is discussed in 8. Timoshenko, “Strength of Mate-
rials,” part 11, 3d ed., p. 69, 1956.

2 §ee K. Girkmann, Stahlbau, vol. 18, 1931. Scveral examples of such problems are
discussed also in a paper by R, Hofmann, Z. angew, Math. Mech., vol. 18, p. 226, 1938.
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whereas a middle portion of radius b may remain flat. Such conditions
prevail, for example, in the bending of the bottom plate of a circular
cylindrical container filled with liquid. The moments 3, represent in
this case the action of the cylindrical wall of the container, which under-
goes a local bending at the bottom. Applying to the ring-shaped portion
of the bottom plate the known solution for a uniformly loaded circular
plate [see expressions (m) in Art. 62}, we obtain the deflection

, r
w = 01 + C2 10g s + C;;TZ “l" 047"2 10g r + (2)(14_]5 (a)
For determining the constants of integration €y, . . . , C4y we have the
following boundary conditions at the outer edge:
(w)r==a =0 (Mr)r=a = _Zwa (b)

Along the circle of radius b the deflection and the slope are zero. The
bending moment M, also must be zero along this circle, since the inner
portion of the plate remains flat. Hence the conditions at the circle of
radius b are

dw

@)y = 0 (E)ﬂ:o M)y = 0 ©

By applying conditions (b) and (¢) to expression (a) we obtain the five
following equations:

4
Ci+ Ciloga+ Csa®>+ Cwttloga = — éﬁ%
Y, . he Y 12 . q]b“’
Ci+ Colog b 4+ Csb® + Cb?log b 64l
Cs r”;Tl + C2(v + 1)
2
+ Cy3+2loga—+ 2vioga + v) = — Iq(%)(é—i-y) —}—MD—E (d)
C: 2ot + 020 + 1)
b2
+ Cu(3 + 21log b + 20 log b -+ ») = —Tq@(3+ »)
] 1 qb3
Cag + Cs2b + Cb(2log b + 1) = — &5
By eliminating the constants Ci, . . . , Cysfrom these equations we obtain

an equation connecting M, and the ratio b/a, from which the radius b of
the flat portion of the plate can be calculated for each given value of M,.
With this value of b the constants of integration can be evaluated, and
the expression for the deflection of the plate can be obtained from kq. (a).
Representing the moment M, and the angle of rotation ¢, of the edge of
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the plate by the equations
_ qa2 _ qa3
M.=ags and  eo=B555 (e)
and repeating the above-mentioned calculations for several values of the
moment M,, we can represent the relation between the constant factors
o and 8 graphically, as shown in Fig. 155, for the particular case' » = 0.
It is seen from this figure that 8 does not

14 51 vary in proportion to « and that the resist-
L2 / ance to rotation of the edge of the plate
A decreases as the ratio b/a decreases. This

10 500/ condition holds up to the value « = 5, at
08 a - which value 8 = 1, b/a = 0, and the plate
g //L’= y touches the foundation only at the center,
06 a T as shown in Fig. 154b. Tor larger values
04 g_= 03 of @, that is, for moments larger than
V M, = 5qa?/32, the plate does not touch

02 b the foundation, and the relation between
0 <~ g-%¢ a and B is represented by the straight line
0t 2 8 4 5 6 4B The value M, = 5¢a?/32 is that

Fre. 155 value at which the deflection at the center

of the plate produced by the moments M,

is numerically equal to the deflection of a uniformly loaded plate simply
supported along the edge [see Eq. (68)].

Another example of the same kind is shown in Fig. 156. A uniformly
loaded circular plate is simply supported along the edge and rests at the
center upon an absolutely rigid foundation. Again the ring-shaped por-
tion of the plate with outer radius a and inner radius b can be treated as

AL g
/K /‘//)l/j‘ A
=g b

Fic. 156 Fia. 157

a uniformly loaded plate, and solution (@) can be used. The ratio b/a
depends on the deflection & and the intensity of the load ¢.

71i. Elliptical Plates. Uniformly Loaded Elliptical Plate with a Clamped
Edge. Taking the coordinates as shown in Fig. 157, the equation of the
boundary of the plate is

2 0,2
+L-1=0 (a)

1 This case is discussed in the paper by Hofmann, op. cit.
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The differential equation

Adw = % (b)

and the boundary conditions for the clamped edge, 7.e.,

ow
w =0 and e 0 (¢)

are satisfied by taking for the deflection w the expression?

xz 722 }
w=wo(1—‘—z—2~—%—2) (d)

Tt is noted that this expression and its first derivatives with respect to
z and y vanish at the boundary by virtue of Eq. (a). Substituting expres-
sion (d) in Eq. (b), we see that the equation is also satisfied provided

N TR TN (199)
Thus, since expression (d) satisfies Eq. (b) and the boundary conditions,
it represents the rigorous solution for a uniformly loaded elliptical plate
with a clamped edge. Substituting @ = y = 0 in expression (d), we find
that wy, as given by Eq. (199), is the deflection of the plate at the center.
If @ = b, we obtain for the deflection the value previously derived for a
clamped eircular plate [Eq. (62), page 55]. If @ = «, the deflection w,
becomes equal to the deflection of a uniformly loaded strip with clamped
ends and having the span 2b.
The bending and twisting moments are obtained by substituting expres-
sion (d) in Eqs. (101) and (102). In this way we find

9420 o1y 2 012
1, = —1)<d e, @) = —dweD [3” L 1
dx? oy?

a4 aZb‘Z (12
x® 3y? 1
+ ”(W“LF ‘Eé)] (©)

For the center of the plate and for the ends of the horizontal axis we
obtain, respectively,

v

BWOD
Bi —

a?

(A[x)z=0,y=0 = 4woD (aiZ -+ ) and (Ajz)x-:a,y=0 = (f)

1 This solution and the solution for a uniformly varying load ¢ are obtained by
(+. H. Bryan; see A. I. H. Love’s book, “Theory of Elasticity,” 4th ed., p. 484. The
cagse of an elliptical plate of variable thickness is discussed by R. Gran Olsson, Ingr.-
Arch., vol. 9, p. 108, 1938.
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Similarly, for the moments M, at the center and at the ends of the vertical
axis we find, respectively,

1 8woD
(M) v, g0 = dweD (b“’ + ;_;) and (M) om0y = — ;)3 (9

1t is seen that the maximum bending stress is obtained at the ends of
the shorter principal axis of the ellipse. Having the moments M., M,
and M., the values of the bending moment M, and the twisting moment
M., at any point on the boundary are obtained from Kgs. (¢) (Art. 22,
page 87) by substituting in these equations
2. 9
cos o = dy _ —_— b"ﬁ——i sin @ = _dr S (h)
ds \/a’*yz + bix? ds \/a‘*ye + Dhix?

The shearing forces @, and @, at any point are obtained by substi-
tuting expression (d) in LEgs. (106) and (107). At the boundary the
shearing force @, is obtained from Eq. (d) (Art. 22, page 87), and the
reaction V, from Iiq. (g) of the same article. In this manner we find
that the intensity of the reaction is a maximum at the ends of the minor
axis of the ellipse and that its absolute value is

a*h(3a® 4+ b?yq
3a* 4+ 3b% + 2a?b?
The smallest absolute value of V, is at the ends of the major axis of the
ellipse where

(Vi) max = fora > b (0

b+ "
3at 4 3b* £ 2a%? J
For a circle, a = b, and we find (Va)max = (Vi)mn = qa/2.

(V) win =

Elliptical Plate with a Clamped Edge and Bent by a Linearly Varying Pressure.
Assuming that ¢ = goz, we find that Iq. (b) and the boundary conditions (¢) are
satisfied by taking

w= e (200)

a* bt a?bh?

From this expression the bending moments and the reactions at the boundary can be
caleculated as in the previous case.

Uniformly Loaded Elliptical Plate with Simply Supported Edge. 'The solution for
this case is more complicated than in the case of clamped cdges;! therefore we give here
only some final numerical results. Assuming that ¢/b > 1, we represent the deflection
and the bending moments at the center by the formulas

qb*

W)zmy—0 = & T M, = Bgb* M, = Bigb? (k)

18ee B. G. Galerkin, Z. angew. Math. Mech., vol. 3, p. 113, 1923.
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The values of the constant factors «, 8, and 8, for various values of the ratio a/b and
for » = 0.3 are given in Table 75.

TaBLE 75. FacToRs «, 8, B1 IN Formuras (k) ror UNIFORMLY LOADED AND
SipLy SupporTED ErLiprical PLATES

v = 0.3
ap| 111 |12 ] 13 | 14 1.5‘2[314_5 w
J J— ‘ N e e B ]
«|0.70 0.83 10.96 |1.07 |1.17 [1.26 [1.58 1.88 [2.02 12.10 |2.28
80206 0.2150.219 | 0.223 [0.223 |0.222 | 0.2100.188 | 0.184 | 0.170 | 0.150
81 ]0.2060.235 | 0.261 | 0282 0.30310.321‘0.379 0.433 0.465 | 0.480 | 0.500

Comparigon of these numerical values with those previously obtained for rectangular
plates (Table 8, page 120) shows that, for equal values of the ratio of the sides of
rectangular plates and the ratio a/b of the semiaxes of elliptical plates, the values of
the deflections and the moments at the center in the two
kinds of plate do not differ appreciably. The case of a
plate having the form of half an cllipse bounded by the
transverse axis has also been discussed.?

72. Triangular Plates. FEquilateral Triangular
Plate Stmply Supported at the Edges. The bend-
ing of such a triangular plate by moments M,
uniformly distributed along the boundary has
already been discussed (see page 94). It was
shown that in such a case the deflection surface of the plate is the same
as that of a uniformly stretched and uniformly loaded membrane and is
represented by the equation

s
Y= 4ab

F1a. 158

[-va — 3yt — a(® + ¢ + %a:‘] (@)

in which a denotes the height of the triangle, and the coordinate axes
are taken as shown in Iig. 138.
In the case of a uniformly loaded plate the deflection surface is?

4
w = 64((11D {:ﬁ — 3y — alx® + ¥?) + 2—7(13] (% a? — x? — y?> (201)

' B. G. Galerkin, Messenger Math., vol. 52, p. 99, 1923. Tor bending of clamped
elliptical plates by concentrated forces sce H. Happel, Math. Z.; vol. 6, p. 203, 1920,
and C. L. Perry, Proc. Symposia Appl. Math., vol. 3, p. 131, 1950. See also H. M.
Sengupta, Bull. Calcutta Math. Soc., vol. 41, p. 163, 1949, and vol. 43, p. 123, 1950;
this latter paper also containg a correction to the former one. By means of curvi-
linear coordinates, solutions for plates clamped along some other contour lines and
submitted to a uniform load have been obtained by B. Sen, Phil. Mag., vol. 33, p. 294,
1942.

2 The problem of bending of a plate having the form of an equilateral triangle was
solved by 8. Woinowsky-Krieger, Ingr.-Arch., vol. 4, p. 254, 1933.
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By differentiation we find

= — 9 392 (g2 2 4 b
Aw MD[.L 3y — alx +y)+27a (b)
It may be seen from (201) and (b) that the deflection and the hending
moment at the boundary vanish, since the expression in the brackets is
zero at the boundary. Further differentiation gives

Aw = & (c)
Hence the differential equation of the deflection surface is also satisfied,
and expression (201) represents the solution of the problem. Having the
expression for deflections, the expressions for the bending moments and
the shearing forces can be readily obtained. The maximum bending
moment occurs on the lines bisecting the angles of the triangle. Con-
sidering the points along the x axis and taking v = 0.3, we find

(M) ax = 0.0248¢a? at ¢ = —0.062a

______ P
YI:_V\\ i (M) = 0.0259ga> stz = 0120a 202
< —Fj, At the center of the plate
N M=, = (1405 (203)
+pP 9

> 4 The case of a concentrated force acting on the
P plate can be solved by using the method of images (sec
\4 page 156). Let us take a case in which the point of
Ap application of the load is at the center A of the plate
AY
»d
N\

A
or— *  (Fig. 159). Considering the plate, shown in the {igure
L« %+ +§a by the heavy lines, ag a portion of an infinitely long

rectangular plate of width a, we apply the fictitious
4 loads P with alternating signs as shown in the figure.
Fic. 159 The nodal lines of the deflection surface, produced by

such loading, evidently divide the infinitely long plate

into equilateral triangles each of which is in exactly the same condition
as the given plate. Thus our problem is reduced to that of bending of
an infinitely long rectangular plate loaded by the two rows of equidistant
loads +P and —P. Xnowing the solution for one concentrated force
(see Art. 36) and using the method of superposition, the deflection at
point A and the stresses near that point can be readily calculated, since
the effect of the fictitious forces on bending decreases rapidly as their dis-
tance from point A increases. In this manner we find the deflection at A :

2
wy = 0.00575 %1 (204)

A\
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The bending moments at a small distance ¢ from A are given by the
expressions

a, =4ty P(l “ﬁ~039> )]

I

(1 j—w )P 3 ! i » (205)
My =~ dr (l 0g g_’r\c ' 579) + ( ;wy) )

Since for a simply supported and centrally loaded circular plate of radius
ap the radial and the tangential moments at a distance ¢ from the center
are, respectively (see page 68),

B[r (1 V>] 1()h a;()
 4r c ()
, 7 (I + ) ay (1 —=wnpr
and Mo = 4r log © + B P

it can be concluded that the first terms on the right-hand side of Eqs.
(205) are identical with the logarithmical terms for a circular plate with
a radius

a V3
Ay = - e-~u.379 e
0 m ( )

Hence the local stresses near the point of application of the load can be
saleulated by using the thick-plate theory developed for circular plates
{see Art. 19).

Equalateral Triangular Plates with Two or Three FEdges Clamped. 'Triangular plates
arc used sometimes as bottom slabs of
bunkers and silos. In such a case each
triangular plate is rigidly clamped along
both its inclined edges and clamped
elastically along its third, horizontal
edge (Fig. 160). Only the uniform and
the hydrostatie distribution of the load
is of practical interest. The largest
bending moment of the panel and the
clamping moments at the middle of a
built-in edge may be represented as

M = Bqa® or M = Bigwa® (f)

according to the type of loading (Fig. Fia. 160
160). The values of coefficients 8 and
81, obtained by the method of finite differences,® are given in Table 76.

It should be noted, finally, that a plate in form of a triangle with angles »/2, = /3,
and »/6 and having all edges simply supported can be considered as one-half of the
equilateral plate (Fig. 158), this latter being loaded antisymmetrically above the axis

t8ee A. Smotrov, “Solutions for Plates Loaded According to the Law of Trapeze,”
NMoscow, 1036.
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TABLE 76. VALUES or THE Factors 8, 81 1x Eqs. (f) ror EQUILATERAL
TriaNauLar Prares (IMig. 160)
y = 0.20

Edgey =0 smlpl} supportcd J Idge y = 0 clamped

|
Zl[l/l \ J1n2 ‘ ley!!

ﬂfxl [ z"[yl Z‘I'nz ‘uv/{\ ‘1[1 ‘

Uniform........ 8 0.01260. 0147{ 0. 0285‘ 0 §040113!0.0110

Hydrostatic. . . .. [31‘0 000310 0030‘ —0. 010(); 0 ‘0.0051“00034‘
! ! i

Load distribution { S \"
|

-0. 0238! —0.0238
—0.0091‘ —0.0060

z.  The problem of bending of such a plate can be solved in several ways—for example,
hy the method of images.!

Plate in the Form of an Isosceles Right Triangle with Simply Supported Edges. Such
a plate may be considered as one-half of a square
plate, as indicated in Fig. 161 by dashed lincs,
and the methods previously developed for rectan-
gular plates can be applied.? If a load P is
applied at a point A with coordinates £, n (Fig.
161), we assume a fictitious load —P applied at
A’, which is the image of the point 4 with respect
to the line BC. These two loads evidently pro-
duce a deflection of the square plate such that the
diagonal BC becomes a nodal line. Thus the
portion OBC of the square plate is in exactly the
same condition as a simply supported triangular
plate OBC. Considering the load +P and using
the Navier solution for a square plate (page 111), we obtain the deflection

.y
sm — 5
a . mrz . nmy @
wy = - 8ln —— sin —
"D (m2 + nt )2 a a d

In the same manner, considering the load —P and taking a — 5 instecad of and a — &
instead of 4, we obtain

Fia. 161

nwé

mmy
sin — gin ——
4Pa? . a o | mxx | nwy
= - —- -1t ———————gin — gin —— (h)
(m? + n‘-’)2 a a

The complete deflection of the triangular plate is obtained by summing up expressions

(9) and (h):

w = w; + ws (2)

! For the solution of this problem in double series, see R. Girtler, Sitzber. Akad.
Wiss. Wien, vol. 145, p. 61, 1936. The bending of equilateral triangular plates with
variable thickness has been discussed by H. Gottlicher, Ingr.-drch., vol. 9, p. 12, 1938.

% This method of solution was given by A. Nddai, “Klastische Platten,” p. 178,
1925. Another way of handling the same problem was given by B. G. Galerkin, Bull.
acad. sei. Russ., p. 223, 1919, and Bull. Polytech. Inst., vol. 28, p. 1, 8t. Petersburg,
1919.
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To obtain the deflection of the triangular plate produced by a uniformly distributed

load of intensity ¢, we substitute ¢ d¢ dy for P and integrate expression (i) over the
area of the triangle OBC. In this manner we obtain

) © ® . mrz . nry
nsin  —s8n  —
lbqa1 a a
we=——_»i 2 2 _—
D i m(n — m2)(m? + n?)?

m=1345 ... n=2416,.

tTxr | nwy
m sin —- sin —
a a .
mZ — ) (2 (7
n(m —n )(m +n )
=246, .., n=1,35....

This is a rapidly converging series and can be used to caleulate the deflection and the
bending moments at any point of the plate. Taking the axis of symmetry of the
triangle in Fig. 161 as the x axis and representing the deflections and the moments
M., and M, along this axis by the formulas
qa‘ !

YT s M., = Bqa? M, = Biga? *>
the values of the numerical factors «, 8, and g8, are as given in Figs. 162 and 163. By
comparing these results with those given in Table 8 for a uniformly loaded square

M
e a
Y I
A 4 X Xy
00050 | !
= L 00077
00050 - & L Aa
0.0100 |
Fic. 162
Vi
~0.0134
-0.0100
~00050L
K

00050 L

00100
\

00150

0.0ZOOL

F1a. 163



318 THEORY OF PLATES AND SHELLS

plate, it can be concluded that for the same value of a the maximum bending moment
for a triangular plate is somewhat less than half the maximum bending moment for a
square plate.

To simplify the calculation of the deflections and moments, the double series (j) can
be transformed into simple series.! For this purpose we use the known series

w
™
cosh m —
cos nr 2 T 2

(n? + m?)? mt  2m? .mm
sinh Y

. T

sinhm{—- —=x
cosh mz T 2
—_— + - .

7|'2
— e ()
4m? m 2m? . "
sinh? =~ sinh -
2
which can be represented in the following form
9
Un(z) = (@m + Bmx) cosh mx + (ym -+ 8mx) sinh ma — — (m)
m
Congidering now the series
COS N
V.(x) = —- —
o) E (n? + m2)2(n? ~ m?) (n)
n=2,4,6, ...
we obtain
AV n sin nx (o)
. 0
dz (nt + mt)t(nt — m?)
n=246,.,.
d2v,, cos nr
and mrV,, = — = = -0,
dz? + E (n* 4+ m?*)* ®)
n=24.96,...
By integrating Eq. (p) we find
. . 1 (®
Vi = A, cos mx + B, sin mx + — / U, (%) sin m(¢ — x) d& (¢)
m fo
dV. .
and i —mAy sin mx + mB, cos mx — Un(§) cos m(¢ — x) dg (r)
dx 0
The constants 4, and B, can be determined from the conditions
dv,, .
=10 and Va(0) =V, (%) ()
d:t x =l

which follow from series (o) and (n). With these values of the constants expression
(r) gives the sum of serics (o), which reduces the double series in expression (j) to a
simple series.

73. Skewed Plates. DPlates bounded by an oblique parallelogram have been used
recently as floor slabs of skew bridges. Such slabs usually are simply supported along

1 This transformation was communicated to 8. Timoshenko hy J. V. Uspensky.



PLATES OF VARIOUS SHAPES 319

the abutments, whereas both other sides remain free or are supported elastically by
“curbs’’ or beams.

In the most general case the use of an oblique system of coordinates chosen in
accordance with the given angle of skew
should be recommended; in certain particular
cases rectangular coordinates may also be used
to advantage in dealing with skew plates, and
the method of finite differences appears, in
general, to be the most promising. The fol-
lowing numerical data for uniformly loaded
skewed plates were obtained in that way.! At
the center of a skew plate with all edges simply
supported (Fig. 164a), let y
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e Q= e
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4
w = o % M max = Bga? (a)

The bending moment Mm.x acts very nearly
in the direction of the short span of the plate.
1f the edges y = 0 and y = a are free and
the other two edges are simply supported
(Fig. 164b), the central portion of the plate
carries the load in the direction normal to the
abutments. Letting wy and (Mo)max be,
respectively, the deflection and bending y ib)
moment at the ecenter of the plate, and (w1)uwux
and (M )m.x the corresponding quantities at
the free edge, we may express these gquantities in the form

A——

Fic. 164

at ;
Wo = wo (17)‘ (Aio)mux = ﬁoqaz
®)
(w1)max = ay 1‘Z) (AIL)Y“’W = B‘qaz

The numerical values of the coefficients are given in Table 77.

74. Stress Distribution around Holes. In order to investigate the
stress distribution around a hole, it is simplest to consider a very large
plate; results obtained in this way prove to be applicable without appreci-
able inaccuracy to plates of any shape, provided the width of the hole
remains small as compared with the over-all dimensions of the plate.

I The most data are due to V. P. Jensen, Univ. Illinois Bull. 332, 1941, and V. P-
Jensen and J. W, Allen, Univ. Illinots Bull. 369, 1947. See alzso C. P. Sicss, Proc.
ASCE, vol. 74, p. 323, 1948. Analytical methods have been applied by H. Favre,
Schweiz. Bauzlg., vol. 60, p. 35, 1942; P. Lardy, Schweiz. Bauztg., vol. 67, p. 207, 1949;
and also by J. Krettner, Ingr.-Arch., vol. 22, p. 47, 1954, where further bibliography
is given. TFor use of energy methods see also A. M. Guzmdn and C. J. Luisoni,
Publs., Univ. Nacl. Buenos Aires, p. 452, 1953. Pure bending of skewed plates has
been discussed by E. Reissner, Quart. Appl. Math., vol. 10, p. 395, 1953. Models of
skewed plates were tested by L. Schmerber, G. Brandes, and H. Schambeck, Bauinge-
nieur, vol. 33, p. 174, 1958. For use of finite differences sce also Art. 83,
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TaBLE 77. VaLuks oF CoErrICiENTS IN Iqs. (a) aND (b) For DEFLECTIONS
AND BenpING Mouents or UNiForMLY LoADED SkEwED PLATES

v =02
Plate in Fig. 164a Plate in Fig. 164b
‘ao ; m n i — ‘ """" ; ‘ ‘ —
‘ a ‘ B8 [ | Bo B
PR S J— — [ e i if,ﬁ____‘ —
0 | 2 2 | PO 0101; 0.0999  0.214 ©0.224 | 0.495 | 0.508
30 | 2.02 | 1.75 1 0.01046 | 0.0968 ‘ |
30 1.92 | 1.67 .. ..., . | 0.1183 | 0.1302 | 0.368 | 0.367
%5 2 1.414 } 0.00938 | 0. 0898 | 0, 0708 | 0.0869 | 0.291 | 0.296
60 | 2 1 0.00796 | 0.0772 | 0.0186 | 0.0396 | 0.166 . 0.152
75 | 2 0.518 ‘ 0.00094 ‘ 0.0335 | | \ ‘

To take an example, let us consider an infinitely large plate in a uni-
form state of stress defined by the bending moments

M.=M, M,=0 (a)
which correspond to a deflection surface
, Mo(x? — vy? Myr?
W= ‘_z%(ﬁ"_ Vf)) =~ ap LT A s )

To obtain the disturbance produced in such a state of pure bending
by a circular hole with a radius a (Fig.
165), we assume the material to be re-
moved inside the periphery of the circle.
Then we have to replace the action of
the initial stresses along the periphery of
the hole by the action of the external
couples and forces:

(M) rew = }[3 (1 + cos 26)

()
(Ve = f‘,d[_,o cos 20

Fia. 165

which are readily obtained by differentiation of expression (b) in accord-
ance with Eqgs. (192).

On the initial state of stress we superimpose now an additional state
of stress such that (1) the combined couples and forces vanish at r = a
and (2) the superimposed stresses taken alone vanish at infinity (r = ).

We can fulfill both conditions by choosing the additional deflection in

the form
’” _ Z‘[od a: .
= 1)) [A log r + <B + C 72> cos 20] (d)

g
|
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This expression also satisfies the homogenecous differential equation (194)
and yields the following stress resultants on the periphery of the hole:

(Mg = — M" {(1 — )4 + [4vB — 6(1 — »)C] cos 20}

(e)
M" [(6 — 20) A + 6(1 — »)C] cos 20

(V) )ra =

Since expressions (¢) and (e) for M, contain a constant term as well as

a term proportional to cos 26, while both expressions for V, contain only

one term, three equations are needed to satisfy the required conditions

M.+ M’ =0and V. 4+ V! = 0 on the periphery of the hole. Resolv-

ing these equations with respect to the unknown coefhicients 4, B, and C,

we obtain the final deflections w = w’ + w” and the following stress
resultants along the periphery of the plate:

M, = Mo[ 2+ ) szeJ

EETE
y 0D
Q. = ~——>4MO~ sin 26
T B4 va”
For 6 = #/2 and 8 = n/4, respectively, we obtain
M = 23 1,
3+ v
4 (9
(Ql)mfm (5 + )a A[O

1t is usual to represent the largest value of a stress component due to a
local disturbance in the form

Omax = ko . (h)

where o denotes the average value of the respective component in the
same section and k£ is the so-called factor of stress concentration. Having
in mind the largest bending stress along the periphery of the hole,
we can also write & = (M) mes/ Mo, M being the initial value of the stress
couples at 8 = x/2, where this largest stress occurs. Thus in the event
of pure bending we have

5+ 3v .
T @
equal to about 1.80 for steel (v = 4).

Factors of stress concentration could be obtained in a similar manner
for various modes of a uniform state of stress and also for holes of other
than circular shape.! All such results, however, prove to be of relatively
little value for the following reason.

o=

1 See J. N. Goodier, Phil. Mag., vol. 22, p. 69, 1936, and G. N. Savin, “Stress Con-
centration around Holes,” Moscow, 1951.
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While the bending stresses (to take only the previously discussed
case) do not exceed the value of ¢u.e = 6Mok/h? the largest value of the
corresponding shearing stresses is given by

— _3_ Q — 61“10 . Omax @ ( .
Tanx = g7 Qs = @V = BF kg J)

Thus, by decreasing the ratio a/h we can increase the ratio Tmax/omx at
will. In this way we soon arrive at transverse shearing stresses of such
a magnitude that their effect on the plate deformation ceases to be negli-
gible in comparison with the effect of the couples. Consequently, to

4
; \ :
\ -
. \ .
k A N
k AN
b ~
2 B _ .
e - = — + — —
————— —q—— ===t —"T.180
o 160
*~Customary plote theory
1
i
@ i —
! 1
i i E—
0 J | | ?
0 1 a 2 3
h
Fia. 166

assure reliable results regarding the stress distribution around holes, we
have to resort to special theories which take the shear deformation into
account.

Stress-concentration factors obtained! by means of E. Reissner’s theory
(see Art. 39) are plotted in Fig. 166 versus the value of a/h. The curve
ks holds in the case of pure bending considered above; the curve k; gives
the stress concentration in the event of a uniform twist, produced by
couples M, = Mo, M, = — M, in the initial state of stress. The values

1 K. Reissner, J. Appl. Mechanics, vol. 12, p. A-75, 1945. The case is discussed most
rigorously by J. B. Alblas, “Theorie van de driedimensionale Spanningstoestand in
een doorborde plaat,” Amsterdam, 1957.  For bending of a square plate with a cireular
hole, sce M. El-Hashimy, ‘‘Ausgewihlte Plattenprobleme,” Zirich, 1956, where
customary theory is applied.
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k, = 1.80 and k; = 1.60 given for these cases by the customary theory
appear, if plotted, as straight lines which approach both respective curves
asymptotically as the ratio a/h increases indefinitely. It is seen from
the graph that even for holes three times as wide as the plate is thick
the error resulting from the application of the usual theory exceeds 10
per cent of the true value of k. It is also noteworthy that for vanishing
hole diameter the limit value k, = 3 of the stress-concentration factor in
pure bending becomes equal to the value of the same factor in plane
stress when uniform tension in one direction is assumed.

If the hole (Fig. 165) is filled up with an clastic material other than that of the plate,
we have to deal with an “elastic inclusion.”” The unfilled hole and the rigid inclusion

40 v = 0.3 for material of
3.634 plate and inclusion ]
30
k 20 — (MT) mOX/M° — ]
kTS
10 |
o.63+&<_,
(M’)max/Mo
0
0 5 10 15 20
=1
E2
Fia. 167

can be regarded as the limiting cases of the elastic inclusion, Young’s modulus of the
filling being zero in the former and infinitely large in the latter case. In the following,
the effect of a rigid inclusion is briefly considered.

Just as in the case of a hole, we have to combine an initial state of stress with a
supplementary one; however, the conditions now to be fulfilled on the periphery of the
circle r = @ are (in the symmetrical case)

(W)res = 0 (g’i’) -0 (k)

where w is the combined deflection of the plate. From the expressions (192) for the
stress resultants, we readily conclude that on the periphery of the inclusion the relation
M, = »M, must hold, whereas the moments M, become zero.

In the particular case of pure bending, assumed on page 43, we obtain a distribu-
tion of radial moments around the rigid inclusion given by!

1 M. Goland, J. Appl. Mechanics, vol. 10, p. A-69, 1943; Fig. 167 is taken from this
paper. See also Yi-Yuan Yu, Proe. Second U.S. Natl. Congr. Appl. Mech., Ann
Arbor, Mich., 1954, p. 381.
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1 2 20
M, = M, (— 4 o2 ) 0

14+»  1—»

The respective stress concentration factor isequalto b = (3 4+ »)/(1 ~ »?), thatis, to
3.63 for steel. The effect of the transverse shear deformation, however, is not implied
in this result, which consequently holds only for large values of a/h.

It is seen that in the vieinity of a rigid inclusion the radial couples M, far excced
the tangential couples M,; this is in strong contrast to the stress state around a hole,
where the couples M: dominate the couples M,. Both moments are balanced best
in their magnitude in the case of an elastic inclusion, as shown in Fig. 167. Here E,
denotes Young’s modulus of the plate and E; that of the filling.

An inclusion with elastic filling may be replaced, without substantially changing its
effect on the plate, by an annular elastic inclusion. Reinforcing a hole with a ring of
properly chosen stiffness can therefore considerably reduce the stress concentration
in the material of the plate around the hole.!

! For stress analysis and numerical data regarding this casc sce Savin, op. cit.



CHAPTER 10

SPECIAL AND APPROXIMATE METHODS IN THEORY
OF PLATES

75. Singularities in Bending of Plates. The state of stress in a plate
is said to have a singularity at a point! (xe,y0) if any of the stress com-
ponents at that point becomes infinitely large. Irom expressions (101),
(102), and (108) for moments and shearing forces we see that a singu-
larity docs not oceur as long as the deflection w(x,y) and its derivatives
up to the order four are continuous functions of z and y.

Singularities usually occur at points of application of concentrated
forces and couples. In certain cases a singularity due to reactive forces
can oceur at a corner of a plate, irrespective of the distribution of the
surface loading,.

In the following discussion, let us take the origin of the coordinates
at the point of the plate where the singularity occurs. The expressions
for the deflection given below yield (after appropriate differentiations)
stresses which are large in comparison with the stresses resulting from
loading applied elsewhere or from edge forces, provided z and y are small.

Single Force at an Interior Point of a Plate. If the distance of the
point under consideration from the boundary and from other concen-
trated loads is sufficiently large, we have approximately a state of axial
symmetry around the single load P. Consequently, the radial shearing
force at distance r from the load P is

0= -

27r
Observing the expression (193) for (), we can readily verify that the
respective deflection is given by

(206)

N r
Wy = g 7 log u
in which a is an arbitrary length. The corresponding term 72 log a yields
negligible stresses when the ratio r/a remains small.

Single Couple at an Interior Point of a Plate. Let us apply a single

1 More exactly, at a point (xo,y0,2).
’ 325



326 THEORY OF PLATES AND SHELLS

force —M,/Azx at the origin and a single force +21/Ax at the point

(—Az,0), assuming that M, is a known couple. From the previous result

[Eq. (206)] the deflection due to the combined action of both forces is
My (x4 Ax)? 4 y? [(w—i—Ax) + y?t

W= 8D Az log a

LMt @ty
&rD Ax log = a (a)

As Az approaches zero, we obtain the case of a couple M, concentrated
at the origin (Fig. 168¢) and the deflection is
. : 17"[1 owo
=1 Ly = 1o
W, im [w]az—o P o
where w, is the deflection given by expression (206). Performing the
differentiation we obtain

Mz x? 4 y?
wm=gh (h)g o 1) (®)

If we omit the second term M x/87D, which gives no stresses, and use
polar coordinates, this expression becomes
A[l r _
W= T log — 2 08 0 (207)
In the case of the couple M5 shown in Fig. 1686 we have only to replace
9 by 6 + «/2 in the previous formula to obtain the corresponding
deflection.

Fic. 168

Double Couple at an Interior Point of a Plate. Next we consider the
combined action of two equal and opposite couples acting in two parallel
planes Az apart, as shown in Fig. 169. Putting M, Az = H, and fixing
the value of H; we proceed in essentially the same manner as before and
arrive at the deflection

wy = B 8w Hyotw ()
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due to a singularity of a higher order than that corresponding to a couple.!
Substitution of expression (200), where rectangular coordinates may be
used temporarily, yields the deflection

H] r
L z 9
wr =g p <2 log P + 2 -+ cos 0) (208)

Expressions containing a singularity are also obtainable in the case of a
couple acting at the corner of a wedge-shaped plate with both edges free,
as well as in the case of a semi-infinite plate sub-

mitted to the action of a transverse force or a 7

couple at some point along the free edge.? g O F
Single Load Acting in the Vicinity of a Built-in 7 { ey

7, 1

o€ Py

- P ! I [y

1 \vl b
RSN Y

x Py

I

Fia. 169 Fig. 170

Edge (Fig. 170). The deflection of a semi-infinite cantilever plate carry-
ing a single load P at some point (£,9) is given by the expression

w r [4:&5 — 2 log e+ 8 ;t W = 77)2] (d)

T 16xD

where r = (x — £ + (y — n)2.  We confine ourselves to the consider-
ation of the clamping moment at the origin. Due differentiation of
expression (d) yields

M, = — 7-1: cos? ¢ (209)

at ¢ = y = 0, provided ¢ and 5 do not vanish simultaneously. It is seen
that in general the clamping moment M, depends only on the ratio 5/¢.

! To make the nature of such a loading clear, let us assume a simply supported
beam of a span L and a rigidity EI with a rectangular moment diagram Az by M, sym-
metrical to the center of beam and due to two couples M applied at a distance Ar from
cach other. Proceeding as before, i.c., making Az — 0, however fixing the value of
H = M Az, we would arrive at a diagram of magnitude H concentrated at the middle
of beam. Introducing a fictitious central load H/EI and using Mohr’s method, we
would also obtain a triangular deflection diagram of the beam with 2 maximum ordi-
nate HL/4EI. A similar deflection diagram would result from a load applied at the
center of a perfectly flexible string.

2 Sce A. Nddai, ‘“Elastische Platten,” p. 203, Berlin, 1925.
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If, however, § = g = 0 the moment A, vanishes, and thus the function
M.(£,m) proves to be discontinuous at the origin.

Of similar character is the action of a single load near any edge rigidly
or clastically clamped, no matter how the plate may be supported
elsewhere. This leads also to the characteristic shape of influence sur-
faces plotted for moments on the boundary of plates clamped or continu-
ous along that boundary (see Figs. 171 and 173).

For the shearing, or reactive, force acting at = y = 0 in Fig. 170
we obtain in similar manner

_ 2P 3
Q: = o8t (210)
where r? = £2 + 2

76. The Use of Influence Surfaces in the Design of Plates. In Art. 29
we considered an influence function K(x,y,£,) giving the deflection at
some point (z,y) when a unit load is applied at a point (&9} of a simply
supported rectangular plate. Similar functions may be constructed for
any other boundary conditions and for plates of any shape. We may
also represent the influence surface K(&,n) for the deflection at some fixed
point (x,y) graphically by means of contour lines. By applying the
principle of superposition to a group of n single loads P; acting at points
(&,m5) we find the total deflection at (z,y) as

w= Y PK(@ysmn) (a)

i=1

In a similar manner, a load of intensity p(&,9) distributed over an area A
of the surface of the plate gives the deflection

W= ‘{1“/‘ p(éﬂ?)K(I,lj,E,n) df d‘r) (b)

By Maxwell’s reciprocal law we also have the symmetry relation

K(x,y,em) = K(&mz,y) (c)

i.e., the influence surface for the deflection at some point (x,y) may be
obtained as the deflection surface w(&,n) due to a unit load acting at
(x,y). The surface w(£n) is given therefore by the differential equation
AAw(En) = 0, and the solution of this equation not only must fulfill the
boundary conditions but also must contain a singularity of the kind
represented in Eq. (206) at £ =z, n = .

Of special practical interest are the influence surfaces for stress resultants! given by
a combination of partial derivatives of w(z,y) with respect to # and y. To take an

! Such surfaces have been used first by H. M. Westergaard, Public Roads, vol. 11,
1930. Sec also F. M. Baron, J. Appl. Mechanics, vol. 8, p. A-3, 1941.
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example, let us consider the influence surfaces for the quantity

a2 9% u
~D = =D 5;1&(1:!/)5177) (d)

By result (c) of Art. 75 this latter expression yields the ordinates of a deflection surface
in coordinates &, y containing at £ = 2, » = y a singularity due to a “couple of second
order” H = 1 which acts at that point in accordance with Fig. 169.

The procedure of the construction and the use of influence surfaces may be illus-
trated by the following examples.!

Influence Surface for the Edge Moment of o Clamped Circular Plate? (Fig. 171). By
representing the deflection (197), page 293, in the form w = PK(z,0,£,6), we can con-
sider A as the influcnce function for the deflection at some point (,0), the momentary
position of the unit load being (£,6).  In caleulating the edge couple M, atz = r/a = 1,
y = 0 we observe that all terms of the respective expressions (192), except for the
following one, vanish along the clamped edge # = 1. The only remaining term yields

D [ 92K 1 1 — ¢2)2
M. =—~={-— = — = (*—E)q (e)
a? \ dx? J, 1 4r 2 — 2Ecos 0 -+ 1

For brevity let us put £ — 2£ cos 8 4+ 1 = »? and, furthermore, introduce the angle
o (Fig. 171a). Then we have £2 = 1 — 29 cos ¢ + n?and

1
M, = ——(2cos ¢ — 7)?
4

which, for negligible values of 5, coincides with the expression (209). The influence
surface for the moment I, is represented by the contour map in Fig. 1710, with the
ordinates multiplied by 4r.

Influence Surface for the Bending Moment M. at the Center of « Simply Supported
Square Plafe.® It is convenient to use the influence surfaces for the quantities
M. = =D do*w/oz? and My, = —D 0%w/9y* with the purposc of obtaining the final
result by means of Tiqs. (101).

The influence surface for 3.y may be constructed on the base of Fig. 76. The
influence of the single load P = 1 acting at point 0 is given by the first of the equations
(151) and by Eq. (152). This latter expression also contains the required singularity
of the type given by Eq. (206), located at the point 0. The cffect of other loads may
be calculated by means of the first of the equations (149), the scries being rapidly
convergent. The influence surface is shown in Fig. 172 with ordinates multiplied
by 8.

Let us caleulate the bending moment M. for two single loads P, and P, < P, at a
fixed distance of 0.25a from each other, each load heing distributed uniformly over

! For details of the so-called singularity method see A. Pucher, Ingr.-Arch., vol. 12,
p. 76, 1941.

2 Beveral influence surfaces for the elamped circular plate are given by M. El-
Hashimy, “Ansgewihlte Plattenprobleme,” Ziirich, 1956,

3 The most extensive set of influence surfaces for rectangular platcs with various
edge conditions is due to A. Pucher, “Linflussfelder elastischer Platten,” 2d ed.,
Vienna, 1958. See also his paper in “Federhofer-Girkmann-Festschrift,” p. 303,
Vienna, 1950. For influence surfaces of continuous plates, see G. Hoeland, Ingr.~-Arch.,
vol. 24, p. 124, 1956.
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~—
p— 1
Multiplication factor T =0.0796
(b} y
Fic. 171

an area 0.1a - 0.1a. Outside those areas the plate may ecarry a uniformly distributed
live load of an intensity ¢ < P./0.01a?

The influence surface (Fig. 172) holds for Mo, and the distribution of the loading
which yields the largest value of Mo is given in this figure by full lines. Because of the
singularity, the ordinates of the surface are infinitely large at the center of the plate;
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“therefoTe it is simplest to calculate the effect of the load P, separately, by means of
Eqs. (163) and (165), in connection with Tables 26 and 27.! For this case we have
v=0,v/u=Fk=1 ¢ =15708 ¢ =0, N = 2.669, and u = 0, which yiclds N = 0
and a value of M calculated hercafter. As for the effect of the load P, it can be
assumed as proportional to the ordinate 2.30 of the surface at the center of the loaded

e [ et >

i T ! |
: S [ DG NN ) S
1 P e s S e S
\ P P ///-——-f-\\\ ~ ~N
I // 4 ,// : \\\\ \0-2
5 /! // //, l NN
: / R ] N 06
i / i ~ 0.8 \
/ 00 AT ° TN o \\ Lo
! | Loy / | \\ o
I : ! /
IR s B0
| e [\ [ i
1 \ !
| i ll | 3\4 ,_A_TL,‘, "
L I I I R R WA i [
T e
! [ - F1-1-
i P ) L
| {1 ;I 7 i \‘ i
: P | I
; Lo ' L
: T T Tt
N N~ A T
1‘ \ \ | / /
1 NERAND [ A1
» VN NN AV aY.
! N N A" ),
! N N T S R //// /] Y
! I O N et e Sy P b
! \\\“ \\_‘k_ﬁ_____—_//’///
i B i e S

Multiplication factor BL7T = 0.0398 ly For uniform load M, =0.0369 qo?
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area. Introducing only the excesses of both single loads over the respective loads due
to ¢, we have to sum up the following contributions to the value of M.e:

1. Load P;: from Eqgs. (163), (165), with = /2, d = 0.1 V2 q,

, M P, — 0.01ga? 4
A _— e = 2 l — . 3G — .
{0 = ;= s ( e N + 2.669 — 1 571)

= 0.219(P, — 0.01¢a?)

! The effect of the central load may also be calculated by means of influence lines
similar to those used in the next example or by means of Table 20.
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2. Load P;:
1t 1
M, = —8-—2.30(1’2 — 0.01ga®) = 0.002(P; — 0.01¢qa?

3. Uniform load g: from data on Fig. 172,

M = 0.0369ga?
Therefore Mzo = 0.219P, + 0.092F, + 0.0338¢a?

Owing to the square shape of the plate and the symmetry of the boundary conditions
we are In a position to use the same influence surface to evaluate M,o. The location
of the load P, corresponding to the location previously assumed for the surface M.,
is given by dashed lines, and the contribution of the load P; now becomes equal to
M;’O = 0.035(P: — 0.01ga?), while the contributions of P; and ¢q remain the same as
before. This yields

Myo = 0.219P, + 0.035P, + 0.0344qa?
Now assuming, for example, » = 0.2 we have the final result
M, = M. + 02M,0 = 0.263P, + 0.099P, + 0.0407qa?

Influence Surface for the Moment M. at the Cenler of Support between Two Interior
Square Panels of a Plate Continuous in the Direction x and Simply Supportedaiy = +b/2.
This case is encountered in the design of bridge slabs supported by many floor beams
and two main girders. Provided the deflection and the torsional rigidity of all sup-
porting beams are negligible, we obtain the influence surface shown! in Fig. 173.

In the case of a highway bridge each wheel load is distributed uniformly over some
rectangular area u by ». For loads moving along the center line y = 0 of the slab a
set of five influence lines (valid for »/b6 = 0.05 to 0.40) are plotted in the figure and their
largest ordinates arc given, which allows us to determine without difficulty the govern-
ing position of the loading., Both the surface and the lines are plotted with ordinates
multiplied by 8.

EXAMPLE OF EVALUATION. Let us assume ¢ = b = 24 ft 0 in.; furthermore, for the
rear tire P, = 16,000 1b, u = 18 in., » = 30 in., and for the front tire P; = 4,000 b,
u = 181in.,, v = 15 in. The influence of the pavement and the slab thickness on the
distribution of the single loads may be included in the values « and v assumed above.

For the rear tire we have v/b =~ 0.10 and for the front tire v/b ~ 0.05. Assuming
the position of the rear tires to be given successively by the abscissas ¢ = 0.20q, 0.25q,
0.30a, 0.35a, and 0.40a, the respective position of the front tires is also fixed by the
wheel base of 14 ft = 0.583¢. The evaluation of the influence surface for each par-
ticular location of the loading gives a succession of values of the moment plotted in
Fig. 173 versus the respective values of £ by a dashed line. The curve proves to have
a maximum at about £ = 0.30a. The procedure of evaluation may be shown for this
latter position only.

The infiuence lines marked 0.10 and 0.05, respectively, yicld the contribution of hoth
central loads (at y = 0) equal to

— (16,000 - 3.24 4 4,000 - 3.32) = —65,100 b
and the influence surface gives the contribution of the remaining six loads as
—16,000(1.66 + 2.25 + 0.44) — 4,000(1.59 + 2.25 + 0.41) = —&6,600 1b

1 For methods of its construction see references given in Art. 52.
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Finally, taking into account the prescribed multiplier of 1/8r = 0.0398, we have
the result

(M Dmin = —0.0398(65,100 4- 86,600) = —6,040 Ib-ft per ft

Mazximum Shearing Force Due to a Load Uniformly Distributed over the Area of a
Rectangle. A load of this type, placed side by side with the built-in edge of an infinite
cantilever plate, is shown in Fig. 170 by dashed lines. This problem is encountered
also in the design of bridge slabs. By using the result (210) and the principle of
superposition we obtain the following shearing force at = y = 0:

2P [u
r/max = T "’E’ 1
(@) Y /0 /—L/’(EZ 2”]

which gives

P
(Qr)mut = o (f)
v
1] 4u? v
with o = - I:—log (—2‘ + l) + 2 arctan—:‘ (9)
x| u v 2u

Numerical values of the factor « are given in Table 78.  As the influence of the other
tire loads on Q. is usually negligible we have no need of an influence surface for Q..
The result (f) can be used with sufficient accuracy for slabs having finite dimensions
and also, as a largest possible value, for an edge built in elastically.

TaprLe 78. VALCEs oF THE Facror o IN K. (f)

v/u a v/u «

0.1 0.223 1.2 0.852
0.2 0.357 1.4 0.884
0.3 0.459 1.6 0.909
0.4 0.541 1.8 0.927
0.5 0.607 2.0 0.941
0.6 0.652 2.5 0.964
0.7 0.708 ' 3 0.977
0.8 0.747 1 0.989
0.9 . 0.780 5 L0994
1.0 0.807 10 i 0.999

T77. Influence Functions and Characteristic Functions. 1t is intcresting to note the
close econnection between the influence function (or Green’s function) of the bent
plate and the problem of its free lateral vibrations. The latter are governed by the
differential equation

2 2 \2 2
F) a>W= w W @

ozt T o "D ar
where W(z,y,t) is the deflection, u the mass of the plate per unit area, and ¢ the time.
With the assumption W = w(z,y) cos pt we obtain for the function w the differential
equation

Dasw —zxw =0 th)
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in which A = p2%u. For some specific boundary conditions, solutions of Eq. (b)

exist only for a definite set of values Xy, X2, . . ., A, . . . of the paramcter A, the
so-called characteristic numbers (or eigenvalues) of the problem. The respective solu-
tions form a set of characteristic functions wi(z,y), wa(x,y), . . ., welz,y), . . . .

These functions are mutually orthogonal; .e.,

/ / ws(z,y)wi(z,y) de dy = 0 (¢)
A

for ¢ # k, the integral being extended over the surface of the plate. As the functions
wi(x,y) are defined except for a constant factor, we can ‘“‘normalize’” them by choosing
this factor such as to satisfy the condition

/[ wilz,y) de dy = a*b? @
A

The form choscn for the right-hand side of (d) is appropriate in the ease of a rectangular
plate with the sides ¢ and b, but whatever the contour of the plate may be, the dimen-
sion of a length must be secured for w.  The set of numbers M and the corresponding
set of normalized functions wi(z,y) being established, it can be shown! that the
expansion

®©

K(z,,5m) = Zflb“ E wel(,y)we(&m) "

k=1

holds for the influence function of the plate with boundary conditions satisficd by the
characteristic functions.

By applying Eqs. (a) and (b) of the previous article to the result (¢) we conclude
that, no matter what the distribution of the loading may be, the deflection of the plate
can always be represented by a linear combination of its characteristic functions.

As an example, let us take the rectangular plate with simply supported edges (Fig.
59). Eigenfunctions which satisfy ¥q. (b) along with the boundary conditions
w = Aw = 0 and the condition (d) are

marxr . nwy

wr = 2 \/@ sin —— sin H
a b

m and n being two arbitrary integers. The respective eigenvalue, from Eq. (b), is

m?  n%\?
e = wtD ; -4 h2 (9

Substitution of this in the expansion (¢) immediately leads to the result (134). For
rectangular plates with only two opposite edges supported, the conditions on the other
edges being arbitrary, influence functions may be obtained in a similar manner.
However, in such a case a preliminary computation of the values of A from the respec-
tive transcendental frequency equation becomes necessary. A further example of an
influence function obtainable in the form of an expansion is the case of a circular plate,

1 See, for instance, R. Courant and D. Hilbert, ¢ Methods of Mathematical Physics,”
vol. 1, p. 370, New York, 1953.
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for which the modes of vibration, expressible in terms of Bessel functions, are well
known.

78. The Use of Infinite Integrals and Transforms. Another method of treating the
problems of bending of plates is the use of various transforms.! A few such transforms
will be discussed in this article.

Fourier Integrals. In the case of infinite or semi-infinite strips with arbitrary condi-
tions on the two parallel edges the method of M. Lévy, described on page 113, can be
used, but in doing so the Fourier series necessarily must be replaced by the respective
infinite integrals. In addition to the example considered in Art. 50, the problem of an
infinite cantilever plate (Fig. 174) carrying a single load P may be solved in this way.?

Fia. 174

Let w; be the deflection of the portion AB and w; the deflection of the portion BC
of the plate of width AC = a. Then we have to satisfy the boundary conditions

Jwy
w; =0 -— =0 onx =0
or
J?w, 9w 0 dhws n (.) ) 3w 0 ((l)
-y e = — 2 = y) = onzx =aqa
az? g dy? dzs e dy? e
together with the conditions of continuity
ow; dwe
w; = Ws —_— = Aw, = Aw, onzx = £ b
el ox
The single force P may be distributed uniformly over a length ». Now, any cven
function of v can be represented by the Fourier integral
o = ES
fly) = = cos oy do () cos an dy (c)
™ Jo 0

Since the intensity of the loading is given by f(n) = FP/v for —v/2 < n < v/2 and by

1 For their theory and application see 1. N. Sneddon, ‘“Fourier Transforms,” New
York, 1951.

? The solution and numerical results hereafter given are due to T. J. Jaramillo,
J. Appl. Mechanics, vol. 17, p. 67, 1950. Making use of the Fourier transform,
H. Jung treated several problems of this kind; see Math. Nachr., vol. 6, p. 343, 1952.
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zero elsewhere, we have
T w
Sin — ¢os ay
P 2
S == e da @

2
ww Jo ot

On the other hand, the function f(y) is equal to the difference of the shearing forces Q.
at both sides of the scction z = £ Thus, by Egs. (108), we have

[é]
D — (aw, — Aw,) = fly) (e)
[id

onz = £ In accordance with Eq. (d) we represent the deflections w, and wy by the
integrals

w; = /Ow Xi(z,a) cos ay da 1 =1,2 6]
in which the function
Xi(x,a) = (A; + Bix) cosh axr + (C; 4 Do) sinh e

is of the same form as the function Y., on page 111.
It remains now to substitute expressions (/) into Egs. (a), (b), and (e) in order to
determine the coefficients A4\, By, . . ., Ds, independent of ¥ but depending on a.

Fic. 175

The distribution of bending moments along the built-in edge, as computed from the
foregoing solution for various positions of the single load and for v = 0, » = 0.3, is
shown in Fig. 175.

AMellin Transform. The application of this transform is suitable in the case of a
wedge-shaped plate with any homogeneous conditions along the edges 6 = 0 and
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0 = « (Fig. 176). To take an example let us consider the edge 6 = 0 as clamped and
the edge # = a, except for a single load P at r = r, as free.!

We use polar coordinates (see Art. 62) and begin by taking the general solution of
the differential equation AAw = 0 in the form

W(s) = r~0(8,s) ()
where s is a parameter and
0(6,s) = A(s) cos s -+ B(s) sin s8 4 C(s) cos (s + 2)6 + D(s) sin (s + 2)8 (h)
The deflection and the slope along the ¢clamped edge vanish if

N = L RAUACN R
[(W(s)lg—o = 0 7"[: Y :le_o =0 ()

The bending moment M, on the free edge
vanishes on the condition that

2W(s) | LaW(s)
v or? r or

i W (s)
f=a

r? 902 =0 @

Now, a function f(r) can be represented by means of Mellin’s formula as follows:
1 ot wi w
fr =— r=eds (o) dp (%)
27 Jo—wi 0

where ¢ is a real constant, subject to some limiting conditions. Specifically for a force
P concentrated at r = ro we obtain

P ot i [\ (st
fr) = Y — ds 0]
Ty fg— o To

This suggests the following form for the deflection of the plate:
1 ‘o4 w1
770 (0,s) ds (m)

270 Jo— i

Now, the reactive forces acting down along the edge § = « are given by

V)poa = (@ - agl ”) )
r f=c

This, by use of due expressions for @: and M., (see pages 283, 284) as well as the
expression (m), gives

D [ot=i (g0
(Voma = — 5 {5‘—9 + 057+ (= )G + D + D] le 49 ds (o)

2w o— 01 a0 =0

! The problem was discussed by 8. Woinowsky-Krieger, Ingr.-Arch., vol. 20, p. 391,
1952. Some corrections are due to W. T. Koiter, Ingr.-Arch., vol. 21, p. 381, 1953.
For a plate with two clamped edges see Y. S. Uflyand, Doklady Akad. Nauk S.8.8.R.,
vol. 84, p. 463, 1952. See also W. T. Koiter and J. B. Alblas, Proc. Koninkl. Ned.
Akad. Weterschap., ser. B, vol. 57, no. 2, p. 259, 1954.
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We finally equate expressions (I) and (o) and thus obtain, in addition to Fgs. (¢) and
(1), a fourth condition to determine the quantitics A(s), B(s), C(s), and D(s). Sub-
stitution of these coefficients in the expressions (h) and (m) and introduction of a new
variable u = —(s + 1){, where ¢ = \/—1, yields the following expression for the
deflection of the plate:

»
r r
G cos | wlog — | -+ H sin | u log —
2P rra < i 7‘0) ‘ < & 7‘0)
D om= e —_—

N LA
D Jo Nu(l + u?) o ®

in which G and H are some functions of «, 6, and u, and N is a function of & and w.

M

/

0.243 Pre/D

Fra. 177

The variation of the deflections along the free edge and the distribution of the
moments 3, along the edge 6§ = 0 in the particular case of @ = »/4 and o = «/2 is
shown in Fig. 177.

Hankel Transform. lat a cireular plate with a radius ¢ be bent to o swface of
revolution by a symmetrically distributed load ¢(r). We multiply the differential
equation Adw = ¢/D of such a plate by rJo(Ar) dr and integrate by parts between
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r=0andr = ». Provided w = 0 for » > @, the result is

N A " W do) dr = g @

where
1 a
g(A) = (Cy + NCa}Jo(ha) + (ACs + NC)J1(ha) +Bﬁ q(p)pdo(hp) dp (1)

Joand J; are Bessel functions of the order zero and one, and C; are constants.  Appli-
cation of the Hankel inversion theorem to Eq. (¢) gives

¢ 1
w = [ g\) = Jo(ar) dr (s)
0 A3

The constants C; now are obtainable from the conditions on the boundary r = a of
the plate and from the condition that the function g(\)/A* must be bounded. The
expression (r) must be slightly modified in the case of an annular plate.! Examples
of the application of solutions of the type (s) to the problem of elastically supported
plates are given in Art. 61.

Sine Transform. In the case of rectangular plates we have used solutions of the
form

w(z,y) = ZY (y,«) sin ax

and in the case of sectorial plates those of the form
w(r,0) = R (r,3) sin po

The finite sinc transforms of the function w, taken with respect to = and 6, respec-
tively, and introduced together with transformed derivatives of w and the trans-
formed differential equation of the plate, then prove useful in calculating the constants
of the functions ¥ and R from the given boundary conditions of the plate.?

79. Complex Variable Method. By taking z = z + iy and z = x — sy for inde-
pendent variables the differential equation (104) of the bent plate becomes

dhw

22 622

1
—_— = \
16D ¢z3) (@

Let us agsume w = wo + w,, where w, is the general solution of the equation

dtw

8%z 922
and wy & particular solution of Eq. (). Then we have?
wr = Q2p(z) + x(2)] (b)

where ¢ and x are functions which are analytic in the region under consideration.
Usually the derivative ¢ = dx/dz is introduced along with x.

I For the foundation of the method and an extensive list of transforms needed in its
application sec H. Jung, Z. angew. Math. Mech., vol. 32, p. 46, 1952.

2 The application of the method is due to L. I. Deverall and C. J. Thorne, J. Appl.
Mechanics, vol. 18, pp. 152, 359, 1951,

3 ® denotes the real part of the solution. This form of the solution of the bipoten-
tial equation is due to E. Goursat, Bull. Soc, Math, France, vol, 26, p. 236, 1898,
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In the case of a single load P acting at 2o = xo + 7yo the solution we may be chosen
in the form

wp = 1(3[7:7) (z — 20)(Z — %) log [(z — 20)(Z — Zp)] (¢)

which is substantially equivalent to expression (206). For a uniform load

q22§2
“0 T 64D
would be a suitable solution.

If the outer or the inner boundary of the plate is a circle we always can replace it
by a unit circle z = €%, or briefly z = ¢. The boundary conditions on z = ¢ must be
expressed in complex form also. The functions ¢ and ¢ may be taken in the form of a
power scries, with additional terms, if necessary, depending on the value of stress
resultants taken along the inner edge of the plate. Multiplication of the boundary
conditions by the factor [27i(c — 2)]7! do and integration along z = ¢ then yields the
required functions ¢ and ¢.*

For boundaries other than a circle a mapping function z = w(f) = w(pe™®) may be
used so as to map the given boundary line onto the unit circle ¢ = ' = 4. The
determination of the functions «:(¢) = ¢(2) and ¢.(¢) = ¢(2) from the boundary
conditions on ¢ = ¢ then is reduced to the problem already considered.  The Musch-
elishvili method outlined above is cspecially eflicient in cases concerning stress
distribution around holes;! the function w(¢) then has to map the infinite region of the
plate into the interior of the unit circle.

The complex variable method also allows us to express Green’s functions of a circular
plate with various boundary conditions in closed form.? In other cases, such as that
of a clamped square plate, we must rely on an approximate determination of the
Green functions.?

When expressible by a double trigonometric series, the deformation of the plate can
also be represented in a simpler form by making use of the doubly periodic properties
of the elliptic functions. For the quantity Aw, satisfying the potential equation
A{Aw) = 0, such a representation becomes particularly convenient because of the
close connection between the Green function for the expression Aw and the mapping
function of the region of the given plate into the unit circle.* Once Aw is determined

*For evaluation of integrals of the Cauchy type implied in this procedure see N. 1.
Muschelighvili, “Some Basic Problems of the Mathematical Theory of Elasticity,”
Groningen, 1953.

! An extensive application of the method to the problem of stress concentration is
due to G. N. SBavin; see his “Stress Concentration around Holes,” Moscow, 1951.
See also Yi-Yuan Yu, J. Appl. Mechanics, vol. 21, p. 129, 1954, and Proc. Ninth
Intern. Congr. Appl. Mech., vol. 6, p. 378, Brussels, 1957; also L. 1. Deverall, J. Appl.
Mechanics, vol. 24, p. 295, 1957. A somewhat different method, applicable as well
to certain problems of the thick-plate theory, was used by A. C. Stevenson, Ihil. May.,
vol. 33, p. 639, 1942.

2 E. Reissner, Math. Ann., vol. 111, p. 777, 1935; A. Lourye, Priklad. Mat. Mekhan.,
vol. 4, p. 93, 1940.

8 F. Schultz-Grunow, Z. angew. Math. Mech., vol. 33, p. 227, 1953.

¢ Courant and Hilbert, op. cit., vol. 1, p. 377. Elliptic functions have been used in
particular by A. Nddai, Z. angew. Math. Mech., vol. 2, p. 1, 1922 (flat slabs); by
F. Tolke, Ingr.-Arch., vol. 5, p. 187, 1934 (rectangular plates); and also by B. D.
Aggarwala, Z. angew. Math. Mech., vol. 34, p. 226, 1954 (polygonal plates and, in
particular, triangular plates).
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the shearing forces of the plate are readily given by the derivatives of that function by
virtue of Eqgs. (108).

80. Application of the Strain Energy Method in Calculating Deflec-
tions. Let us consider again the problem of the simply supported
rectangular plate. I'rom the discussion in Art. 28 it is seen that the
deflection of such a plate (Fig. 59) can always be represented in the form
of a double trigonometric series:!

T nwr
E E Lo sin 7 gin wl-)—y (a)

The coefficients a,, may be considered as the coordinates defining the
shape of the deflection surface, and for their determination the principle
of virtual displacements may be used. In the application of this prineiple
we need the expression for strain energy (see page 88):

b0 | 3%w\?
V = D/ / (b”c_ y2)
9w 9w 02w \?
— 9(] — ; A A v
2 =) [aﬁ ay? (0); dy) “ dody ()

Substituting series (a) for w, the first term under the integral sign in {(b)
becomes

b 2,2 2,2 . 2
1 mer? /Ljrh Lommz . nwy
D / / [ E E a,,,,,( e i )sm g S } dedy (c)

m=1mn=1

Observing that

@ . mrx . mrz b o n'm
sin —— sin dr = sin Y gin n'ry dy =0
0 a a 0 b b

it m > m’ and n 5 n’, we conclude that in calculating the integral (¢)
we have to consider only the squares of terms of the infinite series in the
parentheses. Using the formula

@ (b omrx . nwy ab
/0 jo sin? — = sin? —= dz dy = T

the calculation of the integral (¢) gives

miab . [(m?  n2\
), 2 ()
m=1n=1

! The terms of this series are characteristic funetions of the plate under consideration
(see Art. 77).
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Trom the fact that
a b a b
sin? ML Gin2 MY gy dy = / / cos? T oos2 MY g dy = ab
Jo Jo b 0o Jo a b

4
it can be concluded that the sccond term under the integral sign in
expression (b) is zero after integration. Hence the total strain energy
in this case is given by expression (¢) and is

;. Tab O
Y N - (@
m=1n=1

Let us consider the deflection of the plate (Fig. 59) by a concentrated
force P perpendicular to the plate and applied at a point x = £, y = 9.
To get a virtual displacement satisfying boundary conditions we give to
any coefficient a,, of series (@) an infinitely small variation éa,,. Asa
result of this the deflection (a) undergoes a variation

? 7
N ma«xr . N
W = 0y SIN a sin 5 Y

and the concentrated load P produces a virtual work

4 !
mmé sin o
b
From the principle of virtual displacements it follows that this work must
be equal to the change in potential energy (d) due to the variation @
Hence

P éa,, sin

! !

. om'rt . n'w 2%

P éa, . sin mwé sin = 0 Saw
a b O n’

Substituting expression (d) for V, we obtain

. ommE . nry 0w ab m'z . n't\?
P éa, . sin T sin = = e Da, ey + = da.. (¢)

from which

4
4P sin 7 sin n'my
a b .
Ao'n’ = ‘-77‘177”2 |
wiabD (m + 7{;)

Substituting this into expression (a), we obtain once more the result (133).

Instead of using the principle of virtual displacements in caleulating
coefficients am, in expression (a) for the deflection, we can obtain the
same result from the consideration of the total energy of the system.
If a system is in a position of stable equilibrium, its total energy is a



344 THEORY OF PLATES AND SHELLS

minimum. Applying this statement to the investigation of bending of
plates, we observe that the total energy in such cases consists of two
parts: the strain energy of bending, given by expression (b), and the
potential energy of the load distributed over the plate. Defining the
position of the element ¢ dz dy of the load by its vertical distance w from
the horizontal plane xy, the corresponding potential energy may be taken
equal to —wq dx dy, and the potential energy of the total load is

— [fwq dx dy (g)

The total energy of the system then is

(D [[Pw | O*w\*
- JE G5
. [ 8w 3w 0w \? :

The problem of bending of a plate reduces in each particular case to
that of finding a function w of x and y that satisfies the given boundary
conditions and makes the integral (h) a minimum. If we proceed with
this problem by the use of the calculus of variations, we obtain for w
the partial differential equation (104), which was derived before from the
consideration of the equilibrium of an element of the plate. The inte-
gral (h), however, can be used advantageously in an approximate investi-
gution of bending of plates. For that purpose we replace the problem of
variational ealculus with that of finding the minimum of a certain func-
tion by assuming that the deflection w can be represented in the form
of a series

w = al@l(xyy) + aZ‘P?(xyy) + (],3@3(33,?/) + R o anﬂpn(x,y) (211)

in which the functions ¢1, ¢s, . . . , ¢n are chosen so as to be suitable!
for representation of the deflection surface w and at the same time to
satisfy the boundary conditions. Substituting expression (211) in the
integral (h), we obtain, after integration, a function of second degrec with
coefficients ay, @2, . . . . These coefficients must now be chosen so as
to make the integral () a minimum, from which it follows that

73 ol al .
g Y gm Y oo, ~ 0 ©
This is a system of »n linear cquations in a1, @y, . . ., @, and these

quantities can readily be caleculated in each particular case. If the
functions ¢ are of such a kind that serics (211) can represent any arbi-

! From experience we usually know approximately the shape of the deflection
surface, and we should be guided by this information in choosing suitable functions ¢.
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trary function within the boundary of the plate,! this method of calcu-
lating deflections w brings us to a closer and closer approximation as the
number n of the terms of the series increases, and by taking n infinitely
large we obtain an exact solution of the problem.

Applying the method to the case of a simply supported rectangular
plate, we take the deflection in the form of the trigonometric series (a).
Then, by using expression (d) for the strain energy, the integral (k) is
represented in the following form:

4ab[) m> o nt\?
] = E E “mn <—3— b’_)
a "G i\ 3 i
- / / g Z E o 0 2 sin 'Y g dy ()
o Jo a b
m=1n=1

and Eqs. (z) have the form

4 a2 2\ 2 T
T (14bD Dy (% n > / / q sin T Gy mrJ dedy =0 (k)

In the case of a load P applied at a point with the coordinates §, 7,
the intensity g of the load is zero at all points except the point £, n, where
we have to put ¢ dx dy = P. Then Iq. () coincides with Iq. (e), previ-
ously derived by the use of the principle of virtual displacements. For
practical purposes it should be noted that the integral

T [0%w O*w 0w \*
// [av 57/7 N <3.’)5 6]/) } de dy 0

contained in expressions (b) and () vanishes for a plate rigidly clamped
on the boundary. The same simplification holds for a polygonal plate
if one of the boundary conditions is either w = 0 or dw/dn = 0, where
= dircetion normal to the edge.?
If polar coordinates instead of reetangular coordinates are used and
axial symmetry of loading and deformation is assumed, Iiq. (k) has to be
replaced by

1w 201 — ») dw O'w o
PRI - ] e e

1 We have seen that a double trigonometrical series (@) possesses this property with
respect to deflections w of a simply supported rectangular plate.  Hence it can be used
for obtaining an cxact solution of the problem. The methed of solving the bending
problems of plates by the use of the integral (k) was developed by W. Ritz; see J. retne
angew. Math., vol. 135, 1908; and Ann. Physik, ser. 4, vol. 28 p. 737, 1909.

2 8ee, for instance, B. T Berger, Osterr. Ingr.-Arch., vol. 7, p. 41, 1953.
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The contribution of the term containing the factor 1 — » again is zero
for a plate clamped along the boundary.
The strain energy method can also be used for calculating the deflection of a eircular

plate resting on an clastic foundation. For example, to obtain a rough approximation
for the case of a circular plate, we take for the deflection the expression

=4 + Br? (n)

in which 4 and B are two constants to be determined from the condition that the
10 al encrgy of the system in stable equilibrium is minimum.
The strain energy of the plate of radius a as given by Kq. (m) is

Vi = 4B?Dra®(1 + »)

The strain energy of the deformed elastic foundation is

“ fw? 1
vV, / —rdrdé = xk A‘a"’ —}— = ABa4 + I’2a5
0

The total energy of the system for the case of a load P applied at the center is
V = 4B2Dra®(l + v) + wh(iA2® + 34 Bat 4 1B2a%) — PA

Taking the derivatives of this expression with respect to A and B and equating them

to zero, we obtain
2 16D + »)
A+ Ba| - ——7 | =
+ Ba [3 + as ] 0

P

wka?

1
A 4+ - Ba® =
2
In accordance with the numerical example on page 264 we take

- D 102 - 1075
I Sckad

and obtain
Wmax = A = 41.8- 1073 in.

"This result is about 3 per cent less than the result 43 - 1073 obtained from the differen-
tial equation of a plate resting on elastic foundation. For greater accuracy more
terms should be taken in expression (n).

If the stress distribution around the single load, not merely the deflection, were
desired, a term of the form

rilogr

8xD &

should be included in expression (n) in accordance with the type of singularity here
required [see Liq. (206)].

When using polar coordinates in the most general case the integral (h) assumes the

form
1 ow 4 1 3w
r or r? 962

9w 1 sw 1 0w
/“ [( +FE+;EBF> 21 -0

1 azw 1 dw
+ 21 - .,
( ) ( or 98 r? 00> :| wq; rdrdd (o)
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81. Alternative Procedure in Applying the Strain Energy Method.
The calculation of the coefficientsay, @z, . . . , @,inexpression (211), which
had to satisfy the boundary conditions but not the differential equation
of the problem, may also be carried out without actually determining
the potential energy of the system.

Let us assume a virtual deflection dw of the plate; then, we can calcu-
late the respective work of the loading ¢ either directly, by means of the
integral

(V) = [fqéwdxdy (a)
or indirectly, using the expression
(6V)e = [{DAAw dw dx dy (b)

If w were the exact solution of the differential equation DAAw = ¢ of the
plate, then the expressions (a) and (b) would be identical. For an
approximate solution, which Ifq. (211) represents, this is certainly not
the case. We can succeed, however, in equalizing the expressions for the
work for a particular set of virtual deflections, namely for dw, = ¢ da,,
Swe = @ 6@y, . . . , OW, = @, 0a,. Substituting these expressions con-
secutively in the equation (8V): = (6V). or, what is the same, in the
equation

[fqéwdx dy = [[DAAw dw dz dy (e

we obtain the following system of equations:!

/[ <AAw ~ %)‘m drdy =0
_4 R
// (AAw D) w2 dx dy 0 @

It remains only to substitute the expression (211) in Iigs. (d) and to
resolve them with respect to the unknown coefficients ai, aq, . . ., a..
This leads to the final expression for the deflection (211).

To illustrate the application of the method let us consider a uniformly
loaded rectangular plate with all edges built in (Fig. 91). Writing for
brevity 2¢/a = u, 2y/b = v, we shall use the expressions

Uy =ut—2u*+1 Vi=ovt — 2%+ 1 @)
Us = ub — 2ut + u? Vo = 08 — 20 4- 2

It

' The principle leading to these so-called Galerkin equations was indicated by
W. Ritz: see “Gesammelte Werke,”” p. 228, 1911.
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The set of functions
L1 = U1V1 Y2 = U1V2 O3 = U2V1 L4 = Uz Vy (f)

then fulfills the required conditions

Jw
u:::;:O onu = +1
Ju
and w o= ?;}b =0 onny = +1

Let us carry out the computation for the particular case of the square plate.  As
z and y now are interchangeable, we have ¢ = a. and, consequently,

w2 = gy = UV, -+ U.V,
Putting qat/160) = N we take expression (211) in the form
w = aU;V, + ax(U\ Vs + U, V) 4+ ayULV (!/)

Substituting this consecutively in Fgs. (d) with the factors ¢1, ¢z, and ¢, and
observing notation (e¢) we have then to cvaluate the integrals between the limits
uw = x1,v = %1. Thus we arrive at the following systein of equations:

6.687345a1 + 1.21587%a. + 0.0675488a, = 0.1422221N

1.21587%a, -+ 2.7483520a, + 0.218235a, = 0.0406349N (h)
0.0675488a, + 0.218235a2 + 0.00590462c, = 0.00290240N

For the first approximation we have

0.1422221 :
L SIS A 0.02127N
8.687345

Resolving the whole system (k) we have
a; = 0.02023N as = 0.005635N as = 0.00625N

for the third approximation.

Numerical results obtained by means of the expression (g) for the deflection at the
center, the moments 3/, = 1, at the center, and the moment M, at z = a/2,y = 0,
respectively, are the following:

First approx. 0.001329%¢a*/D, 0.0276ga%, —0.0425¢a2
Third approx. 0.001264qa*/D, 0.0228¢a? —0.0512¢a?

For comparison, Table 35 gives the values
0.00126¢a*/D, 0.0231¢ga2?, —0.0513¢a?

The moments at the center are calculated for » = 0.3.

It is seen that, whereas the first approximation is not yet satisfactory, the third
approximation appears quite sufficient even for the bending moments concerned.

82. Various Approximate Methods. A Combined Method.! The procedure
described in the foregoing article may be restricted as well to one variable, say y, thus
obtaining for the other variable, z, an ordinary differential equation. Let us consider
again the bending of a clamped square plate under uniform load (Fig. 91).

! Due to L. V., Kantorovich, fevest. Akad. Nauk S.S.S.R., no. 5, 1933,
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In confining ourselves to the first approximation we take, this time,
w = e(@)Y(y) = ¢(x)(a* — 8a’y* + 16y%) (a)

the boundary conditions w = dw/dy = 0 on y = +a/2 thus being fufilled by the
function ¢(y). Now we try to satisfy the condition (¢) of Art. 81 by choosing the
variation in the form

dw = Y(y) do(z) &

This, after substitution in Iiq. (¢) of Art. 81, yields

/ [ / (AAw —%> o) dy] dz 3o(x) = 0 ©
a/2 q
/_G/Q (AAw - 5) Y(y) dy = (d)

Next, we substitute expression () in this latter equation and obtain the following
differential equation for the unknown function ¢(z):

which is fulfilled if

at dip a? d2p

504 dzt 21 dz* ¥ 384D

(e)

An obvious particular solution of this equation is ¢ = ¢/384D. For the homogeneous
equation resulting from Iiq. (e), when ¢ = 0, we have to assume ¢ = ¢rsle. This
yields A = to + Bi, with @ = 4.1503 and g = 2.2858. In view of the symmetry
of the deflection surface about the y axis, solutions of Eq. (¢) must be even functions
in z; accordingly we have

¢ = 3?{15 (1 + €y cosh %} cos Ef + € sinh %g—c sin %) h

To calculate the constants C; and C; we uge the boundary conditions ¢ = d¢/dz = 0
on z = +a/2. Thus we obtain ¢, = —0.50227, C; = —0.04396, which establishes
definitively the form of the function (f) and the solution (a).

We derive from this latter the following numerical results for the center of the plate:
w = 0.001296ga*/D and (for » = 0.3) M, = 0.0241qa® and M, = 0.0261qa>

Owing to the partial use of the differential equation the results of the first approxi-
mation prove to be more exact than those of Art. 81, where a pure strain energy method
was applied. To improve the accuracy still further, we have to assume

w = e(z)i(x) + e)a) + - - - ()

where all the functions ¢ (y) have to fulfill the boundary conditions on ¥y = *a/2.
The use of Eq. (¢) in conjunction with the variations dw, = ¢ 8¢1, dws = ¥ 82, . . .
would lead this time to a system of lincar differential equations with constant coeffi-
cients for the functions ¢:(z), ¢:(x), . . . . The handling of such a system, though
simple in principle, may become troublesome for higher approximations; the second
approximation, however, should be adequate for the most practical purposes.

The Method of Reversion. Solution (211), fulfilling only the boundary conditions
of the problem, may also be used in the following manner. Instead of calculating the
deflections from a given load distribution by means of the differential equation (103}
we use the same equation to ealeulate the loading

¢ = DAAw (h)



350 THEORY OF PLATES AND SHELLS

resulting from the tentative expression (211) for the deflection. According to our
hypothesis, expression (211) does not represent the rigorous solution of the problem
and, therefore, the loading (k) will never be identical with the given loading ¢. We

can, however, choose the parameters a;, @2, . . . in q. (211) so as to equalize the
functions ¢ and g on the average over some por-
= tions of the arca of the plate.

[

i Consider, for example, a rectangular plate

l[ (Fig. 178) with boundary conditions and a dis-
—T T el tribution of loading symmetrical about both

!

[

!

axes v and y. Having subdivided the plate
into 16 equal rcctangles, we need, because of

|
!
¥ X . .
? the symmetry, to consider only four partial
Ay Ay | ol areas, such as 4;, A, A; and A,. Expression
_____ ; (211) can be restricted accordingly to four
; 1,{ terms, 7.e., to
A A It .
; 3 ¢ DI W = G1ps + Qrpz + Aagps + Aups @
Y
L Now let ¢ and ¢’ undergo in each of the partial
-—- = %——— R % "1“*% - areas the condition
y / (¢ —g)ydzdy =0 n=1234 (f
Fra. 178

An

This gives four linear equations for the four parameters a. and the resolution of these
equations establishes the expression (¢) in its final form.!

Methods Approximating the Boundary Conditions. If we succeed in finding a solu-
tion which fulfills the differential equation (103) together with one of the boundary
conditions, the second prescribed condition may be satisfied by determination of a set
of suitably chosen parameters. In solving the problem stated in Art. 44 cocfficients
of the two trigonometric scries representing the variation of the edge moments of the
plate were introduced as such parameters. Ixpansion of the slope dw/dN in Fourier
series? along the boundary was used in order to let this slope vanish in accordance
with the requirements of the problem. In using the latter condition the parameters
could be calculated. Some minimum principle-—for example, the method of least
squares—may be used as well in order to satisfy approximately the conditions on the
boundary. The application of such a principle needs more detailed consideration
when two boundary conditions must be simultaneously fulfilled.?

In using a solution which satisfies only the differential equation of the problem it
sometimes proves simplest to fulfill the boundary conditions merely at a number of
points suitably chosen along the boundary. The symmetry of the deformation of the
plate, if such a symmetry exists, should be taken into account in locating those points.
In order to satisfy all boundary conditions at m points we must introduce 2m unknown
parameters.

In the most general case! we may use an expression for the deflection which satisfies
neither the differential equation of the bent plate nor the boundary conditions of the

L An illustrative example for the application of the method may be found in C. B.
Biezeno and R. Grammel, “Technische Dynamik,” 2d ed., vol. 1, p. 147, Berlin, 1953.

2 A more general system of functions orthogonalized along an edge was used by
A. N4dai to fulfill a boundary condition; sce *‘ Elastische Platten,” p. 180, Berlin, 1925.

8 An important contribution to this question is due to E. Berger, op. cit., p. 39.

+ The method was discussed by C. J. Thorne and J. V. Atanasoff, Jowa State Coll. J.
Sez., vol. 14, p. 333, 1940.
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problem. A number of points, say n, will be chosen then on and inside the boundary
of the plate in which the differential equation must be satisfied exactly. Therefore
a total of 2m + n parameters will be needed to obtain the solution of the problem.

Weinstein's Method.! Tn the specific case of a plate built in along the boundary we
may seek at first a solution of the differential equation Adw, = ¢/D such that the
solution is valid for the given loading ¢ and for the boundary conditions w; = 0,
Aw; = 0, instead of theactual conditions. It has been shown in Art. 24 that this latter
procedure is equivalent to solving in succession two problems, each dealing with the
equilibrium of a loaded membrane.

The solution of the actual problem may be taken in the form

m

\
w=w: + Upr (k)
kz—-——(l

where a; are some coefficients and ¢, functions of x, y, vanishing at the boundary and
obeying the differential equation AAg; = 0. The required condition dw/dN at the
boundary (where N is the normal to the boundary) can be modified by means of
Green's theorem, which leads to the following system of m lincar equations for the

parameters a;:
m
[/%dxdy + EakﬂA¢1A¢dedy =0
k=1
m
/]%dmdy + E(lk //A¢2A¢kdxdz/ = ()
» k:l U

O

where all integrals are taken over the entire area of the plate. The method may be
used to advantage when the boundary conditions w = 0, Aw = 0 suggest a much
simpler solution of the problem than the actual conditions w = 0, dw/aN = 0.

83. Application of Finite Differences Equations to the Bending of
Simply Supported Plates. In our previous discussion (see Art. 24) it
was shown that the differential equation for the bending of plates can be
replaced by two equations each of which has the form of the equation
for the deflection of a uniformly stretched membrane. It was mentioned
also that this latter equation can be solved with sufficient accuracy by
replacing it by a finite differences equation. To illustrate this methed of
solution let us begin with the case of a uniformly loaded long rectangular
plate. At a considerable distance from the short sides of the plate the
deflection surface in this case may be considered cylindrical. Then, by
taking the z axis parallel to the short sides of the plate, the differential
equations (120) become

M

o

ow M (a)
ot D

1 A, Weinstein and 1. H. Rock, Quart. Appl. Math., vol. 2, p. 262, 1944.
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Both these equations have the same form as the equation for the deflec-
tion of a stretched and laterally loaded flexible string.

Let AB (Iig. 179) represent the deflection eurve of a string stretched
by forces S and uniformly loaded with a vertical load of intensity ¢. 1In
deriving the equation of this curve we consider the equilibrium of an
infinitesimal element mn. The tensile forces at points m and n have the

z
{o)
R L —X
Wy !
Seep 1T Wi Wiy,
i ]
! i
i A ‘ Sk
i i a4 ‘
1 i | |
i A e
z (b
Fia. 170

directions of tangents to the deflection curve at these points; and, by
projecting these forces and also the load ¢ dx on the z axis, we obtain

, dw L fdw | 0%w o
from which
a?w q .
i ©

This equation has the same form as Egs. (a) derived for an infinitely
long plate. The deflection curve is now obtained by integrating Eq. (c),
which gives the parabolic curve

A8z (a — z)
w = "'—(;:2—’*' (d)
satisfying the conditions w = 0 at the ends and having a deflection & at

the middle.
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The same problem can be solved graphically by replacing the uniform
load by a system of equidistant concentrated forces ¢ Az, Az being the
distance between two adjacent forces, and constructing the funicular
polygon for these forces. If A (Fig. 179) is one of the apexes of this
funicular polygon and Si—1 and S; arc the tensile forces in the two adja-
cent sides of the polygon, the horizontal projections of these forces are
equal to S and the sum of their vertical projections is in equilibrium with
the load ¢ Az, which gives

-8 %,,AEL?JS:,E + 8 Qﬁ%&_@_{)ﬁ +qgAr =0 (e)
In this equation wy_1, wi, and wi, are the ordinates corresponding to the
three consecutive apexes of the funicular polygon, and (wi — wi_1)/Az
and (wrp1 — wi)/Az are the slopes of the two adjacent sides of the poly-
gon. Equation (e) can be used in caleculating the consecutive ordinates
wy, W2, . . ., Wr—1, Wi, Wet1, - . - , Wy of the funicular polygon. For
this purpose let us construct Table (f).

T
0 Wn :
_ _ l Awo ‘i____,,,
Ax wy :
(k — 1) Az Wi_t (r)
AWy
I Az W Ay,
Aw;,
\/l\ ’}’ 1) Az We 1

The abscissas of the consecutive division points of the span are entered in
the first column of the table. In the second column are the consccutive
ordinates of the apexes of the polygon. Iorming the differences of the
consecutive ordinates, such as wy — we, . . ., Wi — W1, Wry1 — Wr,

., we obtain the so-called first differences denoted by Aw,, . . .,
Awi_y, Awg, . . . , which we enter in the third column of the table. The
second differences are obtained by forming the differences between the
consecutive numbers of the third column. For example, for the point k
with the abscissa k Az the second difference is

A, = Aw;, — Awi_:
= Wy — We — (W — Wi_1) = Wiyt — 2w +wer ()
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With this notation Eq. (¢) can be written in the following form:

A q

A T TS *)
This is a finite differences equation which corresponds to the differential
equation (¢) and approaches it closer and closer as the number of division
points of the span increases.

In a similar manner the differential equations (a) can be replaced by

the following finite differences equations:

ATM

Az? ]
AMw M (@
Az~ T D

To illustrate the application of these equations in calculating the deflec-
tions of the plate let us divide the span, say, into eight equal parts, 7.e.,
let Ax = ta. Then Eqs. () become

gy — 99
AM o1
Ma?

2pry
Atw 64D

Forming the second differences for the consecutive division points w,
we, w3, and wy in accordance with Kq. (g) and observing that in our case
we =0 and M, = 0 and from symmetry ws; = w; and M; = M;, we
obtain the two following groups of linear equations:

My — 2M, = — 9615 T (‘3{4%
My = 20, + My = — 12 w3—2w2—}-w1=—%§ .
My 26 My = = T oy e = — %isg )
M3—2M4+Mg=—% w3—2w4+w3=—%%

Solving the first group, we obtain the following values for M :

_ 7qa? . qa? _ 15 ¢a?
M. =64 Ma——-2—-6—4

M, = L Mo=89% ()
2 64 ' 64
These values coincide exactly with the values of the bending moments

for a uniformly loaded strip, calculated from the known equation

PR
M 2.1, 5
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Substituting the values (k) for the moments in the second group of Eqgs.
(7), we obtain

Wy — 2?,()1 = —%A
wy — 2w + wy = —6N
wy — 2wy + wy = — N
Wz — 2'LU4 —I— Wy = _.8N
] _ 9t
where s

Solving these equations, we obtain the following deflections at the division
points:

wy; = 21N wy = 38.5N w3 = 50N wy = 54N 0

The exact values of these deflections as obtained from the known equation

— 9% 5 _ 2 3
W =505 (a 2ax® + %)
for the deflection of a uniformly loaded strip of length a, for purposes of
comparison, are

wy; = 20.7N wy = 38N wy = 49.4N wy = 53.3N

It is seen that by dividing the span into eight parts, the error in the
magnitude of the maximum deflection as obtained from the finite differ-
ences equations (7) is about 1.25 per cent. By increasing the number of
division points the accuracy of our calculations can be increased; but this
will require more work, since the number of
equations in the system () increases as we
increase the number of divisions.
Let us consider next a rectangular plate

of finite length. In this case the deflections Ay Almnt
are functions of both z and y, and Egs. Ay AL TAm+ln
(a) must be replaced by the general equa- Alr,ntd
tions (120). In replacing these equations
by the finite differences equations we have
to consider the differences corresponding to
the changes of both the coordinates z and y.
We shall use the following notations for the first differences at a point
A n with coordinates m Ax and n Ay.  The notation used in designating
adjacent points is shown in I'ig. 180.

X

Ax Ax,

m-1,

Fra. 180

Azwm~l,n = Wmn — Wn—-in Azwmn = Wit — Wan
Aywm,n—l = Wpn — wm.n—l Aywmn = ’w'r/:,rL+1 — Wmn

Having the first differences, we can form the three kinds of second differ-
ences as follows:
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AreWmn = Azwmn - Azwm,—»l,n = Wnal,n

Ay;u'wmn =

Azywmn = Ay'wmn

AWin —

A_z/wm.n—l =

THEORY OF PLATES AND SHELLS

— Wmn — (wmn s wm—l,n)
= Wmdl,n — QU)mn + Wm—1,n

Wntt — Won = (Wi — Waa1) (m)
= Wil — 2Won + Wopn1
= DyWm—t,n = Wmng1 — Win = (wmfl,n,—f-l - ’U)m_1.n)
= Wnnyl — Wmn — Wm—1,n41 + Wn-t.a

With these notations the differential equations (120) will be replaced by
the following differences cquations:

A_I’ﬂl - AUUM —

Az? Ay?

Aew | Ayw M (n)
Az Ay T T D

In the case of a simply supported rectangular plate, M and w are equal to
zero at the boundary, and we can solve Egs. (n) in succession without any
difficulty.

fm o mmnn s o ----e-- ~ To illustrate the process of calculating
7 moments and deflections let us take the very
simple case of a uniformly loaded square

o I Iz plate (Fig. 181). A rough approximation for

X M and w will be obtained by dividing the

4 plate into 16 small squares, as shown in the

figure, and by taking Az = Ay = a/4 in Eqgs.

5 (n). Tt is evident from symmetry that the

y calculations need be extended over an area

Frc. 181 of one-eighth of the plate only, as shown in

the figure by the shaded triangle. In this

area we have to make the calculations only for the three points 0, 1, 2,

for which M and w are different from zero. At the remaining points 3,4, 5,

these quantities are zero from the boundary conditions. Beginning with

the first of the equations (n) and cousidering the center of the plate, point

0, we find the following values of the second differences for this point by
using Fqs. (m) and the conditions of symmetry:

AMZWO = 2311 _ 2[110
AyMy = 2My — 2M,

APPSR o S

in which M, and M, are the values of M at points 1 and 0, respectively.
Wimilarly for point 1 we obtain

Azzﬂ" 1 = A[g - 21"[1 + I‘[o = *“2[1[1 -+ A[o

Ayy]ul - 211[2 - 2&{1

The second differences at point 2 can be calculated in the same way.
Substituting these expressions for the second differences in the first of
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the equations (n), we obtain for points 0, 1, and 2 the following three
cquations:

9

AM, — 4M, 9

it

16
a2
oMy — 4My + My = — (11—6
M, = -1
A4M, + 2M+ = 16
from which we find
~ 9ga® o 1qa? 11 ¢a?
‘11()——2_—6——{ ‘ll‘—i-(_j—li ,Mz—-T-G——I
Substituting these values of moments in the second of the equations (n),
we obtain the following three equa- A
tions for calculating deflections ws, o N
. 5 B
w1, and wa: \< Y Arke \
4:’[,()1 - 4:'1,0() —%N .
2w, — 4wy + wo = —EN o
| 112 ]a |7
—dw, + 2w, = — LN | N
: I
) _ gat o | 31518 5 |3\ 3
where N = 6. 6iD <r! | x
From these equations we find the fol- i o7 6lrsiay
lowing values of the deflections: P I ‘
Y
wy = 48 wy = 48N w, = $3N <----%b-,-—->l+— ______ S J
I'or the deflection at the center we y
obtain Fre. 182
66 ., 66qa* _ ga*
wo = 15N =15 16-6ap ~ 00MB3

Comparing this with the value 0.00406¢a*/ D given in Table 8, it can be
concluded that the error of the calculated maximum deflection is less than
1 per cent. For the bending moment at the center of the plate we find

M, = g, =MoL+ 139 g

2 2 264

which is less than the exact value 0.0479¢a? by about 4% per cent. It
can be seen that in this case a small number of subdivisions of the plate
gives an accuracy sufficient for practical applications. By taking twice
the number of subdivisions, i.e., by making Az = Ay = ia, the value
of the bending moment will differ from the exact value by less than
1 per cent.

= 0.0457¢a>

As a second problem let us consider the bending of a simply supported skew plate
carrying a uniform load of intensity ¢ (Fig. 182). The subdivisions in this case are
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Az = b/6 and Ay = b/3. Therefore the first of the equations (n) ecan be written as

b2
410, M + AM = — % (0)

Applying this equation to points I to 8 successively and using expressions (m) for the
differences, we obtain the following system of linear equations:

qb?
—10M, + 4M, = —
qb?
AM, = 10M, + My + 40, = ==
gb?
M2 - 1041[3 +4A{5 = o ——9—
qb?
4“{2 = 10314 + A[;, + 41"[7 = — T
b ()
UM, + My — 10Ms 4+ Mo + 4My = — %
bZ
M, — 10Mq + AM,; = — gg_
gb*
AM 4 AN — 10Ms 4 = = L
bZ
SMy + 2M: — 10M, = — %
The solution of this system is
be b2
My =020042L M, = 066191 2
9 9
b? b2
M, = 0.49854 % M, = 0.39387 %

(9)
b2 b
My = 0.41462 % M, = 0.5692029-

b2 b2
M, = 0.59329 % M, = 0.74337%

The second of the equations (n) now becomes

Mb?
4A“w "I“‘ Ayyw = — 313‘ (7')

Taking into account the result (¢) this gives a sccond group of equations:

—IOwl + 4?,1)2 = —(0.20942N
4w; — 10w; + w; + 4w, —0.49854N
wy — 10wz 4+ 4w; = —0.41462N
4w, — 10w, + ws + 4w, = —0.59329N (s)
dw; + wy — 10w; + we + 4ws = —0.66191N
w; — 10ws; + 4wy = —0.39387N
4w, + 4ws — 10w; + ws = —0.56920N
8wy + 2w; ~ 10ws = —0.74337N
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in which
gb*
N =
81D

This yields the deflections

w; = 0.13176 N w; = 0.38549N
w, = 0.25455N we = 0.20203N ,

ws = 0.22111N  w; = 0.31249N @
wy = 0.32469N ws = 0.44523N

It should be noted that the integration of

the differential equation of the bent plate =~~~ Mmox————

by analytic methods would encounter con- - —— = My~ — -~

siderable difficultics in this case.

To calculate the moments at the middle c My
point 8 of the plate we have to use expres- 0 o g
sions (101) and (102), in which the deriva- M Mﬁ
tives first must be replaced by the respective <= — —Mmin—~
differences. Thus, making use! of expres- e My _J
sions (m) and using the values (¢) for the Mnt X
deﬂegtxons, and also taking » = 0.2, we Frc. 183
obtain

ws — 2 5 wy — 2w
(M) = —p (e 2ukwe | wn Z 200 £ wr) g h590g0e
Az? Ay?
wr — 2ws + wr ws — 2ws + ws ;
(My)s = =D <»—Ay;—~ + v ~-~~Ar—-> = 0.0401g}*
(Mu)s = (1 — »D W00 Z W F W6 6108002

4Az Ay

Mohr’s circle (Fig. 183) now gives? the following principal moments at point 8:

M. + M, M. — M,\? .
Mos = J)-“~ + \/<— : “> 4 M2, = 0.0639¢b?

2

M. + M, M, — M,\?
Moin = ‘—j——v - \/< 5 l) + M:, = 0.0352¢b?

The direction of stresses due to these moments with respect to the coordinate axes
z and y, respectively, is given by

2M.,

T e 94005
M, — M, g

1
a = - arctan
2

From Fig. 182 we conclude that the stresses due to Mmax at the center are acting almost
exactly in the direction of the short span of the plate.
The plan of the plate in Fig. 182 was such that we could use a rectangular network

! See also the diagrams in Fig. 184 for the particular case Az = Ay.

2 Note the difference of notations in Figs. 183 and 22. The principal moments in
Fig. 183 are denoted by M max and Muin. Note also that if in both diagrams the point
on the circle moves in the clockwise direction, the normal to corresponding section
will move in the same direction.
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with constant subdivisions Az and Ay. In a more general case a triangular network?
must be used for the analysis of a skew slab.

The method of finite differences can also be applied to plates with edges built in or
free and, finally, to plates with mixed boundary conditions.? Since in the general

®

2 D—E—@)

4
ox

23
dxgyZz 23

Fia, 184

case the value of M is not fixed on the boundary, and accordingly the use of M becomes
less advantageous, the deflections w may be caleulated directly by means of a sequence

! Extensive use of such networks is made by V. P. Jensen in Univ. Illinois Bull. 332,
1941, and the previous numerical example is taken therefrom.

2 Many numerical examples of this kind may be found in the book by H. Marcus,
“Die Theorie elastischer CGewebe,” 2d ed., Berlin, 1932; see also N. J. Nielsen,
“Bestemmelse af Spandinger i Plader,” Copenhagen, 1920.
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of difference equations cquivalent to the differential equation Aaw = ¢/D of the bent
plate. Tor convenience the finite diffcrence equivalent of the operator AA( - - - ) is
represented in Fig. 184 together with the other useful operators. The diagram is based
on the assumption Az = Ay = A. Each number has to be multiplied by the symbol w;
denoting the deflection at the respective point & and the sum of such products then
divided by an expression given in the caption.

In order to formulate the boundary conditions for an edge with vanishing deflections
let us establish the equation for an interior point 7, next to the edge (Fig. 185).

Applyving the operator AA( - - - ) we have
[wy + ws + we + wiz 4+ 2(we + Wi + wio + wi2)
1
— 8(ws + we + ws + wi) + 20w,] via %7 (u)

in which w. = ws = ws = 0. Next we have to eliminate the deflection w, at a fictive
point 1, obtained by continuation of the network beyond the boundary of the plate.

[+8)
o
o
5
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i i
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\ 2 6 10 :
i ( ( o I}
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]
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This is readily done by means of the relation w; = —w; when the plate is simply sup-
ported at point 3 and by means of w; = wr; when the plate is built in. Thus, there
remain only the deflections of the interior points in Eq. (u) and the total number of
such unknown deflections will not exceed the number of the equations of the type (u)
at our disposal.

In the case of a free edge the number of such diffcrence equations will be increased
by the number of such points 2, 3, 4, . . . on the boundary at which the deflections
do not vanish. The respective operators AAw now must be extended over the exterior
point at the distance A and also 2X from the free edge. Corresponding to each pair of
such unknown deflections wo, wi, there will be two boundary conditions

92w a2 3w 3w
y— =0 — 4+ 2 —) =0
ax? ay? ax? ax oy?

expressed by means of the differences and written for point 3, opposite to both exterior
points 0 and 1. Hence the total number of equations will still be the same as the
number of unknown deflections.

When the values of M in the interior of the plate are no longer independent of the



362 THEORY OF PLATKS AND SHELLS

deflections w, the differcnce equations for the deflections become more involved than
was the case in the two previous examples. In solving such equations the method of
relaxation can sometimes be used to great advantage.!

84. Experimental Methods. For irregularly shaped plates or plates with irregularly
varying thickness or weakened by many holes, experimental mcthods of investigation
become more efficient than purely analytical methods. Conventional devices, such
as electrical strain gauges and extensometers of all kinds, can be used for determination
of strain in a bent plate,2  The following hrief review is restricted to methods which are
appropriate to special conditions connected with the bending of thin elastic plates.

Use of Photoelasticity.®* This method, usually applied to problems of plane stress,
must be necessarily altered if employed in the case of bending of plates. In fact, the
normal stresses in a thin bent plate are equal in magnitude but opposite in sign for two
fibers symmetrical with respect to the middle plane of the plate. Accordingly, the
optical effect produced in the zone of tension on a beam of polarized light passing
through the plate is nullified by an opposite effect due to the zone of compression,

The influence of the second zone ean be eliminated by cementing together two
identical plates of photoclastic material with a reflecting foil of metal between them,
The inner surface of one or both plates may also be silvered to the same end.* Calcula-
tions show that the optical effect of such a sandwich plate of a thickness h is about the
same as the effect of a single plate of the thickness h/2 if this latter plate is submitted
to a plane stress equal to the extreme fiber stress of the bent plate.

Another alternative® for making a bent plate photoelastically effective is to cement
together two plates, both of photoelastic material, but having different elastic proper-
ties. The law of distribution of the flexural stress is no longer linear in such a plate.
Hence, being bent, it yields an optical effect on a beam of polarized light.

According to a third method, sheets of photoelastic material are bonded on a reflec-
tive surface of a plate of any clastic material and any dimensions.® The behavior of
such sheets in a beaw of polarized light vields all data regarding the strain in the
extreme fibers of the tested plate. The method allows us to investigate the strain ina

! For this method, due to R. V. Southwell, seec 8. Timoshenko and J. N. Goodier,
“Theory of Elasticity,” 2d ed., p. 468, New York, 1951. Secc also F. 8. Shaw, “An
Introduction to Relaxation Methods,” Dover Publications, New York, 1953, where
further bibliography is given. Another method of successive approximation in using
the finite differences equation was developed by H. Liecbman, Die angeniiherte
Ermittlung harmonischer Funktionen wund konformer Abbildungen, Sitzber.
Mnchen. Akad., p. 385, 1918. The convergency of this method was discussed by
F. Wolf, Z. angew. Math. Mech., vol. 6, p. 118, 1926, and by R. Courant, Z. angew.
Math. Mech., vol. 6, p. 322, 1926. For an improved method see also R. Zurmiihl, Z.
angew. Math. Mech., vol. 37, p. 1, 1957.

2 An electromechanical method in measuring curvatures of a bent slab was used by
W. Andri, F. Leonhardt, and R. Krieger, Bauingenieur, vol. 33, p. 407, 1958.

8 See for instance Timoshenko and Goodier, op. cit., p. 131.

4 8ee J. N. Goodier and G. H. Lee, J. Appl. Mechanics, vol. 8, p. A-27, 1941, and
M. Dantu, Ann. ponts et chaussées, p. 281, 1952.

s See H. Favre, Schweiz. Bauztg., 1950. For application of the method to a canti-
lever plate of variable thickness see H. Schwieger and G. Haberland, Z. angew. Math.
Mech., vol. 36, p. 287, 1956.

¢ This photostress method is due in principle to A. Mesnager (1930), but its practical
application has been realized only recently; see, for cxample, F. Zandman and M. R.
Wood, Prod. Eng., September, 1956. TFor application of the so-called freeze procedure
to plates, see D. C. Drucker, J. Appl. Mechanics., vol. 9, p. A-161, 1942.
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slab which is part of an actual structure and subjected to the actual loading, rather
than being restricted to a model of the slab.

Use of Reflected Light.! The effect of a reflective surface of a strained plate on the
direction of two adjacent light beams can be used to calculate the surface curvatures
a2 /dz?, dtw/dy?, and 9*w/dxr 8y, and, consequently, also the values of the flexural and
torsional moments of the plate. For the same purpose the distortion of a luminous
rectangular mesh projected on the initially plane surface of the plate may be used.
Especially valuable are results obtained in this way for plates on elastic foundation,
whose mechanical properties never can be expressed in a perfect manner analytically.

The Interference Method. Similar to the classic method used for determination of
Poisson’s ratio on beamns, the interference method has also been applied to measure
the deflections of a bent plate.?

Analogy between Plane Stress and Plate Bending.® There is an analogy between the
plate deflection, governed by the differential equation AAw = 0 on the particular case
of edge forces acting alone, and Airy’s stress function ¢ satisfying the equation Ade = 0.
Whereas the function w yields the curvatures of the deformed plate, Airy’s function
yields the components o, = 920/0y?% oy = 3%9/dz? and 7., = —3J%/dx 3y of the plane
stress in an elastic solid. Provided the contour, say f(z,y) = 0, is the same in both
cases, we can put

9w . o*w L *w
—— = Koy - = Kg, —— = —Kr,,
ox ay?

where K is an arbitrary constant, such that the curvatures remain small.

Measurcd deflections w can be used for computation of the components of the plane
stress and vice versa if certain conditions of analogy are satisfied both on the boundary
of the plate and on that of the eclastie solid.4

1 For theory of the method and its application to various problems of bending of
plates see M. Dantu, Ann. ponis et chaussées, 1940 and 1952. See also G. Bowen,
Eng. News-Record, vol. 143, p. 70, 1949,

2 See R. Landwehr and G. Grabert, Ingr.-Arch., vol. 18, p. 1, 1950.

 Established by K. Wieghardt, Miit. Forschungsarb. Ingenieurwesens, vol. 49, 1908.
For a further extension of the analogy sce H. Schaefer, Abhandl. Braunschweig. wiss.
Ges., vol. 8, p. 142, 1956.

¢ A simple formulation of those conditions is due to M. Dantu, Ann. ponts et
chaussées, p. 386, 1952. For experimental methods based on analogy with electrical
phenomena see R. H. MacNeal, J. Appl. Mechanics, vol. 18, p. 59, 1951, and K.
Wotruba, Czechoslov. J. Phys., vol. 2, p. 56, 1953. Further information on various
experimental methods may be found in L. Féppl and E. Ménch, ‘‘Praktische Span-
nungsoptik,” 2d ed., Berlin, 1959.



CHAPTER 11

BENDING OF ANISOTROPIC PLATES

85. Differential Equation of the Bent Plate. In our previous discus-
sions we have assumed that the elastic properties of the material of the
plate are the same in all directions. There are, however, cases in which
an anisotropic material must be assumed if we wish to bring the theory
of plates into agreement with experiments.! TLet us assume that the
material of the plate has three planes of symmetry with respect to its
elastic properties.? Taking these planes as the coordinate planes, the
relations between the stress and strain components for the case of plane
stress in the a2y plane can be represented by the following equations:

0z = Hle, + B,
oy = lje, + E'e, (a)

Tt is seen that in the case of plane stress, four constants, E', E;, E”, and
@, are needed to characterize the elastic properties of a material.

Considering the bending of a plate made of such a material, we assume,
as before, that lincar elements perpendicular to the middle plane (zy
plane) of the plate before bending remain straight and normal to the
deflection surface of the plate after bending.? Hence we can use our
previous expressions for the components of strain:

0w 0w %w
= —Z —— _ = = 2 ——
€ ? Bt E ? By* Y “ or Ay ®)

1 The case of a plate of anisotropic material was discussed by J. Boussinesq, /. math.,
ser. 3, vol. 5, 1879. See also Baint Venant’s translation of “Théorie de I’élasticité des
corps solides,”” by A. Clebsch, note 73, p. 693.

2 Such plates sometimes are called “‘orthotropic.”” The bending of plates with more
general elastic propertics has been considered by 8. G. Lechnitzky in his book ‘“ Aniso-
tropic Plates,”” 2d ed., Moscow, 1957.

3 The effect of transverse shear in the case of anisotropy has been considered by
K. Girkmann and R. Beer, Osterr. Ingr.-Arch., vol. 12, p. 101, 1958.

364
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"The corresponding stress components, from Egs. (a), are

w
— /__ §oidd
O — (Ez a.LZ + V aj >

0w
_ 1 1 o
Tu = (F” oy? +E awz) )
0w
Ty = — 2072 3% 0y

With these expressions for stress components the bending and twisting

moments are
h/2 2 2
M, = / 0.z dz = _(ng;‘;’qupl"_@f)

=y Yy
"2
M, = f o dz = — < Jow p 0w “’) (212)
—h/2 6y
h/2 92w
]‘[1;3, = — /_)L/z Ty dz = QDMJ m
in which
B _En? _ E"R? _ Gh?
D, = D, = D, = 15 D,, = T (d)

12

Substituting expressions (212) in the differential equation of equilibrium
(100), we obtain the following equation for anisotropic plates:

6 w dtw
7 +2(D1+ 2Dy, 6 s ayz + D”bz? =
Introducing the notation
H = Dl + 2Dzy (6)
we obtain
d'w o'w d*w
D’”W +2H az? ay? + Dyw =4q (213)

The corresponding expressions for the shearing forces are readily obtained
from the conditions of equilibrium of an element of the plate (Fig. 48)
and the previous expressions for the moments. Thus, we have

; d d%w dhw
Q.= — e (Dz art + H 5;5>
s (214)
9, = — d 9*w J*w
T gy D, a2 dx?
In the particular case of isotropy we have
E vl E
7= K = — "= G = 5
B R Br=1— =31y
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Hence
Eh
De= Dy =15 =39
op. R vE E\_ kW \
=Dyt 2ba = Té(l 5t ) “mi=m W

and Eq. (213) reduces to our previous Eq. (103).

Equation (213) can be used in the investigation of the bending of plates
of nonisotropic and even nonhomogeneous material, such as reinforced
concrete slabs,® which has different flexural rigidities in two mutually
perpendicular directions.

86. Determination of Rigidities in Various Specific Cases. The expressions («)
given for the rigiditics in the preceding article are subject to slight modifications accord-
ing to the nature of the material cmployed. In particular, all values of torsional
rigidity D., based on purely theorctical considerations should be regarded as a first
approximation, and a direct test as shown in Fig. 25¢ must be recommended in order
to obtain more reliable values of the modulus G.  Usual values of the rigidities in some
cases of practical interest are given below.

Reinforced Concrele Slabs. Let E; be Young’s modulus of steel, E. that of the con-
crete, ». Poisson’s ratio for concrete, and n = E./E.. In terms of the elastic con-

stants introduced in Art. 85 we have approximately », = E"/ \/E;E; For a slab
with two-way reinforcement in the directions z and y we can assume

Dy ==l + (n ~ DI,]
I — »
D B.
=l — DI,
. 1“’}3[”4-(1; Ml ()

Di = v, \V/D.D,

1= v ,——
D., 5 * \/D.D,

1

In these equations, /., is the moment of inertia of the slab material, 7., that of the
reinforcement taken about the neutral axis in the section z = constant, and 1., and
/¢, are the respective values for the section y = constant.

With the expression given for D, (also recommended by Huber) we obtain

H = ~/D.D, ®)
and the differential equation
A e g d*w
D, - 4+2A/D.D;, ——— 4+ D, — =4
T odxt + \/ ax? 9y? T ay* ! ©

! The application of the theory of anisotropic plates to rcinforced concrete slabs is
due to M. T. Huber, who published a series of papers on this subject; see Z. Usterr.
Ing. u. Architekiur Ver., 1914, p. 557. 'The principal results are colleeted in his books:
“Teorya Plyt,” Livov, 1922, and ““ Probleme der Statik technisch wichtiger orthotroper
Plutten,” Warsaw, 1929.  Abstracts of his papers are given in Compt, rend., vol. 170,
pp. 511 and 1305, 1920; aod vol. 180, p. 1243, 1925,
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which can readily be reduced to the form (103) by introducing i, = y m as a
new variable.

It is obvious that the values (a) are not independent of the state of the concrete.
For instance, any difference of the reinforcement in the directions z and y will affect
the ratio D./D, much more after cracking of the concrete than before.

Plywood. TFor a plate glued together of three or five plies, the z axis supposed to be
parallel to the face grain, we may use the constants given in Table 79.

TasLe 79. Lrastic CoNsTaNTs FOR PLywoobn
Unit = 108 psi

Material E b 1 B } G
Maple,* 5-ply. . ..o 1.87 | 0.60 [ 0.073 l 0.159
Afara,*3-ply......... ... . ... L. 1.96 0.165 i 0.043 0.110
Gaboon* (Okoumé), 3-ply............... 1.28 0.11 ! 0.014 0.085
Birch,t 3-and 5-ply.................... 2.00 0.167 | 0.077 1 0.17
Bircht with bakelite membranes. . ........ 1.70 0.85 i 0.061 0.10

* By R. ¥. 8. Hearmon and E. H. Adams, Brit. J. Appl. Phys., vol. 3, p. 155, 1952-
T By 8. G. Lechnitzky, “ Anisotropic Plates,” p. 40, Moscow, 1947.
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Corrugated Sheet. Let K and » be the clastic constants of the material of the sheet,
h its thickness,

. owx
2=fsm~,—

the form of the corrugation, and s the length of the arc of one-half a wave (Fig. 186).
Then we have!

{ Eh?
Do=-—
s 12(1 — 47)
D, = EI
D1 "-’0
8 Eh?
H =2Dxy =3 12(1 + »)

1 8ee L. Seydel, Ber. deul. Versuchsanstalt Lufifahrt, 1931.
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7r2f2
§ = l(l +‘4—l2)

2h 0.81
1=t :

1 o
2 2
Lmﬁg)

Plate Reinforced by Equidistant Stiffeners in One Direction. For a plate reinforced
symmetrically with respect to its middle plane, as shown in Fig. 187, we may take'

in which, approximately,

Eh3
b B
12(1 — »2)
Eh? E'T

12(1 — »2) T

Y

in which E and » are the elastic constants of the material of the plating, E’ the Young
modulus, and I the moment of inertia of a stiffener, taken with respect to the middle
axis of the cross section of the plate.

00 n. = * . TRl
r U T | :-h: ' U-] i h
L oy
i ' 1 i
0 I l " o ] i 1
E
[ |
| \ || I
P | I
|| [ Pl
L1 L 1l
y y
Fiac. 187 Fra. 188

Plate Cross-stiffened by Two Sets of Equidistant Stiffeners. Provided the reinforce-
ment is still symmetrical about the plating we have

Eps K
Dy = o
121 — ) b
Ep3 £,
Dy = oy b
12(1 - V2) ar
_ Ehs
12(1 — »?)

I, being the moment of inertia of one stiffener and by the spacing of the stiffeners in
direction z, and I, and a; being the respective values for the stiffening in direction y.

Slab Reinforced by a Set of Equidistant Ribs. In the case shown in Fig. 188 the
theory established in Art. 85 can give only a rough idea of the actual state of stress and

1 Recommended by Lechnitzky, op. cit. For more exact values see N. J. Huffington,
J. Appl. Mechanics, vol. 23, p. 15, 1956. An cxperimental determination of the
rigidities of stiffened and grooved plates was carried out by W. H. Hoppmann, N. L.
Huffington, and L. 8. Magness, J. Appl. Mechanics, vol. 23, p. 343, 1956.
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strain of the slab. Let E be the modulus of the material (for instance, concrete),
I the moment of inertia of a T section of width a;, and « = h/H. Then we may
assume

D, = Eah®
12(ar — t + &%)
EI

D, = —
a1

Dx = 0

The effect of the transverse contraction is neglected in the foregoing formulas. The
torsional rigidity, finally, may be calculated by means of the expression
, C
Dsy = D, +-——
¢ ¥ + 2@1
in which D;,, is the torsional rigidity of the slab without the ribs and C the torsional
rigidity of one nb.!

87. Application of the Theory to the Calculation of Gridworks. KEqua-
tion (213) can also be applied to the gridwork system shown in Fig. 189.

DE— o QR >‘

- %)
; /)
by Mxy
1
i

ar Myx

—>{agh
y {a) {b)
Fic. 189

This consists of two systems of parallel beams spaced equal distances
apart in the z and y directions and rigidly connected at their points of
intersection. The beams are supported at the ends, and the load is
applied normal to the zy plane. If the distances a, and b; between the
beams are small in comparison with the dimensions a and b of the grid,
and if the flexural rigidity of cach of the beams parallel to the x axis is
equal to B and that of each of the beams parallel to y axis is equal to B,
we can substitute in Eq. (213)

B, D - B,

D,=b—1 y—01

(a)

1 For a more exact theory concerning slabs with ribs in one or two directions and
leading to a differential equation of the eighth order for the deflection see K. Trenks,
Bauingenieur, vol. 29, p. 372, 1954; see also A. Pfliiger, Ingr.-Arch., vol. 16, p. 111, 1947,
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The quantity D; in this case is zero, and the quantity D, can be expressed
in terms of the torsional rigidities C'y and C of the beams parallel to the
x and y axes, respectively. For this purpose we consider the twist of an
element as shown in Fig. 189b and obtain the following relations between
the twisting moments and the twist 9%w/dx dy:

¢, *w Cy w

1}1:, = yr — — —
v by 0x dy ¥ @1 0x Ay

()

Substituting these expressions in the equation of equilibrium (¢) on page
81, we find that in the case of the system rcpresented in Fig. 189a the
differential equation of the deflection surface is

B, d'w Cy C, 9w B, 0w o
Dy 0ct + (H + a:) 8x% oy + o (215)

which is of the same form as Eq. (213).

In order to obtain the final expressions for the flexural and torsional moments of a
rib we still have to multiply the moments, such as given by Eqs. (212) and valid for
the unit width of the grid, by the spacing of the ribs. The variation of the moments,
say M. and M., may be assumed parabolic between the points (m — 1) and
(m - 1) and the shaded area of the diagram (Fig. 190) may be assigned to the rib

Fia. 190

(m) running in the direction ¢. Then, observing the expressions (212), we obtain the
following approximate formulag for both moments of the rib (m):

2 ’
]wf - E (')_1_0 + 22 02__10 -+ 62
24 azr? m—1 da? J. dzx? m41
C, 92w a%w 3w 1 ©
Myy = — 22
v 24 02 Y Jm—1 + dx Oy J o + dx Iy muJ

For ribs of the direction ¥ we have to interchange x and y in the foregoing expressions
and replace B; by B, and C; by Cy; (m — 1), (m), and (m + 1) then denote three
successive joints on a rib having the dircetion z.
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Two parameters largely defining the elastic properties of a grid and often used in
calculation are

¢ G

x=i/m’“ Loin @
B, 2 BB,
Ve,

The parameter A multiplied by the side ratio a/b (Fig. 189) yiclds the relative carrying
capacity of a rectangular plate in the directions y and x, whereas the parameter g
characterizes the torsional rigidity of a grid as compared with its flexural rigidity.

Equation (215) has been extenstvely used in investigating the distribution of an
arbitrarily located single load between the main girders of a bridge stiffened in the
transverse direction by continuous floor beams.?

88. Bending of Rectangular Plates. When the plate is simply sup-
ported on all sides Eq. (213) can be solved by the methods used in the
case of an isotropic plate. Let us apply the Navier method (see Art, 28)
and assume that the plate is uniformly loaded. Taking the coordinate
axes as shown in Fig. 59 and representing the load in the form of a double
trigonometric series, the differential equation (213) becomes

dFw d*w otw
Degmr T2 Gagy

= — ? L sin 0 in Y (a)
2 Ly mn a ' b

y e

m=135,,., n=13,

o

A solution of this equation that satisfies the boundary conditions can be
taken in the form of the double trigonometrical series

w w
E E : . mwx . nmy
w = Qnr SIN - Sin 5 ®
m=134 ... n=13,5,...

Substituting this series in q. (a), we find the following expression for the
coefficients a,,.:

@ _ 16(10 \
P S
mn< YD, + e H b 1),,)

! Factors giving the distribution of a single load have been calculated for g = 0 by
Y. Guyon, Ann. ponts ef chaussées, vol. 116, p. 553, 1946, and for u = 0 by C. Mas-
sonnet, Publs. Intern. Assoc. Bridge and Siructural Engrs., vol. 10, p. 147, 1950. For
verification of calculated results by test see K. Sattler, Bauingenieur, vol. 30, p. 77,
19535, and also M. Naruoka and H. Yonezawa, Publs. Intern. Assoc. Bridge and
Structural Engrs., vol. 16, 1956. For skewed grids sce 8. Woinowsky-Krieger, I'ngr.-
Awch., vol. 25, p. 350, 1957,
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Hence the solution of Eq. (a) is
o 0 mrx n7ry

. —= gin —=
W — 162 2: Z: sin = b i
6 4
" mn(%D,+2mnH+ )

m=135 ... n=135,... 2h2

In the case of an isotropic material D, = D, = H = D, and this solution
coincides with that given on page 110. o

Furthermore, let us consider the particular case of H = +/D.D,
already mentioned on page 366. Comparing expression (¢) with the
corresponding expression (131) for the isotropic plate, we conclude that
the deflection at the center of such an orthotropic plate with rigidities
D., D,, and the sides a, b is the same as that of an isotropic plate having
a rigidity D and the sides ay = a v/ D/D, and by = b v/ D/D,. In like
manner the curvatures of the orthotropic plate may be expressed by
those of a certain isotropic plate. The deflection and the bending
moments at the center of the orthotropic plate obtained in this way
can be expressed by the formulas

) g 1
w = « ])U
. E” D\ qoa*
M, = (,31 + B2 Z‘Z \/E) ~€ (d)

" 5y
My = (62 + 61% \/%) (lgb2

where o, 81, and 8 are numerical coefficients! given in Table 80 and

- 5B @

As a second cxample let us consider an infinitely long plate (Fig. 74)
and assume that the load is distributed along the z axis following the
sinusoidal relation

.. mrx
= qosin = &)

In this case Eq. (213) for the unloaded portions of the plate becomes

a*w

+ 2H —— +Dy:9’y—4

=0

ﬂ% (9)
! Caleulated by M. T. Huber, “Probleme der Statik technisch wichtiger orthotroper

Platten,” p. 74, Warsaw, 1929. For numerical data regarding uniformly loaded

rectangular plates with various edge conditions and various torsion coefficients, see

H. A. Schade, Trans. Soc. Naval Architects Marine Engrs., vol. 49, pp. 154, 180, 1941.
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TasLE 80. CONSTANTS <, f1, AND B: FOR A SIMPLY SUPPORTED RECTANGULAR

ORTHOTROPIC PLATE WITH H = \/D:Dy, Eqgs. (d), (e) (Fig. 59)

€ « B1 B2 € o B1 B

I 0.00407 | 0.0368 | 0.0368 | 1.8 | 0.00932 | 0.0214 | 0.0884
L.1] 0.00488 | 0.0359 | 0.0447 | 1.9 0.00974 | 0.0191 | 0.0929
1.2 0.00565 | 0.0344 | 0.052¢ | 2.0 | 0.01013 | 0.0174 | 0.0964
1.3 0.00639 | 0.0324 | 0.0597 | 2.5| 0.01150 | 0.0099 | 0.1100
1.4/ 0.00709 | 0.0303 | 0.0665 |3 0.01223 | 0.0055 | 0.1172
1.5| 0.00772 | 0.0280 | 0.0728 |4 0.01282 | 0.0015 | 0.1230
1.6/ 0.00831 | 0.0257 | 0.0785 |5 0.01207 | 0.0004  0.1245
1.7 0.00884 | 0.0235 | 0.0857 | = | 0.01302 | 0 | 0.1250

A solution of this equation, satisfying the boundary conditions at the
sides parallel to the y axis, can be taken in the following form:

. mwx
w =Y, sin 0 (h

where Y, is a function of y only. Substituting this in Xq. (g), we obtain
the following equation for determining the function Y,,:

min?

D,YY — 2H ™

44
YU + Dz”;—f Y =0 (1)

The roots of the corresponding characteristic equation are

H H* D, :
o = 2 2R - 2 V)
2 P v

Using, in accordance with Eq. (d), Art. 87, the notation

‘D, H
A= |22 =i k
\/DI b Y/D.D, ®)

we have to consider the following three cases:

Case 1, u > 1:

H? > D.D,
Case 2, u = 1:

H* = D.D, 0
Case 3, u < 1:

H* < DD,

In the first case all the roots of Eq. (j) are real. Considering the part
of the plate with positive y and observing that the deflection w and its
derivatives must vanish at large distances from the load, we can retain
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only the negative roots. Using the notation

a=a?)\\/u+\/u2—1

R —— (m)
B=2Vp— Vi~ 1
the integral of Eq. (¢) becomes
Y = Ane™v/e 4+ B,e~mvlf
and expression (h) can be represented in the form
w = (Awpe™¥'* + B,e~/#) sin i
From symmetry we conclude that along the 2 axis
Jw
— =0
(6!/ >y-70
and we find
Bm = - E Am
o
. mrx \
and w= An (e‘"‘yl @ - = e*my/‘g) sin = (n)
a a

The coefficient 4., is obtained from the condition relating to the shearing
force Q, along the x axis, which gives

9 3w AFw\  qo . mwx
@(DT/W+H55§)_ Mme

Substituting for w its expression (n), we obtain

T 2miD, (e — B2 2r'miD.(a® — B?Y)

A = qoa362 aqoat

and the final expression (n) for the deflection becomes

w = QOa4 ( e
= ormiD.(a? — p2)

—my e 'Be—my/ﬁ) Sill mmx (0)
a

In the second of the three cases (I) the characteristic equation has two
double roots, and the function Y, has the same form as in the case of an
isotropic plate (Art. 36). In the third of the cases (I) we use the notation

,_a [ 2
T N1 —u

, _ GA 2
B“W\/y:;

(p)
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and thus obtain the solution

qoa® , my\N . mnrx
W= —— o sin 2 + B’ cos (B G e
4r*m® /DD < o ) a (g)

We can also shift from case 1 to case 2 by using the complex relations

1

i
1
= B/ —-{-— 1 S

Having the deflection surface for the sinusoidal load (f), the deflection
for any other kind of load along the z axis can be obtained by expanding
the load in the series

<

i
“i (r)

|- Q-

©

.. mrTx
qg = Qo SIN
a

m=1

and using the solution obtained for the load (f) for each term of this
series. The following expressions hold when, for instance, a load P is
concentrated at a point x = &, y = 0 of the infinite strip (Fig. 72):

Case 1, u > 1:

Pa? 1 hs CommE .
w = by (ae“”””“ — Bem™v!8) sin TW& sin ﬂ;ﬂ (s)
m:]
Case 2, u = 1:
Pa? | my . omwé . mmx
—_ Ly Y pmulB =
W= 5w h E % (1 + an )¢ sin ———= sin — ()
m=1
Case 3, p < 1:
Pa \ L mj mm§ m
w —— _ g 4 e—muiB gin — = g _‘ert_?
27r \/D Du z (a sm + B8 c o sin a sin a
m=1

()

Expressions in closed form! can be obtained for bending moments due to

a single load in a manner similar to that used for the isotropic plate in
Art. 35.

Having this solution, the deflection of the plate by a load distributed

1 8ce W. Nowacki, Acta Tech. Acad. Sci. Hung., vol. 8 p. 109, 1954; 8. Woinowsky-
Krieger, Ingr.-Arch., vol. 25, p. 90, 1957. Numerical results regarding influence
surfaces of orthotropic rectangular plates may be found in H. Olsen and F. Reinitz-
huber, “Die zweiseitig gelagerte Platte,”” Berlin, 1950, and in H. Homberg and
J. Weinmeister, *“ Einflussflichen fur Kreuzwerke,” 2d ed., Berlin, 1956.
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over a circular area can be obtained by integration, as was shown in the
case of an isotropic plate (see Art. 35). By applying the method of
images the solutions obtained for an infinitely long plate can be used in
the investigation of the bending of plates of finite dimensions.!

89. Bending of Circular and Elliptic Plates. A simple solution of Eq. (213) can be
obtained in the case of an elliptic plate clamped? on the boundary and carrying a
uniform load of intensity g. Provided the principal directions z and y of the ortho-
tropic material are parallel to the principal axes of the ellipse (Fig. 157) the expression

x y2 2

in which
_ q
W= 51D, 16H 24D, ®
at ah? + b4

satisfies Eq. (213) and the required conditions on the boundary. The bending
moments of the plate are readily obtained by means of expressions (212). In the
particular case of a clamped circular plate (& = b) we have the following results:

 gla? — )
YY>%
M, = .1_6115 [(D: + Di)(a* — 1) — 2(D.s* + Dyy?)]
M, = 17335 (D, + Dy)(a® — 1) — 2(Dyy? + Diz?)]
¢ (e)

LW;,,,, = :L‘D—' Dwzy

Q. = — %; 3D, + H)

Q, = — 8‘-’1; (3D, + H)

in which -
r=Va+y  and D = (3D, + 2H + 3D,)

Since the twist is zero along the edge, the reactions of the support are given by a linear
combination of the boundary valucs of the shearing forces @, and Q, (see page 87).

A straightforward solution can also be obtained in the case of pure bending or pure
twist of an orthotropic plate. Let such a plate be subjected to uniform couples

M.=M,M,=M,and M., = M;. By taking the deflection in the form
w = Az? + Bxy + Cy? d)

! Several examples of this kind are worked out in the books by M. T. Huber:
“Teorya Plyt,” Livov, 1922, and “‘ Probleme der Statik technisch wichtiger orthotroper
Platten,” Warsaw, 1929.

2 For bending of a simply supported elliptical plate, see Y. Ohasi, Z. angew. Math. u.
Phys., vol. 3, p. 212, 1952.
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we obviously satisfy the differential equation (213). The constants 4, B, and C then
are given by the linear equations

DA + D€ = —4M,
DA + D,C = —LM, (e)
D.,B = 1M,

fl

which ensue from the expressions (212).

The bending of a circular plate with eylindrical acolotropy has been discussed too.!
If, in addition to the elastic symmetry, the given load distribution is also symmetrical
about the center of the plate, then the ordinary differential equation of the bent plate
contains only two flexural rigidities, the radial and the tangential. Formal solutions
of this equation for any boundary conditions are simple to obtain; the choice of the
elastic constants of the material, however, requires special consideration since certain
assumptions regarding these constants lead to infinite bending moments at the center
of the plate even in the casc of a continuously distributed loading.

Most of the special methods used in solving the problems of bending of an isotropic
plate (Chap. 10) can be applied with some modifications to the case of an anisotropic
plate as well.

If we take the complex variable method,? for example, the form of the solution
proves to be different from that considered in Art. 79. As can be shown, it depends
upon the roots pi, ps, —p1, and —p; of the characteristic equation

Dyp* 4 2Hp* + D, = 0

which are either imaginary or complex. These roots being determined, the solution
of the homogeneous equation D, d*w,/dx* + 2H d%w:;/dx? dy? + D, 8*w,/3y* = 0 can
be represented either in the form

w1 = Rlpi1(21) + @2(22)]
if p1 # ps, or clse in the form
wr = Rle1(z1) + Ziea(21)]

if p1 = ps. In thesc expressions ¢, and ¢, are arbitrary analytic functions of the com-
plex variables 21 = x + pwy and 2 = z + poy.

In using the Ritz method, expression (b) of Art. 80 for the strain energy has to be
replaced by the expression

1 fe [0 9tw \2 dw Iw LETA o%w \2
V=2 D22} 420, Y (=) +ap,, (= drd
2ﬁ> /o [ <6x> T s o T ”(092> i (fwy)] o

while the rest of the procedure remains the same as in the case of the isotropic plate.

! G. F. Carricr, J. Appl. Mechanics, vol. 11, p. A-129, 1944, and Lechnitzky, op. eit.

2 See 8. G. Lechnitzky, Priklad. Mat. Mekhan., vol. 2, p. 181, 1938, and V. Morcovin,
Quart. Appl. Math., vol. 1, p. 116, 1943. For application of the method to the problem
of stress concentration, see also G. N. Savin, “Stress Concentration around Holes,”
Moscow, 1951, and 8. G. Lechnitzky, Inzhenernyi Shornik, vol. 17, p. 3, 1953. Stress
concentration in isotropic and anisotropic plates was also discussed by S. Holgate,
Proc. Roy. Soc. London, vol. 185A, pp. 35, 50, 1946.



CHAPTER 12

BENDING OF PLATES UNDER THE COMBINED ACTION
OF LATERAL LOADS AND FORCES IN THE MIDDLE
PLANE OF THE PLATE

90. Differential Equation of the Deflection Surface. In our previous
discussion it has always been assumed that the plate is bent by lateral
loads only. If in addition to lateral loads there are forces acting in the
middle plane of the plate, these latter forces may have a considerable
cffect on the bending of the plate and must be considered in deriving the
corresponding differential equation of the deflection surface. Proceed-
ing as in the case of lateral loading (see Art. 21, page 79), we consider
the cquilibrium of a small element cut from the plate by two pairs of
planes parallel to the zz and yz coordinate planes (Fig. 191). In addi-
tion to the forces discussed in Art. 21 we now have forces acting in the
middle plane of the plate. We denote the
magnitude of these forces per unit length by

Ny | l * N N, and N,, = N, as shown in the figure.
Projecting these forces on the x and y axes
z I l ML and assuming that there are no body forces or
o dX . . . . .
] ! ) (‘2‘) tangential forces acting in those directions at
| i ,  the faces of the plate, we obtain the following
! <_LNYI equations of equilibrium:
| N+ 20 g ON: | oN.
N ON KRS T dy 0 .
* "Ny O g VI (216)
», Ty iV y
y \\ —————— ==
\\ ‘Nyx+a—§lf—‘dy ox + dy 0
N +mdy These equations are entirely independent of
¥ ay p
(b) the three equations of equilibrium considered
Fi6. 191 in Art. 21 and can be treated separately, as

will be shown in Art. 92.
In considering the projection of the forces shown in Fig. 191 on the
z axis, we must take into account the bending of the plate and the
resulting small angles between the forces N. and N, that act on the

opposite sides of the element. As a result of this bending the projection
378
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of the normal forces N, on the z axis gives

2
NdJa———{—( aN ><6 +%d.v>dy

After simplification, if the small quantities of higher than the second
order are neglected, this projection becomes

(@)

In the same way the projection of the normal forces N, on the z axis gives

, 0%w ON,ow
L\' v aJ, (l' ({U + 61/ ay (1.L (1y (’))

Regarding the projection of the shearing forces N, on the z axis, we
observe that the slope of the deflection surface in the y direction on the
two opposite sides of the element is dw/dy and dw/dy + (8*w/dx dy) dx.
Hence the projection of the shearing forces on the z axis is equal to

aqu ow

N dr dy + ——-d dy

2"6 6

An analogous expression can be obtained for the projection of the shear-
ing forces N, = N, on the z axis. The final expression for the projec-
tion of all the shearing forces on the 2z axis then ean be written as

2w aN i

da d + —d d + aNzl/ Jw

2 7.Ll
New 55y ay ox

dx dy (¢)

Adding expressions (a), (b), and (¢) to the load ¢ dz dy acting on the ele-
ment and using Eqgs. (216), we obtain, instead of Eq. (100) (page 81), the
following equation of equilibrium:

M, 9 %M .,
dx? ox Ay

M,
ay*®

2 2 2
+ =—(q+Nx%?f+zvi19+zN —‘“">

Y9y 9z dy
Substituting expressions (101) and (102) for M., M,, and M., we obtain

4 4 4
dw , dw o
dut dr? oy = oy*

1 . 0w -
< +N +N"az~ +21\/2Jm> (217)

This equation should be used instead of Eq. (103) in determining the
deflection of a plate if in addition to lateral loads there are forces in the
middle plane of the plate.
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If there are body forces! acting in the middle plane of the plate or tangential forces
distributed over the surfaces of the plate, the differential equations of equilibrium
of the element shown in Fig. 191 become

aI_V" + N2y +X =0

ox Yy 218)
QfoZ+ﬁ]ﬁ+Y_0

ox oy B

Here X and Y denote the two components of the body forces or of the tangential
forces per unit area of the middle plane of the plate.

Using LEqs. (218), instead of Egs. (216), we obtain the following differential equa-
tion? for the deflection surface:

dw o 3w 1 a2w 92w 4w Jw Jw

Pl + 2 '—i_'m—; -+ EL ¢+ N, — + N,— + 2N,, B ‘e g y—

daxt dx? dyr - oyt D Jdx? Iy? dr dy dx ay
(219)

Equation (217) or Eq. (219) together with the conditions at the boundary (sec Art. 22,
0 page 83) defines the deflection of a plate loaded

% laterally and submitted to the action of forces in the
middle plane of the plate.

91. Rectangular Plate with Simply Supported
Edges under the Combined Action of Uniform
& a - *‘ Lateral Load and Uniform Tension. Assume
that the plate is under uniform tension in the
x direction, as shown in Fig. 192. The uniform
lateral load ¢ can be represented by the trigonometric series (see page 109).

_ 16q 1 . mrx . nwy
=" 2 E o SIL o sin == (@)

Equation (217) thus becomes

fitit}
IRRER!

Fia. 192

dw d'w d'w N, dw
or T aray Tayt T D o
16 L. Xz .
= b }: E S i )
m=13,5 ... n=13,5,...

This equation and the béundary conditions at the simply supported edges

1 An example of a body force acting in the middle plane of the plate is the gravity
force In the case of a vertical position of a plate.

2 This differential equation has been derived by Saint Venant (see final note 73) in
his translation of Clebsch, “ Théorie de Vélasticité des corps solides,” p. 704, 1883.
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will be satisfied if we take the deflection w in the form of the series

. mrx . nwy
w = Gy $IN == SIN == ()

Substituting this series in Eq. (b), we find the following values for the
coeflicients a,.,:

16
n = - Zﬂ" N (d)
641 A — .
Drdmn [<a2 + b2> + 1r2Da2J
in which m and » are odd numbers 1, 3,5, . . . , and a,, = 0if morn

or both are even numbers. Hence the deflection surface of the plate is

= %

w = 164
wéD
m=185, ... n=135...

1 mw.e
. T . Ny
e, N2 S Sl -—— SII nry (e)
mn | (7 n n N.m? a b
\a? b? m2Da?

Comparing this result with solution (131) (page 110), we conclude from
the presence of the term N,m?/x?Da? in the brackets of the denominator
that the deflection of the plate is somewhat diminished by the action of
the tensile forces N,. This is as would be expedted.

By using M. Lévy’s method (see Art. 30) a solution in simple series
may be obtained which is equivalent to expression (¢) but more con-
venient for numerical calculation. The maximum values of deflection
and bending moments obtained in this way! for » = 0.3 can be represented
in the form

b4
Wge = @ g—,ﬁ (MDmex = Bgb? (M) was = Bigb? 63)

The constants a, 8, and B: depend upon the ratio a/b and a parameter

_ Nab?
Y7 4D

and are plotted in Figs. 193, 194, and 195.
If, instead of tension, we have compression, the force N. becomes

t H. D. Conway, J. Appl. Mechanics, vol. 16, p. 301, 1949, where graphs in the case
of compression are also given; the case N, = N, has been discussed by R. F. Morse
and H. D. Conway, J. Appl. Mechanics, vol. 18, p. 209, 1951, and the case of a plate
clamped all around by C. C. Chang and H. D. Conway, J. Appl. Mechanics, vol. 19,
p- 179, 1952. For combined bending and compression, see also J. Lockwood Taylor,
The Shipbuilder and Marine Engine Builder, no. 494, p. 15, 1950.
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negative, and the deflections (¢) become larger than those of the plate
bent by lateral load only. It may be seen also in this case that at cer-
tain values of the compressive force N, the denominator of one of the
terms in series (¢) may vanish. This indicates that at such values of N.
the plate may buckle laterally without any lateral loading.

92. Application of the Energy Method. The cnergy method, which
was previously used in discussing bending of plates by lateral loading
(see Art. 80, page 342), can be applied also to the cases in which the

014
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/
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0.08 / / %
. / /
//
//

/

\
Y

AN

0.04

AN
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002

N

N
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D
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b
Fic. 193

lateral load is combined with forces acting in the middle plane of the
plate. To establish the expression for the strain energy corresponding
to the latter forces let us assume that these forces are applied first to the
unbent plate. In this way we obtain a two-dimensional problem which
can be treated by the methods of the theory of elasticity.! Assuming
that this problem is solved and that the forces N., N, and N., are known
at each point of the plate, the components of strain of the middle plane
of the plate are obtained from the known formulas representing Hooke’s

1 See, for example, 8. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2d
ed., p. 11, 1951.
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law, viz.,
o= (Ne— 0N, & = (Ny — N)
£ hE z ¥ i hE ¥ z

_Na @
Yzy G

The strain energy, due to stretching of the middle plane of the plate, is
then

Vi = '%ff(]\[;éx + Nyey/ + ny')’g;_,/) dx dy
5}}7 / / (N2 4+ N2 — 20NN, + 21 + »)N | dzdy  (220)

I

where the integration is extended over the entire plate.

Let us now apply the lateral load. This load will bend the plate and
produce additional strain of the middle plane. In our previous discus-
sion of bending of plates, this latter strain was always neglected. Here,

014 ‘

0.2 3 — |

| — |
Y

0.10 *74

0.08 - /
4 3% / /
B
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0.02

0
1 2 .
b

Fre. 194
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however, we have to take it into consideration, since this small strain in

combination with the finite forces N, N,, N, may add to the expression

for strain energy some terms of the same order as the strain energy of

bending. The z, y, und z components of the small displacement that a

point in the middle plane of the plate experiences during bending will be

cdx deno‘?ed 'by U, 0, and w, respect‘ively.

o Al gl Considering a linear element AB of that

‘ Al . xa plane in the x direction, it may be seen from

L J E,T---é—‘;Ndx Tig. 196 that the clongation of the element

u 1\"! ‘ due to the displacement u is equal to

; \u+%& dx (du/dx) dx. The elongation of the same

x element due to the displacement w is

+(0w/dx)? dx, as may be seen from the com-

parison of the length of the clement A.B; in Tig. 196 with the length of

its projection on the x axis. Thus the total unit elongation in the z direc-
tion of an element taken in the middle plane of the plate is

¢=241 (d—) (221)

Er ax

Fic. 196
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Similarly the strain in the y direction is

, v 1 /[ow\?
éy = @ + § <5§/—> (222)
Considering now the shearing strain in the middle plane due to bend-
ing, we conclude as before (see Fig. 23) that the shearing strain due to
the displacements « and v is du/dy + dv/dx. To determine the shear-
ing strain due to the displacement w we take two infinitely small linear
elements OA and OB in the x and y directions, asshown in Fig. 197.
Because of displacements in the z direction these elements come to the
positions 014 and 01B;. The difference between the angle #/2 and the
angle A,0.B, is the shearing strain corresponding to the displacement w.
To determine this difference we con-

sider the right angle B20,44, in which 0 dx A

B0, is parallel to BO. Rotating the & l h i

plane B,0:A; about the axis 0,4 by 8 0 | M

the angle dw/dy, we bring the plane y | 1 !j -

B,0:14, into coincidence with the B a// by ;1{@7
X

plane B101 4 1* and the point Bsto posi- S
tion C. Thedisplacement B:Cisequal ¢ ,K//J( N
to (dw/dy) dy and is inclined tothever- /4, B
tical B2B; by the angle dw/dx. Hence ke

B:C is equal to (dw/dx)(ow/dy) dy, Fic. 197

and the angle C0.B,, which repre-

sents the shearing strain corresponding to the displacement w, is
(dw/dx)(0w/dy). Adding this shearing strain to the strain produced by
the displacements u and », we obtain

Yo = 5+ 52 Dy (223)

dx Jdy

Formulas (221), (222), and (223) represent the components of the addi-
tional strain in the middle plane of the plate due to small deflections.
Considering them as very small in comparison with the components e, ¢,
and v., used in the derivation of expression (220), we can assume that
the forces N,, N, N, remain unchanged during bending. With this
assumption the additional strain energy of the plate, due to the strain
produced in the middle plane by bending, is

Vo = [[(Nae, + Ny, + Nuyvy,) de dy
Substituting expressions (221), (222), and (223) for ¢, ¢/, and ., we

* The angles dw/dy and dw/dz correspond to small deflections of the plate and are
regarded as small quantities.
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finally obtain

e o 2o
ow . awdw
Y cnla) v

It can be shown, by integration by parts, that the first integral on the
right-hand side of expression (224) is equal to the work done during bend-
ing by the forces acting in the middle plane of the plate. Taking, for
example, a rectangular plate with the coordinate axes directed, as shown
in Fig. 192, we obtain for the first term of the integral

b L ou B b b a aNx ’
_L/U‘N”ﬁdxdy_[) ﬁ[}ug‘%—dxdy

Proceeding in the same manner with the other terms of the first integral
in expression (224), we finally find

67(
FEl g (5 2
/ <A\ uia—l— N >(1J+/ (Nyvb+ Nz_,,ub)dx
0
/ / (”V Az“)d dy-/ / (aN“‘Jr N")d dy

The first integral on the right-hand side of this expression is evidently
equal to the work done during bending by the forces applied at the edges
x = 0and & = ¢ of the plate. Similarly, the second integral is equal to
the work done by the forces applied at the edges y = Oand y = b. The
last two integrals, by virtue of Kgs. (218), are equal to the work done
during bending by the body forces acting in the middle plane. These
integrals cach vanish in the absence of such corresponding forces.
Adding expressions (220) and (224) to the energy of bending [see Eq.
(117), page 88], we obtain the total strain energy of a bent plate under
the combined action of lateral loads and forces acting in the middle plane
of the plate. This strain energy is equal to the work T, done by the
lateral load during bending of the plate plus the work T% done by the
foreces acting in the middle plane of the plate. Observing that this latter
work is cqual to the strain energy Vi plus the strain energy represented
by the first integral of expression (224), we conclude that the work pro-

la
Nau
1]
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duced by the lateral forces is /

T—aﬁ{<>+N(>+wJ%ﬂd@
D otw 2 92w 0w 92w \°
T3 /f I(a ) 20 =) [aw - <axay) JI du dy

(225)

Applying the principle of virtual displacement, we now give a variation dw
to the deflection w and obtain, from Eq. (225),

1 . [ ow Jw ow
r b ][ () () v e
D 9*w ? "0 0w atw \°
+ 55// KT +‘“> — 2= [TET - (‘“axa.) ]} b dy

(226)
The left-hand side in this equation represents the work done during the
virtual displacement by the lateral load, and the right-hand side is the
corresponding change in the strain energy of the plate. The application
of this equation will be illustrated by several examples in the next article.
93. Simply Supported Rectangular Plates under the Combined Action
of Lateral Loads and of Forces in the Middle Plane of the Plate. Let us
begin with the case of a rectangular plate uniformly stretched in the
z direction (Fig. 192) and carrying a concentrated load I’ at a point with
coordinates £ and 7. The general expression for the deflection that satis-
fies the boundary conditions is

. mwr . nwy
w = O SIN =2 s8I0 S (a)

m=123,... n=1,23,...

To obtain the coefficients a., in this series we use the general equation
(226). Since N, = N, = 0 in our case, the first integral on the right-
hand side of Eq. (225), after substitution of series (a) for w, is

1 (e[ (ow mir?
- Vo (9Y) dea _—ﬂ E oz, ™ !
5 L /0 N (61> ey N 12 @ (b)

m=1 n=1

The strain energy of bending representing the second integral in Eq.
(225) is [see Eq. (d), page 343]

© ©

wiab s [(m® | NtV
NI

m=1n=1
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To obtain a virtual deflection dw we give to a coeflicient @, an increase
8@m.m,. The corresponding deflection of the plate is

nwy

b
The work done during this virtual displacement by the lateral load P is

. nmamx
W = 0Qm,s, SIN —, Sin

. mwé . ngmy
Péa,,., sin @ Sin - (d)

The corresponding change in the strain energy consists of the two terms
which are

28 Jy o (&) e
_ab,, @ N , miw? _ab mimw?
= 8 AI '(%mml ( Z E (Ui (l.z"'> 6a/m,nl - 1 i’vzamlnl a2 ) 5am1m (6)

, av wiab mi  ni\?
and oV = —— 5(1,,11"1 = T Da (22 (‘a‘; + 5%) 5am11“

Substituting expressions (d) and (¢) in Eq. (226), we obtain

mirT .y ab ’ﬂ'LQ?T'2
£ sin = L T N elnn, =

Péa,., sin cSamml

from which

. maT .
4P sin f—g Si 1

7 m3 n2\? miN,
abm*D [( ; + bi> +m]

Substituting these values of the coefficients an,,, in expression (a), we
find the deflection of the plate to be

(f)

omyn, =

w w .omrf . nmy
w = AP SH; o S—I—H‘T— - sin 2 gy PTY o
abrD me 22\? m:N, a b g
m=1 n=1 ( + bz> + 72aD

If, instead of the tensile forces N,, there are compressive forces of the
same magnitude, the deflection of the plate is obtained by substituting
—N. in place of N, in expression (g). This substitution gives

w o mmé nwny

B m‘]:P sin ‘a— sin —b- i ﬂ% n w (h)
- abriD m2 n2 2 m2Nl_ a b
I \e T %) " 7D

m=1 1 b? w2a*D
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The smallest value of N, at which the denominator of one of the terms
in expression (h) becomes equal to zero is the critical value of the com-
pressive force N.. It is evident that this critical value is obtained by
taking n = 1. Hence

22 2 1\2 ZD 2

m? a? a

where m must be chosen so as to make expression (227) a minimum.

Plotting the factor
k= (@ + ﬂ)“
a mb

against the ratio a/b, for various integral values of m, we obtain a system
of curves shown in Fig. 198. The portions of the curves that must be

10
msl 2[5 4 B
8 1 1 \
TINRA
IR VANRWAN
IR
6 N \ N
k5 \ N SN, N - s
N P e T~ Pt P
4 i )}"\\\)ie\’“:: I’/
|
; A
2 1 |
| [ | |
1 i i f !
0 | - | |
0 1 W2 2\/503'\/1—2 4 N0 5
b
Fic. 198

used in determining £ are indicated by heavy lines. It is seen that the
factor k is equal to 4 for a square plate as well as for any plate that can
be subdivided into an integral number of squares with the side b. It can
also be seen that for long plates & remains practically constant at a value
of 4.* Since the value of m in Eq. (227) may be other than 1 for oblong
plates, such plates, being submitted to a lateral load combined with com-
pression, do not generally deflect! in the form of a half wave in the direc-
tion of the longer side of the plate. If, for instance, a/b = 2, 4, . . .
the respective elastic surface becomes markedly unsymmetrical with
respect to the middle line 2 = a/2 (Fig. 192), especially so for values of
N, close to the critical value (N.).

By using the deflection (g) produced by one concentrated load, the

* A more detailed discussion of this problem is given in 8. Timoshenko, ‘‘ Theory of
Elastic Stability,” p. 327, 1936.

1 Several examples of such a deformation have been considered by K. Girkmann,
Stahlbau, vol, 15, p. 57, 1942,
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deflection produced by any lateral load ecan be obtained by superposition.
Assuming, for example, that the plate is uniformly loaded by a load of
intensity ¢, we substitute ¢ d¢ dy for P in expression (g) and integrate
the expression over the entire area of the plate. In this way we obtain
the same expression for the deflection of the plate under uniform load as
has already been derived in another manner (see page 381).

If the plate laterally loaded by the force P is compressed in the middle
plane by uniformly distributed forces N, and N,, proceeding as before
we obtain

~ 8in sin
4r ¥ a b .ommrx . nwy .
W= e e e sin sin —= ()
aom m? | n*\"  m*N, a:N, @
w2a*D 7D
The critical value of the forces N, and N, is obtained from the
condition!

watD w2b2D

o+

o+ (3
where m and n are chosen so as to make N, and N, a minimum for any
given value of the ratio N./N,. In the case of a square plate submitted
to the action of a uniform pressure p in the middle plane we have a = b
and N, = N, = p. [quation () then gives

AN )er 4 (N er (W nrﬂ)?

x2D ) ;
pr:r = _‘(17 (7n2 + n2>min (/‘)

The eritical value of p is obtained by taking m = n = 1, which gives
o = 2D (228)

In the case of a plate in the form of an isosceles right triangle with
simply supported edges (Fig. 161) the deflection surface of the buckled
plate which satisfies all the boundary conditions is?

.omr . 2m . 2re . owy
w = alsin — sin Ty + sin —— sin Ty
a a a a

Thus the critical value of the compressive stress is obtained by substi-
tutingm = 1, n = 2 0orm = 2, n = 1 into expression (k). This gives

_ ot

= pp

(229)

or

1 A complete discussion of this problem is given in Timoshenko, < Elastic Stability,”
p. 333.

2 This is the form of natural vibration of a square plate having a diagonal as a nodal
fine.



PLATES UNDER LATERAL LOADS AND FORCES IN THEIR PLANE 391

94. Circular Plates under Combined Action of Lateral Load and Tension or Com-
pression. Consider a circular plate (Fig. 199) submitted to the simultaneous action
of a symmetrical latcral load and a uniform compression N, = N, = N in the middle
planc of the plate. Owing to the slope ¢ of the deformed plate (Fig. 27) the radial
compression N gives a transverse component N de/dr which we have to add to the
shearing force @ (Fig. 28) due to the lateral load.
Henee the differential equation (54) becomes

2 1d k? 1
d—‘—"+-~‘-f+<—ﬁ7>¢= -8 W

dr? r dr a? e D

in which

k= ]%i ®)

In the case of a circular plate without a hole! the
solution of Eq. (a) is of the form

A.,.
¢ = (C1J, <—I> + @0 (e) Fra. 199
a

where Jy is the Bessel function of the erder one, ¢y a particular solution of Eq. (a)
depending on @, and C; a constant defined by the boundary conditions of the plate.

Let us take as an example a rigidly clamped? plate carrying a uniform load of
intensity ¢. Then, as a particular solution, we use

B yra® B qr
T Topp T T ON
and therefore
dw kr qr
= = B - )
¢ i 1/ < P > SN (d)
[t follows, by integration, that
Cha kr gre
w= S|l —) "= +C .
k 0<a> iN + O (€)

where J, is the Bessel function of the order zero and C'; a second constant. Having
caleulated €, from the condition ¢ = Oon s = g, and (s from the condition w = 0 on
r = a, we obtain the final solution3

, >] ker i
qa Jo ; - '/H(‘) ng(az P2

ST (D Ak2D )

The deflections (f) become infinite for Ji(k) = 0. Denoting the zeros of the func-
tion Jy in order of their magnitude by ji, j., . . . we see that the condition k = j,

! In the case of a concentric hole a term proportional to a Bessel function of second
kind must be added to expression (¢). The inner boundary must be submitted then
to the same compression N, or else the problem becomes more complex because of the
inconstancy of stresses N, and N,.

*The case of an elastic restraint without transverse load has been discussed by
H. Reismann, J. Appl. Mechanics, vol. 19, p. 167, 1952.

# This result may be found in A. Nddali, “Elastische Platten,” p. 255, Berlin, 1925,



392 THEORY OF PLATES AND SIIELLS

defines the lowest critical value
Dj?
Nc'r = (121 (g)

of the compressive stress N. Now, for the function J;(k) we have the expression

k k2 k2
J1(k)=—<1——,2->(1——*,—2)--- (h)
2 Ji J2

in which j; = 3.83171, 7, = 7.01559, . . . . As k < j; we can neglect the terms
k2/4% beginning with the sccond parentheses. Observing, furthermore, that
BN
i Ne
by virtue of Egs. () and (g) we have, approximately,
k .
Jik) = - (1 — a) (2)
2
h N €)
where =
T N /

Making use of the expression (7), it can be shown that, approximately,!

where w, is the deflection duc to the load ¢ alone. Cases with other boundary condi-
tions and other laws of distribution of the lateral load may be handled in like manner.
In the general case of a symmetrical lateral load combined with compression we can
put, approximately, for the center of the plate (r = 0)

_ H(wq)o

Tl —«

(k)
Tdawy _ (dwY 1+ coaf1dw,
r dr/e dr? /o 1 —a \rdr /g

and on the boundary (r = a)
1dw 1+ e {1 dw,
rdr)s 1 —a \r dr /.
d*wY 14 e fdw,
dr? a N 1l —«a dT2 a

where w, relates to a plate carrying the given lateral load alone and « = N/N. has
the following meaning:

wo

0

F impl ted plate: e
or a simply supported plate: * 7 420D
(m)
. 1 Lot Na?
; a : =
or a clamped plate “ = 14.68D

1 8ee O, Pettersson, Acta Polyteck., Stockholm, no. 138, 1954. The following results
are taken from this paper, in which, more generally, an elastic restraint at the edge is
assumed.
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TaBLE 81. VALUES oF CONSTANTS IN APPROXIMATE ExpREssions (k) anp (I)

v = 0.3
e s Bound
Case Load distribution : oundary Consgtants
‘ conditions
— o _
i Uniform edge couples | Simply supported | ¢, = 0.305
¢ = —0.270
¢ = —1.219
—_ ! e S—
2 | Uniform load Simply supported | c¢o = 0.0480
o =¢" = —0.0327
3 Clamped co = 0.308
1 ¢ = —0.473
4 | Central uniform load over area | Simply supported -~ 2.153
of radius ea co=—l+ 1 —13Ine
! ¢ =c¢" = 0.205
| |
5 | Clamped 1.308
i o= —1 —
j In e
: ¢’ = 0.0539
!

the former value being valid for » = 0.3. The values of the constants ¢, ¢/, and ¢’ are
given in Table 81.

If the circular plate is subjected to a lateral load combined with a uniform tension N,
instead of compression, then we have, approximately,

_ (wq)r=0
(W)reo = 1+ a
where « is the absolute value of N/N.,. As for the curvatures, a factor
S
14+ {1+ ¢a

instead of the factor (1 + ca)/(1 — ) must be used in expressions (k) and {{), the
constant ¢ having the meaning of ¢, ¢/, and ¢”, respectively.

95. Bending of Plates with a Small Initial Curvature.! Assume that a
plate has some initial warp of the middle surface so that at any point
there is an initial deflection wy which is small in comparison with the
thickness of the plate. If such a plate is submitted to the action of
transverse loading, additional deflection w, will be produced, and the
total deflection at any point of the middle surface of the plate will be
wo + wi.  In caleculating the defleetion w; we use Eq. (103) derived for
flat plates. This procedure is justifiable if the initial deflection wo is

1 Bee 8. Timoshenko's paper in Mem. Inst. Ways Commun., vol. 89, St. Petersburg,
1915 (Russian).
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small, since we may consider the initial deflection as produced by a
fictitious load and apply the principle of superposition.! If in addition
to lateral loads there are forces acting in the middle plane of the plate,
the effect of these forces on bending depends not only on w, but also on ws.
To take this into account, in applying Eq. (217) we use the total deflection
w = wo + wi on the right-hand side of the equation. It will be remem-
bered that the left-hand side of the same equation was obtained from
expressions for the bending moments in the plate. Since these moments
depend not on the total curvature but only on the change in curvature
of the plate, the deflection w, should be used instead of w in applying
that side of the cquation to this problem. Hence, for the case of an
initially curved plate, Eq. (217) becomes

d*w; dtw, dtwy 9% (wo + w1)

ey oyt | Ayt [ + N ax?

a2 (wo —i—w1)
a Y

3?(wo + wy) )
T «} (230)

It is seen that the effeet of an initial curvature on the deflection is equiva-
lent to the effect of a fictitious lateral load of an intensity

+ Ny + 2N,

92w 0%wo 3wy
T ox? TNy dy? T 2N dx dy
Thus a plate will experience bending under the action of forees in the
xy plane alone provided there is an initial eurvature.

Take as an example the case of a rectangular plate (Fig. 192), and
assume that the initial deflection of the plate is defined by the equation

N

T )
Wy = @y Sin o sin F/ (a)
If uniformly distributed compressive forces N, are acting on the edges

of this plate, Eq. (230) becomes

84101 gt W1 84@01 . 1 (l117r T . Ty (927.01
oz T2 ay? + dyt D N E sin o ? ax? @)
Let us take the solution of this ecquation in the form
= A sin ™ gin ™Y
w; = A sin = P * sin s (¢)

Substituting this value of w; into Eq. (b), we obtain
(InN

20

1In the casc of large deflections the magnitude of the deflection is no longer pro-
portional to the load, and the principle of superposition is not applicable.

A_
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With this value of A expression (c) gives the deflection of the plate pro-
duced by the compressive forces N,.  Adding this deflection to the initial
deflection (a), we obtain for the total deflection of the plate the following
expression:

a . T .
o= wy + wy = i :la sin %— sin zrb4y (d)
in which
R o
259
a? b?
The maximum deflection will be at the center and will be
. O0n
Wnas = 7 ()

This formula is analogous to that used for a bar with initial ecurvature.!
In a more general case we can take the initial deflection surface of the

rectangular plate in the form of the following series:
oo — \! o i L MY @
0 = mn SINL . sin b g)

m=1n=1
Substituting this series in Eq. (230), we find that the additional deflection
at any point of the plate is

w0 w0

.. mmx ., nml
wy = D SIN o sin Y (h)

a b

m=1 n=1
in which
1) . a'rn,’n,N;c (2-)
mn T -
w2D n? a2\’ N
2 \" T p2)

It is seen that all the coefficients b,, increase with an increase of N,.
Thus when N, approaches the critical value, the term in series (h) that
corresponds to the laterally buckled shape of the plate [see Eq. (227)]
becomes the predominating one. We have here a complete analogy with
the case of bending of initially curved bars under compression.

The problem can be handled in the same manner if, instead of com-
pression, we have tension in the middle plane of the plate. In such a
case it is neecessary only to change the sign of N, in the previous equa-
tions. Without any difficulty we can also obtain the deflection in the
case when there are not only forces N, but also forces N, and N, uni-
formly distributed along the edges of the plate.

1 See 8. Timoshenko, “Strength of Materials,”’ part 11, 3d ed., p. 56, 1956.



CHAPTER 13

LARGE DEFLECTIONS OF PLATES

96. Bending of Circular Plates by Moments Uniformly Distributed
along the Edge. In the previous discussion of pure bending of circular
plates it was shown (see page 47) that the strain of the middle plane of
the plate can be neglected in cases in which the deflections are small as
compared with the thickness of the plate. In cases in which the deflec-
tions are no longer small in comparison with the thickness of the plate
but are still small as compared with the other dimensions, the analysis of
the problem must be extended to include the strain of the middle plane
of the plate.?

We shall assume that a circular plate is bent by moments M, uni-
formly distributed along the edge of the plate (Fig. 200a). Since the
deflection surface in such a case is symmetrical with respect to the center
O, the displacement of a point in the middle plane of the plate can be
resolved into two components: a component u in the radial direction and
a component w perpendicular to the plane of the platc. Proceeding as
previously indicated in Tig. 196 (page 384), we conclude that the strain

in the radial direction is?
du 1 fdw\?2
=Tt (zz‘f> (@

The strain in the tangential direction is evidently

€ =

()

R~

Denoting the corresponding tensile forces per unit length by N, and

' This problem has been discussed by 8. Timoshenko; see Mem. Inst. Ways
Commun., vol, 89, St. Petersburg, 1915.
2 In the case of very large deflections we have

_du . 1 du\? dw\?
“~% 2 |\&) T\ &
which modifies the following differential equations. See E. Reissner, Proc. Symposia

Appl. Math., vol. 1, p. 213, 1949,
396
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N; and applying Hooke’s law, we obtain

Eh Eh |du | 1/[dw)? u
Ne=g—pletre r_yz[aﬁﬁ(%) +”7]

1 — »?

! J 2 (C)
N, = Eh (e + ver) = Eh [E"i‘ du v(dw)]

1 — »2 1 —v2|r Par T a\dr

These forces must be taken into consideration in deriving equations of
equilibrium for an element of the plate such as that shown in Fig. 200b

and ¢. Taking the sum of the projections in the radial direction of all
the forces acting on the element, we obtain

dN,

rdr

drdd + N,.drdf — N,drdf =0

from which

. N,
AT“‘Nt"*"T'dT—O » (d)
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The second equation of equilibrium of the element is obtained by taking
moments of all the forces with respect to an axis perpendicular to the
radius in the same manner as in the derivation of Eq. (55) (page 53).
In this way we obtain!

dPw | | dw 1 d_w> (©

= -p(&® 2 2
Q I (dr3 rdr2  r2dr
The magnitude of the shearing force @, is obtained by considering the
equilibrium of the inner circular portion of the plate of radius r (Fig.
200a). Such a consideration gives the relation

dw

Qr = -A/r'd—r

()
Substituting this expression for shearing force in Eq. (¢) and using expres-
sions (¢) for N, and N, we can represent the equations of equilibrium (d)
and (e) in the following form:

e ldu w1 — (dw)‘l _dw dPw
drr = rdr ot 2r \dr dr dr?
” . (231)
@z’v__ld~w+L@+1_2d_w d_u+ “’_}_1 dwy?
T T rdr T rdr Trrdr |dr T T2\ Gdr

These two nonlinear equations can be integrated numerically by start-
ing from the center of the plate and advancing by small increments in
the radial direction. For a circular element of a small radius ¢ at the
center, we assume a certain radial strain

_ (du
T dr r=0

and a certain uniform curvature

L __(dw
po dr? J,—

With these values of radial strain and curvature at the center, the values
of the radial displacement u and the slope dw/dr for r = ¢ can be calcu-
lated. Thus all the quantities on the right-hand side of Eqs. (231) are
known, and the values of d®u/dr? and of d*w/dr? for r = ¢ can be calcu-
lated. As soon as these values are known, another radial step of length ¢
can be made, and all the quantities entering in the right-hand side of
Egs. (231) can be calculated for r = 2¢* and so on. The numerical

1 The direction for Q. is opposite to that used in Fig. 28. This explains the minus
sign in Eq. (e).

*1f the intervals into which the radius is divided are sufficiently small, a simple
procedure, such as that used in 8. Timoshenko’s ¢ Vibration Problems in Engineering,’”’
3d ed., p. 143, can be applied. The numerical results represented in Fig. 201 are
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values of u and w and their derivatives at the end of any interval being
known, the values of the forces N, and N, can then be calculated from
Egs. (¢) and the bending moments M, and M, from Eqgs. (52) and (53)
(sce page 52). By such repeated calculations we proceed up to the radial
distance r = a at which the radial force N, vanishes. In this way we
obtain a circular plate of radius ¢ bent by moments M, uniformly dis-
tributed along the edge. By changing the numerical values of e and

}Jl L : ! [ ! ] £ I H I I
141 6Mo /2 6M,/h% -
6 M /h 2,/
12 i t
Scale Fo.
10 For stresses:1division= oz 10*
) N For deflection:!division=0.05h WOJ/A/W
Ve
////
6 /
i
| A
# P>
2 Ne/by
— N e X
0 P ] — r—
- \'\ [ —
¥ T
0 5 10 15 70
h
Fia. 201

1/po at the center we obtain plates with various values of the outer radius
and various values of the moment along the edge.
Figure 201 shows graphically the results obtained for a plate with

. . o (1 . D

a = 23h and (M )rea = Mo = 293103 g
It will be noted that the maximum deflection of the plate is 0.55h, which
is about 9 per cent less than the deflection w, given by the elementary
theory which neglects the strain in the middle plane of the plate. The
forces N, and N, are both positive in the central portion of the plate.
In the outer portion of the plate the forces N, become negative; i.e.,

obtained in this manner. A higher accuracy can be obtained by using the methods
of Adams or Stérmer. For an account of the Adams method see Francis Bashforth’s
book on forms of fluid drops, Cambridge University Press, 1883. Stormer’s method
is discussed in detail in A. N. Krilov’s book “Approximate Calculations,”’ pub-
lished by the Russian Academy of Seiences, Moscow, 1935. See also 1. Collatz,
“‘ Numerische Behandlung von Differentialgleichungen,”” Berlin, 1951,



400 THEORY OF PLATES AND SHELLS

compression exists in the tangential direction. The maximum tangential
compressive stress at the edge amounts to about 18 per cent of the maxi-
mum bending stress 6Mo/h%. The bending stresses produced by the
moments M, and M, are somewhat smaller than the stress 63 o/h? given
by the elementary theory and become smallest at the center, at which
point the error of the elementary theory amounts to about 12 per cent.
From this numerical example it may be concluded that for deflections of
the order of 0.5% the errors in maximum deflection and maximum stress
as given by the elementary theory become considerable and that the
strain of the middle plane must be taken into account to obtain more
accurate results.

97. Approximate Formulas for Uniformly Loaded Circular Plates with
Large Deflections. The method used in the preceding article can also be
applied in the case of lateral loading of a plate. It is not, however, of
practical use, since a considerable amount of numerical calculation is
required to obtain the deflections and stresses in each particular case.
A more useful formula for an approximate calculation of the deflections
can be obtained by applying the energy method.! Let a circular plate
of radius a be clamped at the edge and be subjeet to a uniformly dis-
tributed load of intensity ¢. Assuming that the shape of the deflected
surface can be represented by the same equation as in the case of small

deflections, we take
7-2 2

The corresponding strain energy of bending from Eq. (m) (page 345) is

a*w\? 1 /ow 2y dw d*w 327 wi
/ / [(dﬂ) 2(57) +7 or ar-l drde_T?D

(0)

For the radial displacements we take the expression
u=r7r(a—rC +Cor+ Capr2 4 - - ) (e)

each term of which satisfies the boundary conditions that u must vanish
at the center and at the edge of the plate. From expressions (a) and (¢)
for the displacements, we calculate the strain components ¢, and e, of the
middle plane as shown in the preceding article and obtain the strain
energy due to stretching of the middle plane by using the expression

V,=2r -/a< e 4’6’) dr = TEh / (e + € + 2vee)r dr  (d)
0

1 See Timoshenko, “Vibration Problems,” p. 452. For approximate formulas see
also Table 82,
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Taking only the first two terms in series (¢), we obtain

vV, = {TL_h“ (o 250C3a* + 0.1167Ca* + 0.300C,C a3

— 0.00846C,a 22 8w° + 0.00682C a2 —0 8w° + 0.00477 04%) (€)

The constants C; and C; are now determined from the condition that the
total energy of the plate for a position of equilibrium is a minimum.
Hence

vy oV,

ac, ~ 0 and 5 =0 )
Substituting expression (¢) for Vi, we obtain two linear equations for i
and Cs. From these we find that

2 2
Ci=11852 and  Co= —1.752]
Then, from Eq. (¢) we obtain?
Vi = 259D - (g)

2h2
Adding this energy, which results from stretching of the middle plane,
to the encrgy of bending (b), we obtain the total strain energy

an2
V4+V, = 'ZZ 1) < 0.24 Z“f) h)
The second term in the parentheses represents the correction due to strain
in the middle surface of the plate. It is readily seen that this correction
is small and can be neglected if the deflection w, at the center of the plate
is small in comparison with the thickness h of the plate.
The strain energy being known from expression (h), the deflection of
the plate is obtained by applying the prineiple of virtual displacements.
From this principle it follows that

/ 4 a a 2\ 2
dv + 7y dwy = 2#/ g dwrdr = 2wq SwO/ (1 — 7“—) rdr
0 0

dwe
Substituting expression (k) in this equation, we obtain a cubic equation
for woe. This equation can be put in the form
gat 1

- 9o 1 o
Wo = 64D oo Wi (232)

The last factor on the right-hand side represents the effect of the stretch-
ing of the middle surface on the deflection. Because of this effect the
deflection w, is no longer proportional to the intensity ¢ of the load, and

1Tt is assumed that » = 0.3 in this calculation.
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the rigidity of the plate increases with the deflection. For example,
taking we = 1h, we obtain, from Eq. (232),

qat
This indicates that the deflection in this case is 11 per cent less than that
obtained by neglecting the stretching of the middle surface.

Up to now we have assumed the radial displacements to be zero on the
periphery of the plate. Another alternative is to assume the edge as free
to move in the radial direction. The expression (232) then has to be
replaced by

ga’ 1 o
Wy = o=  — (233)
BP0 1014620
a result! which shows that under the latter assumption the effect of the
stretching of the plate is considerably less marked than under the former
one. Taking, for instance, wy = h we arrive at wo = 0.965(ga*/64 D),
with an effect of stretching of only 31 per cent in place of 11 per cent
obtained above.

Furthermore we can conclude from Eqs. (b) and (¢) of Art. 96 that, if
N. = 0 on the edge, then the edge value of N; becomes N, = Fhe, = Ehu/r,
that is, negative. We can expect, therefore, that for a certain critical
value of the lateral load the edge zone of the plate will become unstable.?

Another method for the approximate solution of the problem has been
developed by A. Nddai.? He begins with equations of equilibrium simi-
lar to Eqs. (231). To derive them we have only to change Eq. (f), of the
preceding article, to fit the case of lateral load of intensity q.  After such a
change the expression for the shearing force evidently becomes

Q. = —Nrd—w——l[)rqrdr ()

dr r

Using this expression in the same manner in which expression (f) was
used in the preceding article, we obtain the following system of equations
in place of Eqgs. (231):

_dgu 1 du U _l—u d_ft_u—2_d_w@
dr? rdr r? 2r dr dr dr?

(234)
dw , 1d2w 1ldw 12dw|[du w 1 fdw\? I
dwy ldw 0w 2duyct g S (22 — | qrdr
dr3+rdr2 r2 dr ht dr [dr+yr+2(dr)]+1)r/oq
1 Obtained by a mcthod which will be described in Art. 100.
2 The instability occurring in such a case has been investigated by D. Y. Panov and

V. 1. Feodossiev, Priklad. Mat. Mekhan., vol. 12, p. 389, 1948,
* See his book ““Elastische Platten,”’ p. 288, 1925.
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To obtain an approximate solution of the problem a suitable expression
for the deflection w should be taken as a first approximation. Substi-
tuting it in the right-hand side of the first of the equations (234), we
obtain a linear equation for w which can be integrated to give a first
approximation for . Substituting the first approximations for  and w
in the right-hand side of the second of the equations (234), we obtain a
lincar differential equation for w which can be integrated to give a second
approximation for w. This second approximation can then be used to
obtain further approximations for u and w by repeating the same sequence
of ealeulations.

In discussing bending of a uniformly loaded circular plate with a
clamped edge, Nddai begins with the derivative dw/dr and takes as first
approximation the expression

dw o r\» .
ol ]

which vanishes for » = 0 and r = a in compliance with the condition at
the built-in edge. The first of the equations (234) then gives the first
approximation for u. Substituting these first approximations for u and
dw/dr in the second of the equations (234) and solving it for ¢, we deter-
mine the constants C and n in expression (j) so as to make g as nearly a
constant as possible. In this manner the following equation! for calcu-
lating the deflection at the center is obtained when » = 0.25:

wo 4 o583 (20} = 0.176 £ (2) :
. +0.083<h> 0.17<)E<h> (235)

In the case of very thin plates the deflection wq may become very large
in comparison with h. In such cases the resistance of the plate to bend-
ing can be neglected, and it can be treated as a flexible membrane. The
general equations for such a membrane are obtained from Eqs. (234) by
putting zero in place of the left-hand side of the second of the equations.
An approximate solution of the resulting equations is obtained by neg-
lecting the first term on the left-hand side of Eq. (235) as being small in
comparison with the second term. Hence

3 4 31
sea [ Wo o176 L (@ . = 0665 . 3%
0.583 (h) 0.176 5 <h> and wo = 0.665a \/Eh

1 Another method for the approximate solution of Iqs. (234) was developed by
K. Federhofer, Fisenbau, vol. 9, p. 152, 1918; sce also Forschungsarb. V.DI, vol. 7,
p. 148, 1936. His equation for wo differs from Eq. (235) only by the numerical value
of the coefficient on the left-hand side; véz., 0.523 must be used instead of 0.583 for

p o= .25,
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A more complete investigation of the same problem! gives

3
wo = 0.662a g—c; (236)
This formula, which is in very satisfactory agrecment with experiments,?
shows that the deflections are not proportional to the intensity of the load
but vary as the cube root of that intensity. For the tensile stresses at
the center of the membrane and at the boundary the same solution gives,
respectively,

3Tl *|Eqat
(07)r-0 = 0.423 \/E(}]ﬁa- and (07)r=a = 0.328 \/{(J_“ﬁ

To obtain deflections that are proportional to the pressure, as is often
required in various measuring instruments, recourse should be had to
corrugated membranes?® such as that shown in Fig. 202. As a result of
the corrugations the deformation con-
sists primarily in bending and thus
increasesin proportion to the pressure.*
If the corrugation (I'ig. 202) follows a
sinusoidal law and the number of
waves along a diameter is sufficiently large (n > 5) then, with the nota-
tion of Fig. 186, the following expression® for wy = (W),.. may be used:

Wao 2 \? 6 fwo\* _ g fa\
s (ﬂ [5’(1 -t (z) ] t7 (h) S ¥ (h>

98. Exact Solution for a Uniformly Loaded Circular Plate with a
Clamped Edge.® To obtain a more satisfactory solution of the problem
of large deflections of a uniformly loaded circular plate with a clamped
edge, it is necessary to solve Eqgs. (234). To do this we first write the
equations in a somewhat different form. As may be seen from its deri-

Fia. 202

t The solution of this problem was given by H. Hencky, Z. Math. Physik, vol. 63,
p. 311, 1915. For some peculiar effects arising at the edge zone of very thin plates
see K. O. Friedrichs, Proc. Symposia Appl. Math., vol. 1, p. 188, 1949.

2 See Bruno Eck, Z. angew. Math. Mech., vol. 7, p. 498, 1927. TFor tests on circular
plates with clamped edges, see also A, McPherson, W. Ramberg, and S. Levy, NACA
Rept. 744, 1942,

3 The theory of deflection of such membranes is discussed by K. Stange, Ingr.-Arch.,
vol. 2, p. 47, 1931.

4For a bibliography on diaphragms used in measuring instruments see M. D.
Hersey’s paper in NACA Repl. 165, 1923.

5 A. 8. Volmir, “Flexible Plates and Shells,”” p. 214, Moscow, 1956. This book also
contains a comprehensive bibliography on large deflections of plates and shells.

6 This solution is due to 8. Way, Trans. ASME, vol. 56, p. 627, 1934,
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vation in Art. 96, the first of these equations is equivalent to the equation

N, — N, +r g_g =0 237)

Also, as is seen from Eq. (¢) of Art. 96 and Lq. (7) of Art. 97, the second
of the same equations can be put in the following form:

dw | 1dw 1 dw\ _ qr
D(W tiaE T m*) N+ (238)

From the general expressions for the radial and tangential strain (page

396) we obtain
o= et +%<d—“’>

dr
Substituting
1
€ M{ (N, — vNy) and “« =35 (N — vN,)
in this equation and using Eq. (237), we obtain
hE (dw
ra =N+ B () 0 (239)

The three Eqs. (237), (238), and (239) containing the three unknown
functions N,, N;, and w will now be used in solving the problem. We
begin by transforming these equations to a dimensionless form by intro-
ducing the following notations:

N, N
hE hE
With this notation, Fqgs. (237), (238), and (239) become, respectively,

d
75 (880 — 8, =0 (241)
1 d[1d(_ dw\] _pt dw .
1201 — ) dt [Ed_é <E —>J =3 TS (242)
2
sds S + 8) + 5 (dr) =0 (243)

The boundary conditions in this case require that the radial displace-
ment » and the slope dw/dr vanish at the boundary. Using Eq. (b) of
Art. 96 for the displacements u and applying Hooke’s law, these con-
ditions become

(Wrea = (St — ¥S1)rea = 0 (244)

(%) r=a =0 (a)
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Assuming that S, is a symmetrical function and dw/dr an antisym-
metrical function of £ we represent these functions by the following
power series:

8, = Bo+ Baf + Bug* + - -+ (b)
W o VECut+ O+ OB+ ) (©
in which By, Bs, . . . and C, C3, . . . are constants to be determined
later. Substituting the first of these series in Eq. (241), we find

St = Bn + 33252 + 534154 + Co T (d)

By integrating and differentiating IEq. (¢), we obtain, respectively,

2 4 €6

%0=\/§(01%+03%+05%+"'> ©
gg(%;?> = V8 (Cy + 308 4 5058 + - - ) )

It is seen that all the quantities in which we are interested can be found
if we know the constants By, By, . . ., C1, (3, . . . . Substituting
series (b), (), and (d) in Eqgs. (242) and (243) and observing that these
equations must be satisfied for any value of & we find the following
relations between the constants B and C:

k—1
4
Bk_ —k(k+7) Cka——m k_2)4’6) o
m=1,3,5,...
k—3
12(1 — »2 -
Ck = 4—1{)(_24—‘1_) E Bka—Z—m k = 51 ‘4 9; - (g)
m=0,2,4,...

: 14
C, = %(1 — <2—7§ + BoCl>

It can be seen that when the two constants B and Cy are assigned, all the
other constants are determined by relations (g). The quantities S,, S,
and dw/dr are then determined by series (b), (d), and (¢) for all points in
the plate. As may be seen from series (b) and (f), fixing B, and C; is
equivalent to selecting the values of S, and the curvature at the center
of the plate.!

To obtain the following curves for calculating deflections and stresses in
particular cases, the procedure used was: For given values of » and

i The selection of these same guantities has already been encountered in the case of
bending of circular plates by moments uniformly distributed along the edge (see
page 398).
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p = ¢/E and for selected values of By and C1, a considerable number of
numerical cases were calculated,! and the radii of the plates were deter-
mined so as to satisfy the boundary condition (a). IFor all these plates
the values of S, and S; at the boundary were calculated, and the values of
the radial displacements (u),—, at the boundary were determined. Since
all caleulations were made with arbitrarily assumed values of B, and C;,
the boundary condition (244) was not satisfied. However, by interpo-
lation it was possible to obtain all the necessary data for plates for which
both conditions (244) and (a) are satisfied. The results of these calcu-
lations are represented graphically in Fig. 203. If the deflection of the

20 >
=025~ Y
- v=030~ K7
16— be035. 1> P
Ny, 7/
Flementary theory //
S ! 7
3 A
T2t —+ %
g
"g 3
% 08 S F U025
a P Sv=030
Nv=035
04 /
0
0 2 4 o 4 8 ] 12
qa
Load, ER%
Fia. 203

plate is found from this figure, the corresponding stress can be obtained
by using the curves of Fig. 204. In this figure, curves are given for the
membrane stresses

s = N
’ h
and for the bending stresses
, ©OM,
JT - _}:2-“

as calculated for the center and for the edge of the plate.? By adding
together o, and o}, the total maximum stress at the center and at the
edge of the plate can be obtained. For purposes of comparison Figs.
203 and 204 also include straight lines showing the results obtained from

! Nineteen particular cascs have been calculated by Way, op. cit.
2 The stresses are given in dimensionless form.
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the elementary theory in which the strain of the middle plane is neg-
lected. It will be noted that the errors of the elementary theory increase
as the load and deflections increase.

T
7k ‘éﬁlgégg\{#@x ) ]
S SR N i
ot L
Bending stress by-
linear fhieory, edge I ™ 7/ N
IRERRYY
e (e /1)
b;; , center / T\\/
5 A
5 / % (/ //59%77’/7@3 s7ress

N

- Membrone sfress—]
[ af cenfer
I ]

,ﬁ’_,,lbl

| / U Membrane stress

V/Z2RP s i
fr

0 | T
0 1.6 1.8

o
‘
N

N

0.8 1.2
Deflection, W, /b
Fia. 204

99. A Simply Supported Circular Plate under Uniform Load. An exact solution of
the problem! can be obtained by a series method similar to that used in the preceding

article.
Because of the axial symmetry we have again dw/dr = 0 and N, = N at r = 0.
Since the radial couples must vanish on the edge, a further condition is

d [dw v dw
L?, (:f) e d‘} =0 @

With regard to the stress and strain in the middle plane of the plate two boundary
conditions may be considered:

1. Assuming the edge is immovable we have, by Eq. (244), S: — »S8, = 0, which,
by Eq. (237), is equivalent to

[S,(l — )+ ds’] =0 ®)
ar \rea

1 K. Federhofer and H. Egger, Sitzber. Akad. Wiss. Wien, ITa, vol. 153, p. 15, 1946;
sec also M. Stippes and A. H. Hausrath, J. Appl. Mechanics, vol. 19, p. 287, 1952.
The perturbation method used in this latter paper appears applicable in the case of a
concentrated load as well.
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2. Supposing the edge as free to move in the radial direction we simply have
(Sr)rsa =0 (¢)

The functions S, and dw/dr may be represented again in form of the series

h?
- 3 5
S, 120 quz (Bip + Bip® + Bspd + - - ) (d)

dw
— = (Cyp + C3p3 + C5p5 + + + +) (e)

dr 2 \/5

where p = r/a. Using these series and also Eqs. (241), (242), (243), from which the
quantity S, can readily be eliminated, we arrive at the following relations between
the constants B and C:

k—2
By= -~ C.C k=135 s
k 2(]\2 - ‘> Sl i —m—1 =2y 90 . . f'

m=13,5

k-2
1 24
Cr = Ezi—ii CoBim_1 k=51, (@)
m=1,3,5...
4

8C, — BiCy +12 V3 (1 — »%) % =0 h)

where p = q/E, ¢ being the intensity of the load.

Again, all constants can easily be expressed in terms of both constants By and Cy,
for which two additional relations, ensuing from the boundary conditions, hold:

In case 1 we have

z Bulk —») =0 E Culk 4 ) =0 @
k=155, .. k=135 ...
and in case 2
z By =0 Celk +») =0 )]
k135, ... k=135 ...

To start the resolution of the foregoing system of equations, suitable values of B and
C, may be taken on the basis of an approximate solution. Such a solution, satisfying
condition (a), can be, for instance, of the form

d
212 = C(Bp* — p) (k)
-

1+ - . ..
(n =3,5,...). Substituting this in KEgs.
14

where (' is a constant and g =

(241) and (243), in which & must be replaced by pa/h, and eliminating S, we obtain

€9 C‘Z ) p2n n+l p2
- e z !
8= p? 2 <ﬁ n1 8 @
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28 ] T ]
! i :
Immovable edgey v =0.25 ‘
(o—)r=0
R |
g0’ |
he ‘ \‘
2ol - SN G

1 3 5 10 25 50 100 200 308 t£h*
L r
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TasLe 82. Dara vror CALCULATION oF APpROXIMATE VALUES oF DEFLECTIONS
wo AND STRESSES IN UNIFORMLY LOADED PLATES

v = 0.3

T o

! | Center Edge
Boundary ’ s

. A 0B T — — S
conditions ; | ! | |
i i ar = Br = 0| a L B B
- L. ‘ _ [ P R S B
; !

Plate ¢ Iidge - ).4711!) 1717 0.976 | 2.86 j0.476, 0143, —1.40]—1.32
clamped movable ‘ } , !

[ - S I R S
Edge free [0.1460.1711 0.500 | 2.86 0 —0.333] —4.40 —1.32
to move !

Plate Edge im- 1 .85‘2‘0.696 0.905 | 1.778 10.610 0.1831 0 , 0.755
simply movable ! l [ 1
supported \ |

Fdge frec [0.262/0.696| 0.295 | 1.778 0 —0.427 0 0.755
to move | '
|
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Herein ¢; and ¢: are constants of integration and
n = 4n(m + 1) ne = (n + Dn +3)

Let us, for example, assume the boundary conditions of case 2. Then we obtain

_e(s 2 0
“= 2 \m N 8 “= (m)

The constant C, finally, can be determined by some strain energy method-—for exam-
ple, that deseribed in Art. 100. Using there Eqs. (m) or (o) we have only to replace

80
1‘ . ~(othe=q
Rodiolly movable edge; »=0.25
T 70
el
En®
60 - 1
10 50 T
wo/h
8 40
A 8f 30 (o)
Yo T
h :
4F 20 /]
2 10— e
- 7{‘4 | ‘
i |
oL o S qo?

1 3 5 10 25 50 00 200 308 Ent
Logarithmic sccole for abscissas

Fia. 206

de/dr = rhES, and dw/dr by approximate expressions in accordance with Fas. (k)
and (I) given above.

The largest values of deflections and of total stresses obtained by Federhofer and
Egger from the exact solution are given in Fig. 205 for casc 1 and in Fig. 206 for case 2.
The calculation has been carried out for » = 0.25.

Table 82 may be useful for approximate calculaiions of the deflection w, at the
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center, given by an cquation of the formn

wy Wy 3 _ R g g 4
h+A<h> _bE<h) ()

also of the stresses in the middle plane, given by

2 2
wWe Wy
or = o, — o = alf — (o)
a2 2
and of the extreme fiber bending stresses!
’ woh ’ ‘th
g, = 8.E 2 Ty = BE — (Z’)
a a

100. Circular Plates Loaded at the Center. An approximate solution of this
problem can be obtained by means of the method described in Art. 81.
The work of the internal forees corresponding to some variation 8e,, de of the strain is

£ a
SV = —2n /0 (N, e, + Ny be)r dr

Using Eqs. (@) and (b) of Art. 96 we have

7= & [ du 1 fdw)? el
oVy = —2n /0 l,\rﬁ . +2 ar + N . rdr (a)

We assume, furthermore, that either the radial displacements in the middle plane or
the radial forces N, vanish on the boundary. Then, integrating expression (z) by
parts and putting du = 0 or N, = 0 on r = a, we obtain

ol g o dw f[d
5V, = 2r CeNy — N sudr —2n | N 225 (2 ar )
o | dr 0 dr dr

The work of the bending moments M, and A, on the variation §(—d%w/dr?) and
3(—% dw/dr) of the curvatures is similarly

e a2 1
oV, = 2r M, T + M5 _d_w rdr (¢)
0 dr? 7 dr

Now we suppose that cither the radial bending moment M, or the slope &(dw/dr)
becomes zero on the boundary. Integration of expression (¢) by parts then yields

sVeo=2r | DZuws(Z2Y)rar (d)
0 dr dr

Finally, the work of the external forces is

oV = 2 /anawrdr

or, by putting

?

1 /7 1d
¢=—/ grdr g =——(ry) (e)
0 rdr

! The sign is negative if the bottom of the plate is in compression,
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e d
oVy = 2r {(rg) dwrdr
0 dr

Provided 8w = 0 on the boundary we finally obtain

1
5V, = -27r/ ry8 <( w) rdr (f
0 l"

The condition 8(V; + Vs 4 V3) = 0 now yields the equation

’ Di(A') 1 Nd—w i(6) dr + ’ Elf("’V) ‘\’;6 dr =0 (g)
. o w " drwrr o drnr N, | dudr = g

We could proceed next by assuming both variations 8w and su as arbitrary. Thus
we would arrive at the second of the differential equations (234), N, being given by
expression (¢) of Art. 96, and at Eq. (d) of the same article. If we suppose only this
latter equation of equilibrium to be satisfied, then we have still to fulfill the condition

we have

“ D d (an0) 1dfdw| d (s J 0 s
jo dr " v rdrdr | dr wyrdr =
in which fis a siress function defining
1df d2f
N, =~ — Ny = —
rdr T e @

and governed by the differential equation

0y L B (0 .
dr ’)——27' dr )

which follows from Iq. (239). Integrating expression (h) by parts once more we

obtain
a 3, df dw sw rdr = 0 i
0 v T dr dr dr wrar (k)

With intent to use the method described in Art. 81 we take the deflection in the form
w = a1pr(r) + @xp2(r) + 0 0 -+ anenl(r) D

Just as in the case of the expression (211) each function ¢:(r) has to satisfy two
boundary conditions preseribed for the deflection.  Substituting expression ({) either
in Eq. () or in Eq. (k) and applying the same reasoning as in Art. 81, we arrive at a
sequence of equations of the form

o dos
/ X‘prdr e =12 ... ,n (m)
0

in which

X = (Au‘) -y = - — (n)
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or at a set of equations

foa Yerdr i=1,2, ...,n (0)

b Y — Daa df dw @)
where w—q—”lr dr dr p

Now let us consider a clamped circular plate with a load P concentrated at » = 0.
We reduce expression (I) to its first term by taking the deflection in the form

'l r
w = W 1-*+ log — (@
a? a

which holds rigorously for a plate with small deflections.  From Eq. (§) we obtain,
by integration,

if Ehayrs 3 7 (oF
4 i log? r_2 log r + =)+ Cr+ zz )
dr at a 2 a 8 r

Let there be a free radial displacement at the boundary. The constants of integra-
tion C'; and Uy then are determined by two conditions. The first, namely,

can bhe rewritten as

and the sccond is

i\
).~

This latter condition must be added in order to limit, at » = 0, the value of the
stress N, given by 1iq. (). Thus we obtain

7 Ehw?

Cy = - —— Cy =(
VTS e : )
The load function is equal to
= P
T 2nr
in our case, and expressions (¢) and (r) yield
Sy P 4Ewih roo 3 ro T 7r r
X=0D— — — — logd — — ——log? — 7—1 - — = - 1
ar 2y * w? <a3 a 2ad + 8a OE" 8a log a) ()

while ¢ is given by the cxpression in the parenthescs in Eq. (g). Substituting this in
Iq. (m) we arrive at the relation
Pq?
16 Dw, + Fhwo = — v)

m
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The general cxpressions for the extreme fiber bending stresses corresponding to the
deflection (¢) and obtainable by means of ligs. (101) are

, 2Ehw; a
a,=’—[(l +v)log~—1]
r

A — »Za? )
w
, 2Ehw, «
g, = Zl—— P (1 + ») log Pl v

These cxpressions yvicld infinite values of stresses as » tends to zero.  However, assum-
ing the Joad P to be distributed uniformly over a circular area with a small radius
r = ¢, we can use a simple relation existing in plates with small doﬂoctmns between
the stresses o) = o, at the center of such an area and the stresses o, = o), caused at
» = ¢ by the same load P acting at the point r = 0. According to Nddai’s result,’
cxpressed in terms of stresses,
7 . 7 — ’ % P
T T 2 it

O

Applying this relation to the plate with large deflections we obtain, at the venter of
the loaded area with a radius ¢, approximately

"

v 2Bhwe | e 1 sr ‘
o, =0, = (1 _ﬁ:zTa‘z -( + v) 0;‘;; — 1 +§;;’LZ (x)

The foregoing results hold for a circular plate with a clamped and movable edge.
By introducing other boundary conditions we obtain for ws an equation

wo wo \? Pa* )
;l- + A4 <‘h—> =B E?’ (1)

which is a generalization of q. (. The constants i and B are given in Table 83.
The same table contains several coefficients? necded for caleulation of stresses

2
52

L Wy wo
o, = ali — o = ald — (z)
a? a?
acting in the middle plane of the plate and the extreme fiber bending stresses
, woh , woh
o, = 6.5 o, = Bl — (")
a? a?

The former arc calculated using expressions (7), the latter by means of expressions
(101) for the moments, the sign being negative if the compression is at tie bottom.?

101. General Equations for Large Deflections of Plates. In discussing
the general case of large deflections of plates we use Eq. (219), which was

1 A. Nddai, “Flastische Platten,”” p. 63, Berlin, 1925.

2 All data contained in Table 82 are taken from A. 8. Volmir, op. cit.

3 For bending of the ring-shaped plates with large deflections sce K. Federhofer,
Osterr. Ingr.-Arch., vol. 1, p. 21, 1946; I%. Reissner, Quart. Appl. Math., vol. 10, p. 167,
1952, and vol. 11, p. 473, 1953. Large deflections of elliptical plates have been dis-
cus%d by N. A. V\ eil cmd N. M. Newmark, J. Appl. Mechanics, vol. 23, p. 21, 1956.
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TaBiE 83. Dara ror CALCULATION OF APPROXIMATE VALUES of DEFLECTIONS
wo AND StREsskES IN CENTRALLY Loapkd PraTes

r = 0.3
i ,‘ Center Edge
Boundary Y O
conditions w=a| a » i 5 8,
| e | e [ ‘ -
Plate Edge im- 10.44310.217 | 1.232 10.357 | 0.107| —2.198 | —0.659
clamped movable ‘
Ldge free |0.200 0.217; 0.875 |0 £ —0.250 | —2.198 | —0.659
‘ to move | : E
S __'__‘ | ——————— S, —
Plate Fdge im- |[1.43010.552 1 0.895 |0.488 0.147 0 0.606
simply movable i
supported i e [
Fdge free |0.2720.552 ‘ 0.407 |0 —0.341 0 L 0.606
i to move | i ; ‘ ‘{
| i i i i :

derived by considering the cquilibrium of an element of the plate in the
direction perpendicular to the plate. The forces N, N, and N,, now
depend not only on the external forces applied in the zy plane but also
on the strain of the middle plane of the plate due to bending. Assuming
that there are no body forces in the zy plane and that the load is perpen-
dicular to the plate, the equations of cquilibrium of an element in the
xy plane are

IN: | N _

B ey 0 @
ON., N, _

ox oy

The third equation necessary to determine the three quantities N,, Ny,
and N, is obtained from a consideration of the strain in the middle sur-
face of the plate during bending. The corresponding strain components
[see Eqgs. (221), (222), and (223)] are

)
1
5; Q( > (b)
av ow ow
axay

€y =
'nyz_

By taking the second derivatives of these expressions and combining the
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resulting expressions, it can be shown that

0%, 0%., < 0w >2 _ 8w dw

0%,
32 o " azey - \owoy 9z® Oyt ()

By replacing the strain components by the equivalent expressions

€z = 'l]‘ﬁ(Nr — »N,)

€ = hE (N - VNZ) (d)
1
VYay = G Ny

the third equation in terms of N,, N,, and N, is obtained.

The solution of these three equations is greatly simplified by the intro-
duction of a stress function.! It may be seen that Eqgs. (a) are identically
satisfied by taking

a%F dF atF

N;,;:ha—yz Nl/:h:’;—x_z Nzyz—hm (6)

where F is a function of z and y. If these expressions for the forces are
substituted in Eqgs. (d), the strain components become

ow T
= = L E s

a*F *r
e”‘E(BT{Z_”IaTﬁ) )
_2(l4 ) &F
Vau = E oz ay

Substituting these expressions in Eq. (¢), we obtain

v 9 3 Fw \*  d%w *w
W+2axzay2+€f_E[<axay> _673555] (245)

The second equation necessary to determine /' and w is obtained by
substituting expressions (¢) in Eq. (217), which gives

Jw dtw o'w h 0%F 92w
et TP aray oyt ( oy o
92F 3w F 0w
T o 9 25 oy ox 6y) (246)

1 Sce 8. Timoshenko and J. N. Goodier, ““Theory of Elasticity,” 2d ed., p. 26, 1951.
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Equations (245) and (246), together with the boundary conditions,
determine the two functions F and w.* Having the stress function F,
we can determine the stresses in the middle surface of a plate by apply-
ing Eqgs. (¢). From the function w, which defines the deflection surface
of the plate, the bending and the shearing stresses can be obtained by
using the same formulas as in the case of plates with small deflection [see
Egs. (101) and (102)]. Thus the investigation of large deflections of
plates reduces to the solution of the two nonlinear differential equations
(245) and (246). The solution of these equations in the general case is
unknown. Some approximate solutions of the problem are known, how-
ever, and will be discussed in the next article.

In the particular case of bending of a plate to a cylindrical surface!?
whose axis is parallel to the y axis, Eqs. (245) and (246) are simplified by
observing that in this case w is a function of x only and that 9%F/dx? and
9% /9y? are constants. KEquation (245) is then satisfied identically, and
Eq. (246) reduces to

Pw g | N, 0w
DT D
Problems of this kind have already been discussed fully in Chap. 1.

If polar coordinates, more convenient in the case of circular plates, are used, the
system of equations (245) and (246) assumes the form

E
AAF = — 5 L{w,w)

At = Lawp) 1+ ¢
y = — L, -
W= pH D

in which

?w f16F 1 8% Low 1 8w\ o%F 8 (1aF\ o (10w
L) == (- 45 )+ (- 2+ ) S —e 2 (20 2 (22
ar? \r or  r? 9% roor r2 962 | or? ar \r 96 ) or \r 08

and L(w,w) is obtained from the foregoing expression if w is substituted for F.

In the case of very thin plates, which may have deflections many times
larger than their thickness, the resistance of the plate to bending can be

* These two equations were derived by Th. von Kdrmén; sce “Encyklopidie der
Mathematischen Wissenschaften,” vol. IVy, p. 349, 1910. A gencral method of non-
linear elasticity has been applied to bending of plates by E. Koppe, Z. angew. Math.
Mech., vol. 36, p. 455, 1956.

1 For a more general theory of plates (in particular of cantilever plates) bent, with-
out extension, to a developable surface, see E. H. Mansfield, Quart. J. Mech. Appl.
Math., vol. 8, p. 338, 1955, and D. G. Ashwell, Quart. J. Mech. Appl. Math., vol. 10,
p. 169, 1957. A boundary-layer phenomenon arising along the free edges of such
plates was considered by Y. C. Fung and W. H. Witrick, Quart. J. Mech. Appl. Math.,
vol. 8, p. 191, 1955.
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neglected; .e., the flexural rigidity D can be taken equal to zero, and
the problem reduced to that of finding the deflection of a flexible mem-
brane. Equations (245) and (246) then become!

F*F . OF v Qw o *w
dxt T2 ax? c')yé - oyt L [(dx ay) dx? dy? ]
eFow | 91w, F Pw

ay* dx? dr? 5]? dx oy dx Jy -

(247)

4
it

A numerical solution of this system of equations by the use of finite
differences has been discussed by H. Hencky.?

The energy method affords another means of obtaining an approxi-
mate solution for the deflection of a membrane. The strain energy of a
membrane, which is due solely to stretching of its middle surface, is given
by the expression

= %II(NIGI + Nzlfz/ Na:u'ny) dx d!/
= ﬁt—ﬁj // [ + e + 2vee, + (1 — v)vi ]l dady (248)

Substituting expressions (221), (222), and (223) for the strain compo-
nents e, €, vz, we obtain

e du (9w aw\: . v [ow)

2<1 = v?) // [( ) (ax> +(5§> +5z}<5§)
ow ow du ov 1 dv 1 du [ow\?
WK%) +(@>] “”[mv*"m(*) +55(5) |

ou ou v ou dw ow

[( )“ayax ( )”a—ma—y

v ow ow

In applying the energy method we must assume in each particular case
suitable expressions for the displacements u, v, and w. These expressions
must, of course, satisfy the boundary conditions and will contain several
arbitrary parameters the magnitudes of which have to be determined by
the use of the principle of virtual displacements. To illustrate the
method, let us consider a uniformly loaded square membrane?® with sides
of length 2a (I'ig. 207). The displacements u, v, and w in this case must
vanish at the boundary. Moreover, from symmetry, it can be concluded

! These equations were obtained by A. Foppl, “Vorlesungen iiber Technische
Mechanik,”” vol. 5, p. 132, 1907.

* H. Hencky, Z. angew. Math. Mech., vol. 1, pp. 81 and 423, 1921; see also R. Kaiser,
Z. angew. Maith. Mech., vol. 16, p. 73, 1936.

3 Caleulations for this case are given in the book “Drang und Zwang’’ by August
and Ludwig Foppl, vol. 1, p. 226, 1924; see also Hencky, tbid.
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that w is an even function of x and y, whereas u and v are odd functions
of z and of y, respectively. All these requirements

' are satisfied by taking the following expressions for
a the displacements:
Y
0 A% T Ty
* W = Wy COS 5 COS 5o
a 2a
y T T
~* ¥ = ¢ 8 — cOS ;;‘I! (9)
R R e e a <Q
T
y u=csm——g005—
Fia. 207 2a

which contain two parameters wo and ¢. Substituting these expressions
in Eq. (249), we obtain, for » = 0.25,

_ Eh[5mtwl  17mcw) | (357 | 80
V=75 [@f a? 6 o T TY )
The principle of virtual displacements gives the two following equations:!
14
oV ta [ +a T Ty .
Jwe dwy = /ﬂ /_a q Sw cos 5q ©08 5 dx dy (7)

Substituting expression (k) for V, we obtain from Eq. (5)

2
¢ = 0.147 %0
a
and from Eq. (J)

wo = 0.802a \/ ‘{‘Z (250)

This deflection at the center is somewhat larger than the value (236)
previously obtained for a uniformly loaded ecircular membrane. The
tensile strain at the center of the membrane as obtained from expressions
(g) is

2

we w

€@=¢ =2 = 046220
a a

and the corresponding tensile stress is

E Ew} . ltEa?
¢ = 0462 = 0.616 a.z" = 0.396\/» b (251)

Some application of these results to the investigation of large deflections
of thin plates will be shown in the next article.

! The right-hand side of Eq. (?) is zero, since the variation of the parameter ¢ pro-
duces only horizontal displacements and the vertical load does not produce work.
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102. Large Deflections of Uniformly Loaded Rectangular Plates. We begin with
the case of a plate with clamped edges. To obtain an approximate solution of the
problem the energy method will be used.* The total strain energy V of the plate is
obtained by adding to the energy of bending [expression (117), page 88] the energy
due to strain of the middle surface [expression (249), page 419]. The principle of
virtual displacements then gives the equation

3V —8ffqwdrdy =0 (a)

which holds for any variation of the displacements u, v, and w. By deriving the vari-
ation of V we can obtain from Eq. (a) the system of LEqs. (245) and (246), the exact
solution of which is unknown. To find an approximate solution of our problem we
assume for u, v, and w three functions satisfying the boundary conditions imposed by
the clamped edges and containing several parameters which will be determined by
using Iiq. (a). For a rectangular plate with sides 2a and 2b and coordinate axes, os
shown in Fig. 207, we shall take the displacements in the following form:

u = (a — 22 (b2 — yHx(boy + bery? + baor? 4+ baary?)
v o= (a® — 2% (b® — Yyl + coy® + C207? + c222%y?) (]
w o= (a? — x2)2(b? — yD ¥ ag + aoey? + asuz?)

I

if

The first two of these expressions, which represent the displacements 4 and » in the
middle plane of the plate, are odd functions in = and y, respectively, and vanish at
the boundary. The expression for w, which is an even function in r and y, vanishes
at the boundary, as do also its first derivatives. Thus all the boundary conditions
imposed by the clamped edges are satisfied.

Expressions (b) contain 11 parameters boo, . . . , @20, which will now be determined
from Iq. (a), which must be satisfied for any variation of each of these parameters.
In such a way we obtain 11 equations, 3 of the form

a
— <T" - // qu dz dy) =0 (¢)
I

and 8 equations of the form?

av av )
=0 or =0 (d)
b ICmn

These equations are not linear in the parameters ama, bmn, and c.. as was true in the
case of small deflections (see page 344). The three equations of the form (c) will con-
tain terms of the third degrec in the paramcters an.. ¥Equations of the form (d) will
be linear in the parameters bm. and ¢,.. and quadratic in the parameters an,. A solu-
tion is obtained by solving Eqgs. (d) for the bu..’s and ¢ns’s in terms of the a,.,'s and
then substituting these expressions in Eqs. (¢). In this way we obtain three equa-

! Such a solution has been given by S. Way; sce Proc. Fifth Intern. Congr. Appl.
Mech., Cambridge, Mass., 1938. For application of a method of successive approxi-
mation and experimental verification of results sce Chien Wei-Zang and Yeh Kai-
Yuan, Proc. Ninth Intern. Congr. Appl. Mech., Brussels, vol. 6, p. 403, 1957. Large
deflections of slightly curved rectangular plates under edge compression were con-
sidered by Syed Yusuff, J. Appl. Mechanics, vol. 19, p. 446, 1952.

2 The zeros on the right-hand sides of these equations result from the fact that the
lateral load does not do work when wu or v varies,
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tions of the third degree involving the parameters @, alone. These equations can
then be solved numerically in each particular case by successive approximations.

Numerical values of all the parameters have been computed for various intensities
of the load ¢ and for three different shapes of the plateb/a = 1,b/a = £,andb/a = }
by assuming » = 0.3.

Tt can be scen from the expression for w that, if we know the constant ag, we can
at once obtain the deflection of the plate at the center. These deflections are graphi-
cally represented in Fig. 208, in which wmax/% is plotted against ¢b*/Dkh. For com-
parison the figure also includes the straight lines which represent the deflections
calculated by using the theory of small deflections. Also included is the curve for
b/a = 0, which represents deflections of an infinitely long plate calculated as explained
m Art. 3 (see page 13). It can be seen that the deflections of finite plates with
b/a < £ are very close to those obtained for an infinitely long plate.

Knowing the displacements as given by expressions (b), we can caleulate the strain
of the middle plane and the corresponding membrane stresses from Eqs. (b) of the

20 T
RSP
%7 2" 0 37 3B-q) o3
cxi o }ﬂ \T
_Q:o/ /ﬁ/ ] o]
any blt
% _a_; /
1.0
I
Winox
h A
0
0 100 . 200
qb
Th
Fic. 208

preceding article. The bending stresses can then be found from Eqs. (101) and (102)
for the bending and twisting moments. By adding the membrane and the bending
stresses, we obtain the total stress. The maximum values of this stress are at the
middle of the long sides of plates. They are given in graphical form in Fig. 209. For
comparison, the figure also includes straight lines representing the stresses obtained
by the theory of small deflections and a curve b/a = O represcnting the stresses for
an infinitely long plate. It would seem reasonable to expect the total stress to be
greater for b/¢ = 0 than for b/a = 4 for any value of load. We see that the curve
for b/a = 0 falls below the curves for b/a = & and b/a = £. This is probably a
result of approximations in the energy solution which arise out of the use of a finite
number of constants. It indicates that the calculated stresses are in error on the
safe side, 7.e., that they are too large. The error for b/a = 4 appears to be about
10 per cent.

The energy method can also be applied in the case of large deflections of simply
supported rectangular plates. However, as may be seen from the foregoing dis-
cussion of the case of clamped edges, the application of this method requires a con-
siderable amount of computation. To get an approximate solution for a simply
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supported rectangular plate, a simple method consisting of a combination of the
known solutions given by the theory of small deflections and the membrane theory
can be used.! This method will now be illustrated by a simple example of a square
plate. We assume that the load g can be resolved into two parts ¢, and ¢ in such a
manner that part ¢, is balanced by the bending and shearing stresses calculated by

\\

=R
(81PN Y
N

N
N
N

!

Qlo-

/’lQll‘—
-
\\

o, b2(1-v?)
Eh?

S
SN\

0
0 00 gt 200
Dh
Fi1a. 209

the theory of small deflections, part ¢» being balanced by the membrane stresses.
The deflection at the center as calculated for a square plate with sides 2¢ by the
theory of small deflections is?

3
wo = 0.730 BL
Ehs

From this we determine
WQEh3

= 473048

t This method is recommended by Fappl; see “ Drang und Zwang,” p. 345.
2 The factor 0.730 is obtained by multiplying the number 0.00406, given in Table 8,

by 16 and by 12(1 — »?) = 11.25.



424 THEORY OF PLATES AND SHELLS

Considering the plate as a membrane and using formula (250), we obtain

3
}(12(1
= 0.802 —
Wo 0.802a Eh

from which

3
_ wokh
= 05164 &
The deflection wy is now obtained from the equation
gy o BB iR
T= 0T 2= 573000 " 051600
which gives
Eh3 :
g = (1.37 +1.94 3“) (252)
a h?

After the deflection w, has been calculated from this equation, the loads ¢; and ¢, are
found from Egs. (e) and (f), and the corresponding stresses are calculated by using
for ¢, the small deflection thecory (sce Art. 30) and for ¢», Ilq. (251). The total stress
is then the sum of the stresses due to the loads ¢; and ga.

Another approximate method of practical interest is based on consideration of the
expression (248) for the strain energy due to the stretching of the middle surface of
the plate.! This expression can be put in the form

Eh
V= 501 = W /:/ [e* — 2(1 — w)es] du dy ()

2
e =¢€ ¢ ey = exey — 1YL,

in which

A similar cxpression can he written in polar coordinates, €; being, in case of axial
symmetry, equal to ee. The energy of bending must be added, of course, to the
energy (g) in order to obtain the total strain energy of the plate. Yet an examination
of exact solutions, such as deseribed in Art. 98, leads to the conclusion that terms of
the differential equations due to the presence of the term ey in expression (g) do not
much influence the final result.

Starting from the hypothesis that the term containing e, actually can be neglected
in comparison with e?, we arrive at the differential equation of the hent plate

Adw — o Aw = ()

o=

in which the quantity

L1l a1 o\ 1 (o) .
TR P dy 2\ oz +2 3{/ @)

proves to be a constant. From LEqgs. () of Art. 101 it follows that the dilatation
e = e; + ¢ then also remains constant throughout the middle surface of the bent
plate. The problem in question, simplified in this way, thus becomes akin to prob-
lems discussed in Chap. 12.

v H. M. Berger, J. Appl. Mechanics, vol. 22, p. 465, 1955.
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For a circular plate under symmetrical loading, Eq. () must be replaced by

2_1_2 Sig_*_g_i_l d_w2 4
a~h2 dr r 2\ dr 4

In this latter case the constants of integration of Eq. (h) along with the constant «
allow us to fulfill all conditions prescribed on the boundary of the plate. However,
for a more accurate calculation of the membrane stresses N,, N, from the deflections,
the first of the equations (231) should be used in place of the relation (j).

The calculation of the membrane stresses in rectangular plates proves to be rela-
tively more cumbersome. As a whole, however, the procedure still remains much
simpler than the handling of the exact equations (245) and (246), and the numerical
results, in cases discussed till now, prove to have an accuracy satisfactory for technical
purposcs. Nevertheless some reservation appears opportune in application of this
method as long as the hypothesis providing its basis lacks a straight mechanical
interpretation.

103. Large Deflections of Rectangular Plates with Simply Supported Edges. An
exact solution® of this problem, treated in the previous article approximately, can be
established by starting from the simultaneous equations (245) and (246).

The deflection of the plate (Fig. 59) may be taken in the Navier form

0 )

. mmr . nwy
w = Wma SN s —— (a)
a

m=1 n=1

the boundary conditions with regard to the deflections and the bending moments
thus being satisfied by any, yet unknown, values of the coefficients w,.. The given
lateral pressurc may be expanded in a double Fourier series

mrx . nwy
' Gmn 81D — sin e (b)

A suitable expression for the Airy stress function, then, is

Py Py mrz nwy
= 2ok T oan T Joun 008 == cos =2 @
m=0 n=0

where P; and P, denote the total tension load applied on the sides z = 0, a and
y = 0, b, respectively. Substituting the expressions (a) and (¢) into Eq. (245), we
arrive at the following relation between the coeflicients of both series:

E
mn T ’TE rs
b = Ym%/a + ntajb) E brengtrsllpg (d)

! Due to S. Levy, NACA Tech. Note 846, 1942, and Proc. Symposia Appl. Math.,
vol. 1, p. 197, 1949. For application of the same method to plates with clamped
edges see this latter paper and NACA Tech. Notes 847 and 852, 1942: for application
to slightly curved plates under edge compression see J. M. Coan, J. Appl. Mechanics,
vol. 18, p. 143, 1951. M. Stippes has applied the Ritz method to the case where
the membrane forces vanish on the boundary and two opposite edges are supported;
see Proc. First Natl. Congr. Appl. Mech., Chicago, 1952, p. 339.
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The sum includes all products for which» £ p = mand s £ ¢ = n. The coefficients
brepg are given by the expression

bropg = 2rspq L (rfq* + s°p?) (e)

where the sign is positive for r +p = m and s — ¢ =n or for » — p = m and
s + ¢ = n, and is negative otherwise. Taking, for example, a square plate (o = b),
we obtain

E
fos = ——— (—dwwys + 36wi1ws,s + 36wy w15 + 64wy,0wre - - ¢)
1,600

It still remains to establish a relation between the deflections, the stress function, and
the lateral loading. Inserting expressions (a), (b), and (¢) into Eq. (246), we arrive
at the equation

2
m?  n? m2a? nir? hat
Gmn = Dwmnr? <; + ;2) + Powna prre + P,wWmn prry + Cropafrapg ()

4a?h?

The summation includes, this time, all products for whichr = p = mand s + ¢ = n,
and the coefficients are given by

Crspg = T (rq X sp)? ifr 2 0ands =0 ()]
and are twice this value otherwise. The first sign is positive if either r — p = m or
s — ¢ = n (but not simultaneously), and is negative in all other cases. The second
sign is positive if »r +p =mand s —¢g=norr —p =m and s + ¢ = n, and is
negative otherwise. For example,

. 1 9\2 P P p G2
qus = Dwysr g; + gé + zwl.ﬂa_ZI; + ,,101.3'(1]_)2

hart
-+ i (—=8fuowi,1 — 8foowy,s + 1002, w35,1 — 64fa0wsy + - *)
4a%b?

In accordance with conditions occurring in airplane structures the plate is con-
sidered rigidly framed, all edges thus remaining straight! after deformation. Then
the clongation of the plate, say in the direction z, is independent of y. By Eqs. (b)
and (f) of Art. 101 its value is equal to

% Ju ¢ 1 fo%F a2k 1 fow\*
5, = — = Rl A R (i
_[) ox dz [) l:E (6@/2 Y aﬂ) 2 <61> ] dz (k)

Using the series (a) and (¢), this yields

By = — — — — — 22 Z
bhE ~ LE  Sa e @
m=1 n=1
i.e., an expression which in fact does not include y. Similarly, one obtains

0 L)

Pub vP,  x? .
o, = 24— - =2 _ L 22
VT WhE T RE T 8 2 2 " )

m=1 n=1

1 A solution due to Kaiser, loc. cit., is free from this restriction.
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With regard to the boundary conditions we again consider two cases:

1. All edges are immovable. Then 6. = §, = 0 and Eqgs. () and (j) allow us to
express P, and P, through the cocfficients wn.

2. The external edge load is zero in the plane of the plate. We have then simply
P, =P, =0.

Next we have to keep a limited number of terms in the scries (a) and (b) and to
substitute the corresponding expressions (d) in Eq. (f). Thus we obtain for any
assumed number of the unknown coefficients wn, as many cubic equations. Having
resolved these equations we calculate the coefficients (d) and are able to obtain all
data regarding the stress and strain of the plate from the series (a) and (¢). The
accuracy of the solution can be judged by observing the change in the numerical
results as the number of the cocfficients w,., introduced in the caleulation is gradually
increased. Some data for the flexural and membrane stresses obtained in this manner
in the case of a uniformly loaded square plate with immovable edges are given in

Figs. 210 and 211.



CHAPTER 14

DEFORMATION OF SHELLS WITHOUT BENDING

104. Definitions and Notation. In the following discussion of the
deformations and stresses in shells the system of notation is the same as
that used in the discussion of plates. We denote the thickness of the
shell by h, this quantity always being considered small in comparison
with the other dimensions of the shell and with its radii of curvature.
The surface that bisects the thickness of the plate is called the middle
surface. By specifying the form of the middle surface and the thickness
of the shell at each point, a shell is entirely defined geometrically.

To analyze the internal forces we cut from the shell an infinitely small
clement formed by two pairs of adjacent plancs which are normal to the
middle surface of the shell and which contain its principal curvatures
(Fig. 212a). We take the coordinate axes x and y tangent at O to the
lines of prineipal curvature and the axis z normal to the middle surface,
as shown in the figure. The principal radii of curvature which lie in the
rz and yz planes are denoted by r, and r,, respectively. The stresses
acting on the plane faces of the element are resolved in the directions of
the coordinate axes, and the stress components are denoted by our previ-
ous symbols o, ¢y, Toy = Tyz, Tr.. With this notation?® the resultant forces
per unit length of the normal sections shown in Fig. 212b are

v +h/2 1 z d N +h/2 | 2 )
A —h/2 “\ )" o f—h/z o < B Z) Y
\] +h/2 1 2 / Nv T k2 1 z { b
Nay = /_ e Try ( 7‘—”) al Nyr = /‘ W Ty ( - Z) dz (b)

Q +h/2 ) 2 d Q +h/2 | z 1
Jx P = 2 Jy = yz - — L2 ;
/—h/2 ! ( Ty ! /—11,,/2 T < 7":r> ‘ ()

The small quantities z/r, and z/r, appear in expressions (a), (b), (¢),
because the lateral sides of the element shown in Fig. 212a have a trape-
zoidal form due to the curvature of the shell. As a result of this, the
shearing forces N., and N, are generally not equal to each other, although

t In the cases of surfaces of revolution in which the position of the element is defined
by the angles 8 and ¢ (see Fig. 213) the subscripts 8 and ¢ arc used instead of x and y
in notation for stresses, resultant forces, and resultant moments.

429
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it still holds that 7., = r,.. In our further discussion we shall always
assume that the thickness h is very small in comparison with the radii
7, 7, and omit the terms z/r, and z/r, in expressions (a), (b), (¢). Then
N., = N, and the resultant shearing forces are given by the same
expressions as in the case of plates (see Art. 21),

Fia, 212

The bending and twisting moments per unit length of the normal sec-
tions are given by the expressions

+h/2 z +h/2 z

M, = 0.2 <l — —> dz M, = / o,z <1 — —> dz (d)
—h/2 Ty J—h/2 Tz
+hi/2 P T+ h/2 z

M, = - / Ton? (l - 7—) E M, = / Tyl <1 — —) dz  (e)
~h/2 Ty ~h/2 Tz

in which the rule used in determining the directions of the moments is
the same as in the case of plates. In our further discussion we again
negleet the small quantities z/r, and z/r,, due to the curvature of the
shell, and use for the moments the same expressions as in the discussion
of plates.

In considering bending of the shell, we assume that linear elements,
such as AD and BC (Fig. 212a), which are normal to the middle surface
of the shell, remain straight and become normal to the deformed middle
surface of the shell. Let us begin with a simple case in which, during
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bending, the lateral faces of the element ABCD rotate only with respect
to their lines of intersection with the middle surface. 1If 7 and r} are the
values of the radii of curvature after deformation, the unit elongations of
a thin lamina at a distance z from the middle surface (Fig. 212a) are

z 1 1 z 1 1
“=—- < - r) W= - — ( - => )
1 — 2z \I: 2z 1— 2\ Ty

Tz Ty

If, in addition to rotation, the lateral sides of the element are displaced
parallel to themselves, owing to stretching of the middle surface, and if
the corresponding unit elongations of the middle surface in the « and y
directions are denoted by e; and e, respectively, the elongation e, of the
lamina considered above, as seen from Fig. 212¢, is

I Rl )

x ll
Substituting

I = ds <1 - f) Iy = ds(l + &) (1 - r;)
we obtain
_a & o1 1
€ — [ i l B i [(l _ 61)7‘; ,,,I:l (g)
e Iy

A similar expression can be obtained for the elongation ¢, In our fur-
ther discussion the thickness A of the shell will be always assumed small
in comparison with the radii of curvature. In such a case the quantities
2/, and 2/ry, can be neglected in comparison with unity. We shall neg-
lect also the cffect of the elongations e; and e, on the curvature.! Then,
instead of such expressions as (g), we obtain

1 1
€& = € — 2 Z—Z = €1 — Xi%

1 1
e1/:62"_'2<”7 T ) T e T XyR
ry Ty

where x. and x, denote the changes of curvature. Using these expres-
sions for the components of strain of a lamina and assuming that there
are no normal stresses between laminae (o, = 0), the following expres-

! Similar simplifications are usually made in the theory of bending of thin curved
bars. It can be shown in this case that the procedure is justifiable if the depth of the
cross section k is small in comparison with the radius 7, say A/r < 0.1; see 8. Timo-
shenko, “Strength of Materials,”’ part I, 3d ed., p. 370, 1955.
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sions for the components of stress are obtained:

E
Or = ——_-? [61 + veq — Z(Xa: + VXU)]

E

g, = lee + ver — 2(xy + vx2)]

1 — »2

Substituting these expressions in Kqgs. (a¢) and (d) and neglecting the
small quantities z/r, and 2/r, in comparison with unity, we obtain
Eh Eh
NI = ’1“—:‘;5 (61 + V€2) NZI = 1_—1)2 (62 + V€1)

M, = —D(x: + vxy) M, = —D(x, + vxz)

(253)

where D has the same meaning as in the case of plates [see Iiq. (3)] and
denotes the flexural rigidity of the shell.

A more general case of deformation of the element in Fig. 212 is
obtained if we assume that, in addition to normal stresses, shearing
stresses also arc acting on the lateral sides of the element. Denoting
by v the shearing strain in the middle surface of the shell and by x., dz
the rotation of the edge BC relative to Oz about the z axis (Fig. 212a) and
proceeding as in the case of plates [see Eq. (42)], we find

Toy = ('Y - QZXIU)G

Substituting this in Eqgs. (b) and (e) and using our previous simplifications,
we obtain

N - YhE

Ney = Niw = 2(1 + ») (254)
My = —M,, = DA — v)xzy

Thus assuming that during bending of & shell the linear clements normal
to the middle surface remain straight and become normal to the deformed
middle surface, we can express the resultant forces per unit length N,
N,, and N,, and the moments M., M,, and M., in terms of six quantities:
the three components of strain e;, e;, and v of the middle surface of the
shell and the three quantities x;, xy, and x,, representing the changes of
curvature and the twist of the middle surface.

In many problems of deformation of shells the bending stresses can be
neglected, and only the stresses due to strain in the middle surface of the
shell need be considered. Take, as an example, a thin spherical container
submitted to the action of a uniformly distributed internal pressure nor-
mal to the surface of the shell. Under this action the middle surface of
the shell undergoes a uniform strain; and since the thickness of the shell
is small, the tensile stresses can be assumed as uniformly distributed
across the thickness. A similar example is afforded by a thin circular
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cylindrical container in which a gas or a liquid is compressed by means of
pistons which move freely along the axis of the cylinder. Under the
action of a uniform internal pressure the hoop stresses that are produced
in the cylindrical shell are uniformly distributed over the thickness of
the shell. If the ends of the cylinder are built in along the edges, the
shell is no longer free to expand laterally, and some bending must occur
near the built-in edges when internal pressure is applied. A more com-
plete investigation shows, however
(see Art, 114), that this bending is of
a local character and that the portion
of the shell at some distance from the
ends continues to remain cylindrical
and undergoes only strain in the
middle surface without appreciable
bending.

If the conditions of a shell are such
that bending can be neglected, the
problem of stress analysis is greatly
simplified, since the resultant moments
(d) and (e) and the resultant shearing
forces (¢) vanish. Thus the only un-
knowns are the three quantities N,,
N,, and N,, = Ny, which can be de-
termined from the conditions of equi-
librium of an element, such as shown in
Fig.212. Hence the problem becomes
statically determinate if all the forces
acting on the shell are known. The
forces N, N,, and N, obtained in this
manner are sometimes called membrane forces, and the theory of shells
based on the omission of bending stresses is called membrane theory. The
application of this theory to various particular cases will be discussed in
the remainder of this chapter.

105. Shells in the Form of a Surface of Revolution and Loaded Sym-
metrically with Respect to Their Axis. Shells that have the form of
surfaces of revolution find extensive application in various kinds of con-
tainers, tanks, and domes. A surface of revolution is obtained by rota-
tion of a plane curve about an axis lying in the plane of the curve. This
curve is ealled the meridian, and its plane is a meridian plane. An ele-
ment of a shell is cut out by two adjacent meridians and two parallel
circles, as shown in Fig. 213a. The position of a meridian is defined by
an angle 6, measured from some datum meridian plane; and the position
of a parallel circle is defined by the angle ¢, made by the normal to the

Fia. 213
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surface and the axis of rotation. The meridian plane and the plane
perpendicular to the meridian are the planes of prinecipal curvature at a
point of a surface of revolution, and the corresponding radii of curvature
are denoted by 7, and 7, respectively. The radius of the parallel circle is
denoted by r¢ so that the length of the sides of the element meeting at O,
as shown in the figure, are 71 de and rodf = rosin ¢ d. The surface
area of the element is then ri7s sin ¢ de d9.

From the assumed symmetry of loading and deformation it can be
concluded that there will be no shearing forces acting on the sides of
the element. The magnitudes of the normal forces per unit length are
denoted by N, and N, as shown in the figure. The intensity of the
external load, which acts in the meridian plane, in the case of symmetry
is resolved in two components ¥ and Z parallel to the coordinate axes.
Multiplying these components with the area ryr; sin ¢ de d8, we obtain
the components of the external load acting on the element.

In writing the equations of equilibrium of the element, let us begin
with the forces in the direction of the tangent to the meridian. On the
upper side of the element the force

Nyrodf = N,rssin ¢ df (a)

is acting. The corresponding force on the lower side of the element is

dN d:
(N.; + E;f d<_0> (To + d—:) d¢7> de (b)

From expressions (¢) and (b), by neglecting a small quantity of second
order, we find the resultant in the y direction to be equal to

dro AN,

N, 52 dodd + S22 rodo df = 0% (Nuro) do db ©

The component of the external force in the same direction is
Yroode df (d)

The forces acting on the lateral sides of the element are equal to Nor; de
and have a resultant in the direction of the radius of the parallel circle
equal to Nyryde df. The component of this force in the y direction
(Fig. 213D) is

—Ngry cos ¢ do db (e)

Summing up the forces (¢), (d), and (e), the equation of equilibrium in
the direction of the tangent to the meridian becomes

;—‘p (Nyro) — Nyricos ¢ 4+ Yrre = 0 n
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The second equation of equilibrium is obtained by summing up the
projections of the forces in the z direction. The forces acting on the
upper and lower sides of the element have a resultant in the z direction
equal to

Nyrodb de )]

The forces acting on the lateral sides of the element and having the
resultant Nor; de d6 in the radial direction of the parallel circle give a
component in the z direction of the magnitude

Nyry sin ¢ de do (h)

The external load acting on the element has in the same direction a
component

Zryro do do (€)

Summing up the forces (g), (h), and (¢), we obtain the second equation
of equilibrium

Nyro 4+ Ngrysin ¢ + Zrire = 0 ())

From the two Eqgs. (f) and (7) the forces
Ny and N, can be calculated in each
particular case if the radii 7o and r; and
the components ¥ and Z of the intensity
of the external load are given.

Instead of the equilibrium of an ele-
ment, the equilibrium of the portion of
the shell above the parallel cirele defined by the angle ¢ may be considered
(Fig. 214). 1f the resultant of the total load on that portion of the shell
is denoted by R, the equation of equilibrium is

Fia. 214

2rroN,sin ¢ + B =0 (255)

This equation can be used instead of the differential equation (f), from
which 1t can be obtained by integration. If Eq. (j) is divided by ryro,
it can be written in the form

Ne , No_ _g (256)

It is seen that when N, is obtained from Eq. (255), the force Ny can be
calculated from Eq. (256). Hence the problem of membrane stresses
can be readily solved in each particular case. Some applications of these
equations will be discussed in the next article.
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106. Particular Cases of Shells in the Form of Surfaces of Revolution.'
Spherical Dome. Assume that a spherical shell (Fig. 215a) is submitted
to the action of its own weight, the magnitude of which per unit area is
constant and equal to ¢q. Denoting the radius of the sphere by a, we
have ro = a sin ¢ and

R =2x fow atq sin ¢ dp = 2ma’q(l — cos @)
Equations (255) and (256) then give

N = ag(l — cos ¢) _ ag
@ - ‘—_.2._-‘_‘ - T
sin? ¢ 14+ cose @57)
1
N0—aq<m_cos¢)

It is seen that the forces N, are always negative. There is thus a com-
pression along the meridians that
increases as the angle ¢ increases, For
¢ =0 we have N, = —aq/2, and
tor ¢ = w/2, N, = —aq. The forces
N, are also negative for small angles ¢.
When

1
14 cos ¢

i.e., for ¢ = 51°50’, N, becomes equal
to zero and, with further increase of o,
becomes positive. This indicates that
for ¢ greater than 51°50’ there are tensile
stresses in the direction perpendicular
to the meridians.

The stresses as calculated from (257)
will represent the actual stresses in the
shell with great accuracy? if the sup-
ports are of such a type that the reac-
tions are tangent to meridians (Fig.
215a). Usually the arrangement is
such that only vertical reactions are
imposed on the dome by the supports,
whereas the horizontal components of the forces N, are taken by a

—cosep =0

Fia. 215

t Examples of this kind can be found in the book by A. Pfliger, “Elementare
Schalenstatik,”” Berlin, 1957; see also P. Forchheimer, “Die Berechnung ebener und
gekriimmter Behilterboden,”” 3d ed., Berlin, 1931, and J. W. Geckeler’s article in
“Handbuch der Physik,”” vol. 6, Berlin, 1928.

2 Small bending stresses due to strain of the middle surface will be discussed in
Chap. 16.
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supporting ring (Fig. 215b) which undergoes a uniform circumferential
extension. Since this extension is usually different from the strain along
the parallel circle of the shell, as calculated from expressions (257),
some bending of the shell will occur near the supporting ring. An investi-
gation of this bending! shows that in the case of a thin shell it is of a very
localized character and that at a certain distance from the supporting ring
Egs. (257) continue to represent the stress conditions in the shell with
satisfactory accuracy.

2a%y
b N 3 sin%g,
<" fo
A

(a)

Fia. 216

Very often the upper portion of a spherical dome is removed, as shown
in Fig. 215¢, and an upper reinforcing ring is used to support the upper
structure. If 2¢, is the angle corresponding to the opening and P is the
vertical load per unit length of the upper reinforcing ring, the resultant R
corresponding to an angle ¢ is

R = 2¢ /¢ a’q sin ¢ de + 2wPa sin ¢q
(2]

From Egs. (255) and (256) we then find

cos — cos sin
N, = —aq <p?2 <p_P_2<po
sin? ¢ sin? ¢ (258)
cos — cos sin
No=aq<~—¢?~é—(e— COSgo)—i—P - 2<po
sin? ¢ sin? ¢

As another example of a spherical shell let us consider a spherical tank
supported along a parallel circle A4 (Fig. 216) and filled with liquid of a
specific weight y. The inner pressure for any angle ¢ is given by the

18ee Art. 131. Tt should be noted, however, that in the case of a negative or zero
curvature of the shell (rir; < 0) bending stresses due to the edge effect are not neces-
sarily restricted to the edge zone of the shell. See, for instance, W. Fligge, ““Statik
und Dynamik der Schalen,”” p. 65, 2d ed., Berlin, 1957. The limitations of the mem-
brane theory of shells are discussed in detail by A. L. Goldenveiser, “Theory of
Elastic Thin Shells,”’ p. 423, Moscow, 1953. The compatibility of a membrane state
of stress under a given load with given boundary conditions was also discussed by
E. Behlendorff, Z. angew. Math. Mech., vol. 36, p. 399, 1956.
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expression’
p = —7Z = ya(l — cos ¢)

The resultant R of this pressure for the portion of the shell defined by
an angle ¢ is
R = —2xa® /0¢ va{l — cos ¢) sin ¢ cos ¢ de

= —2rady[} — 4 cos? (1 — £ cos ¢)]

Substituting in Eq. (255), we obtain

= G sinz @ 6 1 + cos e
and from Eq. (256) we find that

2 9 ane? v
Ny = Zé‘_ (5 — 6 cos ¢ + —1-2;:-%&;) (260)
Equations (259) and (260) hold for ¢ < ¢ I caleulating the resultant
R for larger values of ¢, that is, for the lower portion of the tank, we must
take into account not only the internal pressure but also the sum of the
vertical reactions along the ring AA. This sum is evidently equal to
the total weight of the liquid 4wa?y/3. Hence

2 2 2
N, A, [1 — cos? (3 — 2 cos )] = re (1 _ 2 COSL) (259)

R = —ira’y — 2ma®y[3 — % cos? o(1 — £ cos ¢)]

Substituting in Lq. (255), we obtain

2 2 2
N, =15 <9 + %) (261)
and from Eq. (256),
_2 (g _ 2eoste
Ny = 6 (] 6 cos ¢ T = oos (262)

Comparing expressions (259) and (261), we see that along the supporting
ring AA the forces N, change abruptly by an amount equal to 2vya?/
(3 sin? ¢o). The same quantity is also obtained if we consider the vertical
reaction per unit length of the ring AA and resolve it into two compo-
nents (Fig. 216b): one in the direction of the tangent to the meridian and
the other in the horizontal direction. The first of these components is
equal to the abrupt change in the magnitude of N, mentioned above;
the horizontal component represents the reaction on the supporting ring
which produces in it a uniform compression. This compression can be
oliminated if we use members in the direction of tangents to the meridians
instead of vertical supporting members, as shown in Tlig. 216a. As may

1 A uniform pressure producing a uniform tension in the spherical shell can be
superposed without any complication on this pressure.
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be seen from expressions (260) and (262), the forces N, also experience
an abrupt change at the circle A 4. This indicates that there is an abrupt
change in the circumferential expansion on the two sides of the parallel
circle AA. Thus the membrane theory does not satisfy the condition of
continuity at the circle 44, and we may expect some local bending to
take place near the supporting ring.

Conical Shell. In this case certain membrane stresses can be produced
by a force applied at the top of the cone. If a force P is
applied in the direction of the axis of the cone, the stress
distribution is symmetrical, and from Fig. 217 we obtain

P

2mry COS «

N, = (a)
Equation (256) then gives Ny = 0. The case of a force
applied at the top in the direction of a generatrix will be
discussed in Art. 110 and the loading of the shell by its
weight in Art. 133. Fia. 217
If lateral forces are symmetrically distributed over the conical surface,
the membrane stresses can be calculated by using Eqs. (255) and (256).
Since the curvature of the meridian in the case of a cone is zero, r; = «;
we can write these equations in the following
form:
; R

¢ 2mry Sin ¢

L\re = _ZTZ _

Zrs (b)
sin @

i Each of the resultant forces N, and Ny can be
/4 4 calculated independently provided the load dis-
tribution is known. Asan example, we take the
case of the conical tank filled with a liquid of
specific weight v as shown in IFig. 218. Measuring the distances y from
the bottom of the tank and denoting by d the total depth of the liquid in
the tank, the pressure at any parallel circle mn is

p=—Z=1-y

Also, for such a tank ¢ = (#/2) 4+ « and 7o = y tan «. Substituting in
the second of the equations (b), we obtain

e ]

Fia. 218

_v({d — y)y tan «
- cos a

No (¢)

This force is evidently a maximum when y = d/2, and we find
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In calculating the force N, we observe that the load R in the first of the
equations (b) is numerically equal to the weight of the liquid in the conical
part mno together with the weight of the liquid in the cylindrical part
mnst. Hence

B = —myy*d — y + 3y) tan? a
and we obtain

N, - vy(d — 3y) tan o
2 cos a

()

This force becomes a maximum when y = 2d, at which point

3 dytan

(No)max = 16 cos

If the forces supporting the tank are in the direction of generatrices, as
shown in Fig. 218, expressions (¢) and (d) represent the stress conditions
in the shell with great accuracy. Usually
there will be a reinforcing ring along the
upper edge of the tank. Thisring takes the
horizontal components of the forces N,;
the vertical components of the same forces
constitute the reactions supporting the
tank. In such a case it will be found that
a local bending of the shell takes place at

SYaS . . .
e the reinforcing ring.
y Shell in the Form of an Ellipsoid of Revolu-
Fre. 910 tion. Such a shell is used very often for the

ends of a cylindrical boiler. In such a case
a half of the ellipsoid is used, as shown in Fig. 219. The principal radii
of curvature in the case of an ellipse with semiaxes a and b are given by
the formulas
a?b? a?

ry = - Te = - e
V7 (afsin? ¢ + b cos? o)t 27 (a? sinZ ¢ + b2 cos? @)} (e)

or, by using the orthogonal coordinates  and y shown in the figure,

b2 42 | pag2)
n=nl = G EE )

If the principal curvatures are determined from Eqgs. (¢) or (f), the forces
N, and N, are readily found from Eqgs. (255) and (256). Let p be the
uniform steam pressure in the boiler. Then for a parallel circle of a

radius ro we have B = —rpr}, and Eq. (255) gives
N, = P B (263)

2 8in ¢ 2
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Substituting in Eq. (256), we find

2
Nozrzp—%N¢=p(rz—§%> (264)

At the top of the shell (point 0) we have r; = r; = a¥/b, and Eqgs. (263)
and (264) give
pa’

N‘,,:No:% 9

At the equator AA we have ri = b%/a and 7. = a; hence

2
N, =5 N9=pa<1—2—ab—2> )

Tt is seen that the forces N, are always positive, whereas the forces N,
become negative at the equator if

a* > 2b? @)

In the particular case of a sphere, ¢ = b; and we find in all points
N, = Ny = pa/2.

Shell in Form of a Torus. If a torus is obtained by rotation of a circle
of radius a about a vertical axis (}ig. 220), the forces N, are obtained by

------- ro--_--->L<__-_b -=m]
Ng B
A
. / . Np
{ {50" Kl
<] i

Fic. 220

considering the equilibrium of the ring-shaped portion of the shell repre-
sented in the figure by the heavy line AB. Since the forces N, along the
parallel circle BB are horizontal, we need consider only the forces N,
along the circle A A and the external forces acting on the ring when dis-
cussing equilibrium in the vertical direction. Assuming that the shell is
submitted to the action of uniform internal pressure p, we obtain the
equation of equilibrium

2nroN, sin ¢ = 7p(ri — b?)
from which

_ p(?"% _ b2) _ pa(ro + b) 265
N, = Org sin ¢ 276 (265)
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Substituting this expression in Eq. (256), we find?

_pra(ro — D) pa
Ne=""n— =% (266)

A torus of an elliptical cross section may be treated in a similar manner.

107. Shells of Constant Strength.  As a first example of a shell of constant strength,
let us consider a dome of nonuniform thickness supporting its own weight. The
weight of the shell per unit area of the middle surface is vh, and the two components
of this weight along the coordinate axes are

Y = yhsin ¢ Z = vyh cos ¢ (a)
In the case of a shell of constant strength the form of the meridians is determined in
such a way that the compressive stress is constant and equal to ¢ in all the directions

in the middle surface, z.e., so that

Ny = Ny = —oh

1 1
oh <— + —> = ~vhcos ¢ ®)

r1 T2
or, by substituting r: = ro sin ¢ and solving for ry,
7o
rp= (©)

24 .
— 7o COS ¢ — SiN @
T

From Fig. 213b, we have

dr
71 d(p = 0
cos ¢
Thus Eq. (¢) can be represented in the form
(ll‘(\ To COS ¢

- = (@
de v .

— Trp COS ¢ — SIN ¢

o

At the top of the dome where ¢ = 0, the right-hand side of the equation becomes
indefinite. To remove this difficulty we use Eq. (b). Because of the conditions of
symmetry at the top, 1 = r2, and we conclude that

2 2
Ty =1y = ad and dro = ride = i de
Y Y

t Nevertheless, a consideration of the deformation of the shell shows that bending
stresses inevitably must arise near the crown ro = b of the shell, and this in spite of
the lack of any singularity either in the shape of the shell surface or in the distribu-
tion of the loading. See W. R. Dean, Phil. Mayg., ser. 7, vol. 28, p. 452, 1939, and
also Fligge, op. cit., p. 81.
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Hence, for the top of the dome we have

=== (e)

Using Eqs. (¢) and (d), we can obtain the shape of the meridian by numerical inte-
gration, starting from the top of the dome and calculating for cach increment Ay
of the angle ¢ the corresponding increment Arp of the radius ro. To find the vari-
ation of the thickness of the shell, Eq. (f), Art. 105, must be used. Substituting

N, = Ny = —oh in this equation and observing that o is constant, we obtain
d % .
— — (hro) + hry cos ¢ + = rireh sin ¢ = 0 (f)
d<p 3 ’

Substituting expression (¢) for ry, the following equation is obtained:

1 cos ¢ + R 7y 81N ¢

«

= (o) = hro - (@)
d(p !

14 -
g CO8 ¢ — Sl ¢
o

For ¢ = 0, we obtain from Eq. (f)

d d?‘o
— (hro) = hry = h—
d«»< ro) Ty o

It is seen that for the first increment Ag of the angle ¢ any constant value for h can
be taken. Then for the other points of
the meridian the thickness is found by
the numerical integration of Eq. (7). In
Fig. 221 the result of such a calculation
is represented.! Tt is seen that the
condition

Ng =N, = —ch

Fia. 221

brings us not only to a definite form of
the middle surface of the dome but also to a definite law of variation of the thick-
ness of the dome along the meridian.

In the case of a tank of equal strength that contains a liquid with a pressure vd at
the upper point A (Fig. 222) we must find a shape of the meridian such that an internal
pressure equal to vz will give rise at all points of the shell to forces?

N, = Ng = const

A similar problem is encountered in finding the shape of a drop of liquid resting on
a horizontal plane. Because of the capillary forces a thin surface film of uniform
tension is formed which envelops the liquid and prevents it from spreading over the
supporting surface. Both problems are mathematically identical.

1 This exarmple has been calculated by Flagge, op. cit., p. 38.
2 A mathematical discussion of this problem is given in the book by C. Runge and
H. Koénig, “Vorlesungen ither numerisches Rechnen,” p. 320, Berlin, 1924,
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In such cases, Iiq. (256) gives
1 1
No <— + —> = vz

1 T2

Taking the orthogonal coordinates as shown in the figure, we have

oz dr
Ty = — T dgo =ds =
sin ¢ cos ¢
1 sine 1 cosepde dsing
Hence ~ = —_——— = ——
Ta z 1 dr dz

and Eq. (h) gives
dsin ¢  sin ¢ L

dz z _m

Observing that

dz t

tan ¢ = — and sin ¢ = A—-——,4an £
dz V1 + tan? ¢

(h)

@

(9)

it is possible to climinate sin ¢ from Eq. (¢) and obtain in this way a differential
equation for z as a function of z. The equation obtained in this manner is very

o Jnat JO
x4
.
I |
y | A
I B
Py
P N
d [ 0gm, :
g d;\;\\é/r
i b N
B ‘/z C

Fia. 222

complicated, and a simpler means of solving the problem is to introduce a new vari-

able u = sin ¢. Making this substitution in Egs. () and (j), we obtain

du  w_ o
dc 'z N,
dz u

de /1 —

(k)

0

These equations can be integrated numerically starting from the upper point A of

the tank. At this point, from symmetry, r; = ry, and we find from Eq. (h) that
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‘By introducing the notation

Ne _ .,
Y
we write
_ 2q?
r = 7 (m)

With this radius we make the first element of the meridian curve r,Ap = Az, corre-
sponding to the small angle Ag. At the end of this arc we have, as for a small arc of

a circle,
A 2 2 Ax)2
cmd B g 0D )
2 2r; 4q*
(n)
o _ e
uNTI 2a?

When the values % and z have been found from Egs. (n), the values of du/dr and
dz/dx for the same point are found from Eqgs. (k) and (I). With these values of the
derivatives we can calculate the values of z and u at the end of the next interval, and
so on. Such caleulations can be continued without difficulty up to an angle ¢ equal,
say, to 50°, at which the valuc of u becomes approximately 0.75. From this point
on and up to ¢ = 140° the increments of z are much longer than the corresponding
increments of z, and it is advantageous to take z as the independent variable instead
of z. For ¢ > 140°, z must again be taken as the independent variable, and the
calculation is continued up to point B, where the meridian curve has the horizontal
tangent BC. Over the circular area BC the tank has a horizontal surface of contact
with the foundation, and the pressure v(d + d;) is balanced by the reaction of the
foundation.

A tank designed in this manner! is a tank of constant strength only if the pressure
at A is such as assumed in the calculations. For any other value of this pressure
the forces Ng and N, will no longer be constant but will vary along the meridian.
Their magnitude ean then be calculated by using the general equations (255) and
(256). It will also be found that the equilibrium of the tank requires that vertical
shearing forces act along the parallel circle BC.  This indicates that close to this circle
a local bending of the wall of the tank must take place.

108. Displacements in Symmetrically Loaded Shells Having the Form
of a Surface of Revolution. In the case of symmetrical deformation of a
shell, a small displacement of a point can be resolved into two compo-
nents: v in the direction of the tangent to the meridian and w in the
direction of the normal to the middle surface. Considering an element
AB of the meridian (Fig. 223), we see that the increase of the length of
the element due to tangential displacements v and v + (dv/de) de of its
ends is equal to (dv/d¢) de. Because of the radial displacements w of the
points A and B the length of the element decreases by an amount w de.
The change in the length of the clement due to the difference in the radial
displacements of the points A and B can be neglected as a small quantity

1 Tanks of this kind were constructed by the Chicago Bridge and Iron Works; see
C. L. Day, Eng. News-Record, vol. 103, p. 416, 1929,
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of higher order. Thus the total change in length of the element AB due
to deformation is
dv
E; dcp - w d(,O
Dividing this by the initial length 7, de of the element, we find the strain
of the shell in the meridional direction to be
dw LR
\":+J</_: ® Al\ Xy 1d
. AR € = = — — (a)
\\ B //>\V\*
\\ O A “r
4y d ! Considering an element of a parallel circle it
(A \\r'\dgoy:‘x? | may be seen (Fig. 223) that owing to displace-
NETN

av. b S N | ments v and w the radius r¢ of the circle
‘”’Jy‘,dﬁ" ~ ( Increases by the amount
Fic. 223 v eos ¢ — wsin ¢

The circumference of the parallel circle increases in the same proportion
as its radius; hence

1 .
e@=r—(vcos<p——wsm<p)
0

or, substituting 7o = rs sin ¢,

v w
69—7”—20013@0—7—“2 (b)
Eliminating w from Tgs. (¢) and (b), we obtain for » the differential
equation

d

a—?:; — v COt ¢ = Tie, — To6g ()
The strain components ¢, and e can be expressed in terms of the forces
N, and Ny by applying Hooke’s law. This gives

1
€p = EE(Nw — vNy)
1 (d)
€g — EZ (N@ - VN¢)
Substituting in Kq. (¢), we obtain
3—1 —vcot o = El’ﬁ [No(r1 4 vra) — No(rs + wvri)] (267)

In each particular case the forces N, and Ny can be found from the load-
ing conditions, and the displacement v will then be obtained by integration
of the differential equation (267). Denoting the right-hand side of this
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equation by f(e), we write

d
E%—-vcot<p=f(cp)

The general solution of this equation is

. f(o)
v—bm@[ mdga—l—C] (e)
in which C is a constant of integration to be determined from the con-
dition at the support.

Take, as an example, a spherical shell of constant thickness loaded by
its own weight (Ilig. 215a). In such a case ry = r. = a, N, and N, are
given by expressions (257), and Eq. (267) becomes

R (e o U N
de VOV ¥e T Eh OS¢ T T ¥ cos @
The general solution (¢) is then
_aqql+ )| . i _ _sineg .
v = B [bm e log (1 4+ cos ¢) T cos o @] + Csine (f)

The constant C will now be determined from the condition that for ¢ = «
the displacement v is zero (¥ig. 215a). From this condition

20(1 1
0 - aq(E}j* v) I: T oos s~ log (1 + cos a)} (9)

The displacement v is obtained by substitution in expression (f). The
displacement w is readily found from Eq. (b). At the support, where
v = 0, the displacement w can be calculated directly from LEq. (b), with-
out using solution (f), by substituting for e its value from the second of
the equations (d).

109. Shells in the Form of a Surface of Revolution under Unsym-
metrical Loading. Considering again an element cut from a shell by two
adjacent meridians and two parallel circles (Fig. 224), in the general case
not only normal forces N, and Ny but also shearing forces N, = N,
will act on the sides of the element. Taking the sum of the projections
in the y direction of all forces acting on the element, we must add to the
forces considered in Art. 105 the force

aJV(M
a0

ridf de (a)

representing the difference in the shearing forces acting on the lateral
sides of the element. Ience, instead of Eq. (f), Art. 105, we obtain the
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equation

% (N,r — N1 cos ¢ 4+ Yrirg = 0 (268)

Considering the forces in the z direction, we must include the difference
of the shearing forces acting on the top and bottom of the element as

rz H
o]
\‘(
Fic. 224
given by the expression
d
Noo Gt do do 4 et do do = 31 (roN o) dee d6 ®)
©
the force
N
606 1 a6 dgﬁ (C)
due to variation of the force Ny and the force
N1 cos ¢ df de (d)

due to the small angle cos ¢ df between the shearing forces N, acting on
the lateral sides of the element. The component in x direction of the
external load acting on the clement is

Xrgry do de (e)
Summing up all these forces, we obtain the equation

6]\9

(TONW) 4+ —— 11+ Ny cos ¢ + Xrory = (269)

The third equatlon of equlhbrlum is obtained by projecting the forces on
the z axis. Since the projection of shearing forces on this axis vanishes,



DEFORMATION OF SHELLS WITHOUT BENDING 449

the third equation conforms with Eq. (256), which was derived for sym-
metrical loading.

The problem of determining membrane stresses under unsymmetrical
loading reduces to the solution of ligs. (268), (269), and (256) for given
values of the components X, ¥, and Z of the intensity of the external load.
The application of these equations to the case of shells subjected to wind
pressure will be discussed in the next article.

110. Stresses Produced by Wind Pressure.! As a particular example
of the application of the general equations of equilibrium derived in the
previous article, let us consider the action of wind pressure on a shell.
Assuming that the direction of the wind is in the meridian plane § = 0
and that the pressure is normal to the surface, we take

X=Y=0 Z = psin ¢ cos 0 (a)

The equations of equilibrium then become

*(TONQ +6_Nlo7"1 Nyricos o =0
a2 (rone) + “r 4+ Nogricos ¢ = 0 ®)
,pTo 4+ Nyrysin ¢ = —prory sin ¢ cos 6

By using the last of these equations we eliminate the force Ny and obtain
the following two differential equations? of the first order for determining

N, and Ng, = N:

3N”+(i%+ ow)N + 020 .y o5 ¢ cos 6

6(,0 7'() o 00

6Ng¢, 1d7‘o
“ag (?@+_ Ot‘F)N“_

1 oN, ©

gin ¢ 96

= —pr,sin 0

Let us consider the particular problem of a spherical shell, in which
case ry = ro = a. We take the solution of Kqs. (¢) in the form

=S, cos 8 Ng, = S, sin 8 (d)

1 The first investigation of this kind was made by IH. Reissner, “Miiller-Breslau-
Festschrift,”” p. 181, Leipzig, 1912; sec also F. Dischinger in F. von Emperger’s
“Handbuch fiir Eisenbetonbau,” 4th ed., vol. 6, Berlin, 1928; II. Wiedemann, Schweiz.
Bauztg., vol. 108, p. 249, 1936; and K. Girkmann, Staklbau, vol. 6, 1933. Further
development of the theory of unsymmetrical deformation is due to C. Truesdell,
Trans. Am. Math. Soc., vol. 58, p. 96, 1945, and Bull. Am. Math. Soc., vol. 54, p. 994,
1948; E. Reissner, J. Math. and Phys., vol. 26, p. 200, 1948; and W. Zerna, Ingr.-
Arch., vol. 17, p. 223, 1949,

2 The application of the stress function in investigating wind stresses was used by
A. Pucher, Publs. Intern. Assoc. Bridge Structural Engrs., vol. 5, p. 275, 1938; see also
Art. 113.
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in which S, and S, are functions of ¢ only. Substituting in Eqgs. (¢),
we obtain the following ordinary differential equations for the determi-
nation of these functions:

dS"—i—ZcotgoS 4 =—— 84, = —pacos ¢

sin ¢ (@)
dso" + 2 cot ¢ Se, + ! S, = —pa
de a ¢ T ¢ e ¥

By adding and subtracting these equations and introducing the notation
Ur=8,+ 8 Us=28,~ Ss ()

the following two ordinary differential equations, each containing only
one unknown, are obtained:

dUl 1
+(200t¢+sm—¢> Ul

()
dU2 1 _ _
+ <2 cot ¢ — sn <p) U, = pa(l — cos ¢)

—pa(l + cos ¢)

i

Applying the general rule for integrating differential equations of the
first order, we obtain

1+ cose _ 1 s
U, = T [Cl + pa (cos ¢ — 3 coS <p>]

U, = 1—_@—@[0 — pa(cos @ —%cos3 @)]

sin® ¢

(h)

where (7 and C: are constants of integration. Substituting in Kqs. (f)
and using Eqgs. (d), we finally obtain

cOo8s 9 C1 + 02 Cl _ Cz 2 ]. N
sin3<p[ 5 —+ 5 cos ¢ + paf cos qp—-gco.‘: @

v o _sing[Ci—=Cy  Ci+Cy Lo
N = ST g [ 5 -+ ) cos ¢ + pa (cos ¢ — zcosto
To determine the constants of integration C; and C; let us consider a

shell in the form of a hemisphere and put ¢ = #/2 in expressions (2).
Then the forces along the equator of the shell are

Ci+C, Cy
2

N, =
()

N, = cos 0 Nop =37 Psing ()

Since the pressure at each point of the sphere is in a radial direction,
the moment of the wind forces with respect to the diameter of the sphere
perpendicular to the planc 8 = 0 is zero. Using this fact and applying

the first of the equations (7), we obtain
Cl + 02
2

2m 27
[ N,a? cos 8d0 = a? f cos? 0df =0
0 0
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which gives
C:=—0C, (k)

The second necessary equation is obtained by taking the sum of the com-
ponents of all forces acting on the half sphere in the direction of the
horizontal diameter in the plane # = 0. This gives

/Oz,r No,asin 6 df = — /0”/2 /02” p sin ¢ cos 8 a? sin ¢ sin ¢ cos 8 de df
C;—Cs _ , 2
or ar ——5— = —pa’gw 0)

From (k) and (I) we obtain
Ci= —%ap C: = gap

Substituting these values for the constants in expressions (Z) and using
the third of the equations (b), we obtain

_ _pacosbcose ., ) s

N, = T sinta (2 — 3 cos ¢ + cos? @)
_ ba cos 0 _ 2, _ 9 .

Ny 3 st e (2cos ¢ —3sin o cost @) (m)
_ _pasinf _ 5

Ny, = 3 snt g (2 — 3 cos ¢ + cos? ¢)

By using these expressions the wind stresses at any point of the shell
can be readily caleulated. If the shell is in the form of a hemisphere,
there will be no normal forces acting

along the edge of the shell, since ?\ / Sy
(Ng)g—rse = 0. The shearing forces g
Ny, along the edge are different from
zero and are equal and opposite to the
horizontal resultant of the wind pres-
sure. The maximum numerical value
of these forces is found at the ends of the
diameter perpendicular to the plane
6 = 0, at which point they are cqual
to +2pa/3.

As a second application of Eqgs. (¢) let us consider the case of a shell
having the shape of a circular cone and supported by a column at the
vertex (IFig. 225). In this case the radius ry is infinitely large. For an
element dy of a meridian we can write dy = r1 de. Hence

T
Fic. 225

d _d
o ="y
In addition we have
. dTQ .
ro = Y SIn « —— = SN « re = y tan o

dy
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Substituting in Eqs. (c), we obtain for a conical shell submitted to a
wind pressure Z = p sin ¢ cos 6 the equations

%—F&" 1 ~6Ne“’=—psinacosf)
dy Y ysih o 430 (n)
N 4 2Noo sin 6
dy y
The second equation can be readily integrated to obtain
1 [py? .
No, = — i <—3— + C)sin 6 (o)

The edge of the shell ¥ = [ is free from forces; hence the constant of
integration in expression (o) is

and we finally obtain

B —y® .
y2J sin 0 (p)

NW:%

Substituting in the first of the equations (n), we find

aN N 13—y .
ay" + T/f = — (Z_; Q‘;’"Sin‘/a + p sin a) cos 6
The integration of this equation gives
_peosf P —yt PP — oyt .
N, = sin a < 3y? oy %« @

which vanishes at the edge y = [, as it should. The forces N, are
obtained from the third of the cquations (b), which gives

Ny = —py sin a cos 8 (r)

The expressions (p), (g), and (r) give the complete solution for the
stresses due to wind pressure on the conical shell represented in Fig, 225.
At the top (y = 0) the forces N, and Ny, become infinitely large. To
remove this difficulty we must assume a parallel circle corresponding to
a certain finite value of y along which the conical shell is fastened to the
column. The forces N,, Ny, distributed along this circle balance the
wind pressure acting on the cone. It can be seen that, if the radius of
the circle is not sufficient, these forces may become very large.

In the case of a transverse load @ applied at the top of the cone (Fig. 226a) we can
satisfy Eqs. (n), in which the right-hand side becomes zero, by putting
_Q cosb

N, = Noo =0 )
7 rysin? a #? @
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It is readily verified by integration that the shearing force which results from the
stresses N, for any section normal to the axis of the cone is equal to @ and that the
moment of those stresses with respect to the axis = =/2 of this section equalizes the
moment Qy cos « of the load. As for the stress components N, they vanish through-
out the shell, as ensues from the third of
the equations (b), where we have to assume S\
r1 = » and p = 0. |

Should a load § act in the dircction of
the generatrix of the cone (Fig. 226b), we
must combine the effect of both its com-
ponents P = Scos a (Fig. 217)and Q = 8
sin « upon the forces N,.

The result is

N, = ﬁ, (2cos0 - 1)
27!'7‘0
which yields the extreme values of S/2nr¢ fo
at 0 =0 and —38/2m¢ at 8 = =,
respectively. V
111. Spherical Shell Supported at Iso-
lated Points.! We begin with the general )
case of a shell having the form of a surface Fic. 226
of revolution and consider the case when
the forces are acting only along the edge of the shell so that X = ¥ = Z = 0. The
general equations (b) of the preceding article then become

9 aN
@ (7‘01’\’},) =+ é%p = N57'1 cos ¢ =0

a ON
— (roeNpg) + — 11 + Nopri cos ¢ = 0 @)
de a4

Negro + Norysin ¢ = 0
Let us take the solution of these equations in the form
Ny = 8, cos né
Ng = Sp cos n ®)
Ngy = Sgpn sin no
where S;., Spn, and Spe. are functions of ¢ only and n is an integer. Substituting

expressions (b) in Eqgs. (a), we obtain

d
7o (roSen) + n7r1Sppn — riSpr cos ¢ = 0

d
o (roSagn) — nr1Spn + r1Spen cos ¢ = 0 ()
@

Spn + = 8pu = 0
To

! Fligge, op. cit. For the application of the stress function in solving such prob-
lems, see the paper by Pucher, op. cit.
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Using the third of these equations, we can eliminate the function Sg. and thus obtain

dSen 1d Sopn
d" +<——r—0+cot¢>spn+n2—0’;=0
o

ro de 72 SINL @
dS 1d S @
n r i Ndpn
for L (=20 £ Dot ¢ ) Sppn + == =0
d(p To d(p T2 81N ¢

In the particular case of a spherical shell 1, =72 =@, 70 = @ sin ¢; and Eqs. (d)
reduce to the following simple form:

dS,»

Ber 1 2 00t ¢ Sgn + ——— Sppn = 0

do sin ¢ ©
DSt0n 1 9 cot o Sogn 4 —— 8pu = 0

dSO COU @ Ofpn sin 0 on =

Proceeding as in the preceding article, by taking the sum and the difference of Egs.
(¢) and introducing the notation

U = S@n + S&pn U = Sgpu - Sﬂq;nv (f)
we obtain
dU;,
4 +(2cow+ = )Um =0
de sin ¢
U, n @)
—— +{2c0t g — — J Uz =0
de sin ¢

The solution of these equations is

(cot g) <tan 120>
U]n = (jln——" U !

oy = Cap ——"— (h)

sin? @ sin? ¢

From ligs. (f) we then obtain

(JTln + (]271 1 e\" @® »
Sen = = p Cin t - n =
o 2 2sin? [ ‘ (co g) Ty o
2
(Jln - (/Zn 1 ['4 " e\"
Sopn = = C n oy - n -
be 2 2 sin? [ ! (cot 2) Cs (tan 2

If we have a shell without an opening at the top, expressions (z) must be finite for
¢ = 0. This requires that the constant of integration Cy, = 0. Substituting this in
Eqgs. (¢) and using Egs. (b), we find

g »
N, = —Np = #_.E'?A, tan z ¢os né
2 sin? ¢ 2

)]
Con A
Ngp = <tan —2~> sin n@

2 sin? ¢

Substituting for ¢ the angle ¢, corresponding to the edge of the spherical shell, we
shall obtain the normal and the shearing forces which must be distributed along the
edge of the shell to produce in this shell the forces (j). Taking, as an example, the
case when ¢o = v/2, that is, when the shell is a hemisphere, we obtain, from
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expressions (j),

Con

(Np)oariz = 3 cos né
c. (k)

sin n@

(Noglgmrir = —

Knowing the stresses produced in a spherical shell by normal and shearing forces
applied to the edge and proportional to cos né and sin n8, respectively, we can treat
the problem of any distribution of normal forces along the edge by representing this

aNyp
S SBaRSARARARARARARRARRE T
qa
0 (o QnTe
<4 e|e e|e ele €
> Her > et > e
N B, i M 9
775[02
4e
a L1 L L L] Ll ¥
{b)
™ b w T
PP T T TR AT T Y s
qu ( 4e )

{c)
Fia. 227

distribution by a trigonometric series in which each term of the scries is a solution
similar to solution (j).! Take, as an cxample, the case of a hemispherical dome of
radius @, carrying only its own weight of ¢ psf and supported by four symmetrically
located columns. If the dome is resting on a continuous foundation, the forces N,
are uniformly distributed along the edge as shown in Fig. 227¢, in which the intensity
of force aN, per unit angle is plotted against the angle 8. In the case of four equi-
distant columns the distribution of reactions will be as shown in Fig. 2275, in which
2e denotes the angle corresponding to the circumferential distance supported by each
column. Subtracting the force distribution of Fig. 227a from the force distribution of
Fig. 227b, we obtain the distribution of Fig. 227¢, representing a system of forces in
equilibrium. This distribution can be represented in the form of a series

£l
(@N ) pmnsz = E A, cos nf (3]
n=4,8712, ...
@
'In using a series N, = % C2n cos n6 for normal forces we obtain a dis-
n=1,23,...

tribution of these forces symmetrical with respect to the diameter § = 0. In the
general case the series will contain not only cosine terms but also sine terms. The
solutions for sine terms can be obtained in exactly the same manner as used in our
discussion of the cosine terms. It is only necessary to exchange the places of cos né
and sin n6 in Egs. (b).
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in which only the terms n = 4, 8, 12, . . . must be considered, since the diagram
227¢ repeats itself after each interval of =/2 and has four complete periods in the
angle 27. Applying the usual method for calculating the coefficicnts of series (1),
we find

2qa?

sin (ne)

A, = —

Hence the distribution shown by diagram 227¢ is represented by the series

©

2qa? sin ne
4 — cos nf (m)

aNg)oarre = —
(A¢)<p1r/ e n

n=4,8,12, ...
Comparing cach term of this series with the first of the cquations (k) we conclude that

4qa sin ne
C?.n = — T =/

€ n

The stresses produced in the shell by the forces (m) are now obtained by taking a
solution of the form (j) corresponding to each term of series (;n) and then super-
posing these solutions. In such a manner we obtain

«©

2qa v sin ne e\”

Nyo= —-Npg= — —— — — | tan — |} cos né
esm? o / n 2
n=4812, ...
. ()
200 sin ne e\" .
Ng, = — — ——— | tan — ) sin né
e sin? ¢ n 2
n=4,8,12,...

Superposing this solution on solution (257), which was previously obtained for a dome
supported by forces uniformly distributed along the edge (Fig. 215a), we obtain
formulas for calculating the stresses in a dome resting on four columns. It must be
noted, however, that, whercas the above-mentioned superposition gives the necessary
distribution of the reactive forces N, as shown in Tig. 227b, it also introduces shear-
ing forces Ny, which do not vanish at the cdge of the dome. Thus our solution does
not satisfy all the conditions of the problem. In fact, so long as we limit ourselves to
membrane theory, we shall not have enough constants to satisfy all the conditions
and to obtain the complete solution of the problem. In actual constructions a
reinforcing ring is usually put along the edge of the shell to carry the shearing forces
Ngp.  In such cases the solution obtained by the combination of solutions (257) and
(n) will be a sufficiently accurate representation of the internal forces produced in a
spherical dome resting on four columns. For a more satisfactory solution of this
problem the bending theory of shells must be used.!

The method discussed in this article can also be used in the case of a nonspherical
dome. In such cases it is necessary to have recourse to Fqgs. (d), which can be solved
with sufficient accuracy by using numerical integration.?

1 An example of such a solution is given in A. Aas-Jakobsen's paper, Ingr.-Arch.,
vol. 8, p. 275, 1937.

2 An example of such integration is given by Fliigge, op. cit. On p. 51 of this book
the calculation of membranc forces in an apsidal shell, due to the weight of the
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112. Membrane Theory of Cylindrical Shells. In discussing a cylin-
drical shell (Fig. 228a) we assume that the generator of the shell is hori-
zontal and parallel to the z axis. An element is cut from the shell by
two adjacent generators and two cross sections perpendicular to the x axis,
and its position is defined by the coordinate z and the angle ¢. The
forces acting on the sides of the element are shown in Fig. 228b. In

Fic. 228

addition a load will be distributed over the surface of the element, the
components of the intensity of this load being denoted, as before, by X,
Y, and Z. Considering the equilibrium of the element and summing up
the forces in the x direction, we obtain

AN,
dx

rde dx—l— '”d dz + Xrdedx =0 (a)

Similarly, the forces in the direction of the tangent to the normal cross

section, 7.e., in the y direction, give as a corresponding equation of
equilibrium

N .,

“dr

rde dx-l— “’d de + Yrdedr =0 ®)

The forces acting in the direction of the normal to the shell, i.e., in the

shell, is also discussed. For application of the complex variable method to the stress
analysis in spherical shells, see F. Martin, Ingr.-Arch., vol. 17, p. 167, 1949; see also
V. Z. Vlasov, Priklad. Mat. Mekhan., vol. 11, p. 397, 1947.
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z direction, give the equation
N,dedx + Zrdeder = 0 (e)

After simplification, the three equations of equilibrium can be repre-
sented in the following form:

ON. , 1LaN,,
axr T de =X
aN., +16N¢, - _y (270)
dax r do
N, = —Zr

In each particular case we readily find the value of N,. Substituting
this value in the second of the equations, we then obtain N,, by inte-

]

(b)

Fia. 229

gration. Using the value of N, thus obtained we find N, by integrating
the first equation.

As an example of the application of Eqs. (270) let us consider a hori-
zontal circular tube filled with liquid and supported at the ends.? Meas-
uring the angle ¢ as shown in Fig. 2296 and denoting by po the pressure
at the axis of the tube, the pressure at any point is po — va cos ¢. We
thus obtain

X=Y=0 Z = —po+ vacos ¢ (d)
Substituting in Egs. (270), we find
N, = poa — va® cos ¢ (e)
N., = —[vasin ¢ dx + Ci(e) = —~vax sin ¢ + Ci(e) 62
1 [dC
N,=/7005<pxdx—(—l/ (;i¢)dx+02(<p)
x? x dCy(e)

=y eose = L + Cae) (9)

The functions Cy(p) and Cz(e) must now be determined from the con-
ditions at the edges.
Let us first assume that there are no forces N, at the ends of the tube.

! This problem was diseussed by D. Thoma, Z. ges. Turbinenwesen, vol. 17, p. 49,
1620.
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Then
(NZ):==0 =0 (Nx)z=l =

‘We shall satisfy these conditions by taking

o) =0 Cile) = Dsin g+ C

It is seen from expression (f) that the constant C represents forces N,
uniformly distributed around the edge of the tube, as is the case when
the tube is subjected to torsion. If there is no torque applied, we must
take ¢ = 0. Then the solution of Egs. (270) in our particular case is

N, = poa — va? cos ¢
N = va (é — x) sin ¢ (271)
N, = —%x(l—x) cos ¢

It is seen that N., and N, are proportional, respectively, to the shearing
force and to the bending moment of a uniformly loaded beam of span {
and can be obtained by applying beam formulas to the tube carrying a
uniformly distributed load of the magnitude! ra?y per unit length of the
tube.

By a proper selection of the function Ca(¢) we can also obtain a solu-
tion of the problem for a cylindrieal shell with built-in edges. In such a
case the length of the generator remains unchanged, and we have the
condition

[i N~ W dz =0
Substituting
N, = —-%z(l——x) cos ¢ + Ca(¢) N, = pua — va® cos ¢
we obtain

: 2
Cale) = vpoa + (ﬁ — Vaz> Y €COS ¢

-~ 2
and N,= — % (I — x) cos ¢ + vpoa + (;—2 - va2> yceos e (272)

Owing to the action of the forces N, and N, there will be a certain amount
of strain in the circumferential direction at the end of the tube in contra-
diction to our assumption of built-in edges. This indicates that at the
ends of the tube there will be some local bending, which is disregarded in
the membrane theory. A more complete solution of the problem can be
obtained only by considering membrane stresses together with bending
stresses, as will be discussed in the next chapter.

1 The weight of the tube is neglected in this discussion.
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Sections of eylindrical shells, such as shown in Fig. 230, are sometimes
used as coverings of various kinds of structures. These shells are usually
supported only at the ends while the edges AB and CD are free. In
calculating the membrane stresses for such shells Iigs. (270) can again be
used. Take, for example, a shell of a semicircular cross section sup-
porting its own weight, which is assumed to be uniformly distributed
over the surface of the shell. In
such a case we have

X=0 Y=psine Z=pcose
The third of the equations (270) gives
N, = —pacos ¢ (h)

which vanishes along the edges AB

and CD, as it should. It is seen that

this condition will also be satisfied if

Fre. 230 some other curve is taken instead of

a semicirele, provided that ¢ = +#/2

at the edges. Substituting expression (k) in the second of the equations
(270), we find

N., = —2pa sin ¢ + Ci(e) @)

By putting the origin of the coordinates at the middle of the span and
assuming the same end conditions at both ends, * = £1/2 of the tube,
it can be concluded from symmetry that Ci(¢) = 0. Hence

N, = —2pzsin ¢ €)]

It is seen that this solution does not vanish along the edges AB and CD
as it should for free edges. In structural applications, however, the edges
are usually reinforced by longitudinal members strong enough to resist
the tension produced by shearing force (j). Substituting expression (j)
in the first of the equations (270), we obtain

2
N, = Bj— cos ¢ + Ci(g) (k)
If the ends of the shell are supported in such a manner that the reactions
act in the planes of the end cross sections, the forces N, must vanish at

the ends. Hence Ca(o) = — (pl? cos ¢)/4a, and we obtain
— _ DCOS® 1n 4o
No= = P50 g2 — ) »

Expressions (h), (j), and (I) represent the solution of Egs. (270) for our
particular case (Fig. 230) satisfying the conditions at the ends and also
one of the conditions along the edges AB and CD. The second con-
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dition, which concerns the shearing forces N,,, cannot be satisfied by
using the membrane stresses alone. In practical applications it is
assumed that the foreces N,, will be taken by the longitudinal members
that reinforce the edges. It can be expected that this assumption will be
satisfactory in those cases in which the length of the shell is not large,
say | £ 2a, and that the membrane theory will give an approximate
picture of the stress distribution in such cases. For longer shells a satis-
factory solution can be obtained only by considering bending as well as
membrane stresses. This problem will be discussed in the next chapter
(see Arts. 124 and 126).

Fia. 231

113. The Use of a Stress Function in Calculating Membrane Forces of Shells.
In the general case of a shell given by the equation z = f(z,y) of its middle surface
the use of a stress function?! defining all three stress components may be convenient.
Let us consider an element of a shell submitted to a loading the magnitude of which
per unit area in zy plane is given by its components X, V¥, Z (Fig. 231). The static
equilibrium of the element then can be expressed by the equations

oN: LNy oy

ox Yy @)

oN., oN,

Y =0

ox ay +
a3 - 0z . 0z 2] . 0z Y F1
bl Nx_ Ty — | N, — zy Z = b
ax( ax+Nyay>+ay<yay+Nyax)+ 0 ®)

1 The introduction of the function considered here is due to A. Pucher, op. ¢it., and
Beton u. Eisen, vol. 33, p. 298, 1934; see also Proc. Fifth Intern. Congr. Appl. Mech.,
Cambridge, Mass., 1938. Cylindrical coordinates, more suitable for shells in the form
of a surface of revolution, are also used by Pucher. For a general theory of defor-
mation following Pucher’s approach, see W. Flugge and F. Geyling, Proc. Ninth Iniern.
Congr. Appl. Mech., vol. 6, p. 250, Brussels, 1957.
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in which the following notation is used:

- os @ o Y
N:= N, P ]VU =N wre Nzu = NMI (©)

T u
oS ¢ cos 6

where tan ¢ = 9z/8z and tan @ = 3z/dy. Carrying out the differentiation as indi-
cated in Eq. (b) and taking into account Kgs. (a), we obtain

- 0% 0% - 0% , 0%

- 0z
N,— + 2N, Ny—=—-Z4+X—+Y— d
ox? + Y oz Yy AV ay? + ax + ay @)

We can satisfy both equations (a) by introducing a stress function F(z,y) such that

_ a2F - A _ P
s =-— — | Xdz Ny=—— Y dy Ngy = — = (e)
ay* Jx? ax Ay

the lower and the upper limits of the integrals being x,,  and y,, y, respectively, with
zo and yo fixed. Substituting this in Eq. (d) we obtain the following differential equa-
tion governing the stress function F:

U 9% 9 92F 9% 9 9%

ax? dy* Y 3y dx oy ?0?/5 a2 — 1 )
in which the following abbreviation is used:
az 9z 9%z 9%z
= —Z4+X—+Y—+4+ — Xd — d
q -+ 6x+ ay%-am2 I+6y2/Y Yy )]

If the membrane forces on the boundary of the shell are given, the respective
boundary conditions can readily be expressed by means of Eqs. (¢). If, in particular,
the edge is connected with a vertical wall whose flexural rigidity is negligible or if the
edge is free, then the edge forces normal to
the elements ds of the boundary and pro-

% portional to a%/3s? must vanish. Hence

X

the variation of the stress function along
L | such an edge must follow a linear law.
’ A Shell in the Form of an Elliptic Parabo-
— ! loid. To illustrate the application of the
n;N method, let us take a shell in the form of an
' | elliptic paraboloid (Fig. 232) with the middle
*—Wﬂ_— ¥ surface
.O‘l(\l I 2 y?
L_-_,_g_‘__,l(__,_g‘-__,i b
2 2

where hi and h. are positive constants.
The sections x = constant and y = constant
then yield two sets of parabolas, and the
level curves are ellipses. Assuming solely a vertical load uniformly distributed over
the ground plan of the shell and using Eqgs. (f) and (g) we obtain

Fia. 232

1 92F 16_2_14_'_ P

heowt T hoy 2 w

where p = Z is the intensity of the load,
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Let the shell be supported by four vertical walls z = +a/2, y = +b/2 in such a
way that the reactive forces normal to the respective wall vanish along the boundary.
Consequently, the boundary conditions for the function F are 3°F/ay? = 0 on
t = *a/2 and 9% /3z* = 0 on y = +b/2. Thus F may be a linear function in
z and y on the boundary. Since terms linear in z or y have no effect on stresses [see
Eqgs. ()], this is equivalent to the condition ¥ = 0 on the whole boundary.

We satisfy Eq. (©) and make F = 0 on y = b/2 by taking for F the expression

L]
ph1 b_ nrx nry .
F = v <4 Y ) + E A, cosh " cos 5 )

n=13,5,...

in which ¢ = b v/h;/h;. In order to fulfill the remaining condition F = 0 on

x = *a/2, we first develop the algebraic term in expression (7) into the Fourier series
phy [ b? . 2ph,b? 1 nry
—_— ———— e ] - — _1 {(r—1)/2 3 ————
1 ( T Y o Y (=1 cos — (k)
n=1,35,...

Substituting this in Liq. (j), making ¢ = +a/2, and equating the result to zero we

obtain for each n = 1, 3, 5, . . . the equation
2phib?
PN 1yeni 4 4, cosh %~ 0 )
w3n3 2c

This yields the value of the coefficient A, and leads to the final solution

had nwr
cosh —
H 2
Eﬁl. i)_ — y? .Si (__1)(11+1)/2l P ¢ cos nry (m)
4 4 s nwa b
n=135,... ‘%h_zwcu

To obtain the membrane forces we have only to differentiate this in accordance
with the expressions (e¢) and to make use of the relations (¢). The result is

w0

nrx
. T cosh —
N, = — l)ﬁ h‘_+ 4 1 +é (__1)(n+l)/2l ¢ cos nry
2 hE 4+ 4y x nosh O b
n=135,... 2
cosh —_—
. phi |h + 4y° nwy
N, =2 —_ -1 ("“)’2 - ———— ¢cos —~ n
Y BRI 4 4x? (=1 osh ™T@ b @
n=1,3,5,.
. -  sinh ik
Noy =2 P (—1)t+nrz = —c& sin %
n n
T gh —2
n=13,35,... 2¢

All series obtained above are convergent, the only exception being the last series,
which diverges at the corners xr = *a/2, y = 1b/2. This fact is due to a specific
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property of the shell surface under consideration obtained by translation of a plane
curve. The elements of such a surface are free of any twist, and for this reason the
membrane forces N, fail to contribute anything to the transmission of the normal
loading of the shell. As the forces N, and N, both vanish at the corner points of the
shell, the shearing forces N, near these points have to stand alone for the transmission
of the loading. Owing to the zero twist of the surface of the shells, this leads to an
infinite increase of those shearing forces toward the corners of the shell. Practically,
bending moments and transverse shearing forces will arise in the vicinity of the
corners, should the edge conditions N. = 0, N, = 0 be fulfilled rigorously.

Fra. 233

A Shell in the Form of a Hyperbolic Paraboloid.! Another case where Pucher’s
method may be applied to advantage is a shell with a middle surface given by the
equation

zy

z = (o)
¢
in which ¢ = a?/h (Fig. 233). Hence
oz y 0z x 9% % 3% 1
dx [ 9y [ oz 9y ox Iy c

Provided we have to deal with a vertical loading only, the differential equation (f)
becomes

2 aF -z @
cox dy h ?
which yields the result
Zc
Nzu = '5_ (T)

Let us consider first a load of an intensity Z = ¢, uniformly distributed over the
horizontal projection of a shell with edges free of normal forces. Then we have

Nzu =

©|'g

N, =N, =0 (s)

Now consider the effect of the own weight of the shell equal to go = constant per

1 8ee F. Aimond, Génie civil, vol. 102, p. 179, 1933, and Proc. Intern. Assoc. Bridge
Structural Engrs., vol. 4, p. 1, 1936; also B. Laffaille, Proc. Intern. Assoc. Bridge
Structural Engrs., vol. 3, p. 295, 1935, Various cases of loading were discussed by
K. G. Tester, Ingr.-Arch., vol. 16, p. 39, 1947.
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unit area of the surface. To this area corresponds an area

c

co8 = e
! T

of the horizontal projection of the shell. Hence

7 =Lyt 0
C
and Eq. (r) yields
N:r:y =(1_2° sz +y2 +62

Differentiating this with respect to y and then integrating the result with respect to z,
or vice versa, both in accordance with Eqs. (e), we get

. _wl x—!—\/xz-{—yz-}j.(;

N, = og
2 \/yz T e
- g, y+ Vi by e
N, = ——log
2 \/xz I
The true forces N, and N, are obtained from those expressions by means of Egs. (¢),
in which the angles ¢, 8 are given by tan ¢ = —y/c and tan ¢ = —zx/e.

Fia. 234

Several shells of this kind may be combined to form a roof, such as shown in Fig.
234. It should be noted, however, that neither the dead load of the groin members,
needed by such a roof, nor a partial loading—due, for instance, to snow—can be
transmitted by the membrane forces alone; hence flexural stresses will necessarily
arise.!

Of practical interest and worthy of mention are also the conoidal shells, which some-
times have been used in the design of cantilever roofs and dam walls.? Roof shells of
this kind, however, with curved generatrices instead of straight ones, have also been
used in structural applications.3

1 See Fliigge, op. cit., p. 119, Fliigge and Geyling, op. cit., and F. A. Gerard, Trans.
Eng. Inst. Canada, vol. 3, p. 32, 1959.

2 The theory of the conoidal shell has been elaborated by L. Torroja, Rw. ing.,
vol. 9, p. 29, 1941.  See also M. Soare, Bauingenieur, vol. 33, p. 256, 1958, and Fligge,
op. cit., p. 127.

# See I. Doganoff, Bautechnik, vol. 34, p. 232, 1957,



CHAPTER 15

GENERAL THEORY OF CYLINDRICAL SHELLS

114. A Circular Cylindrical Shell Loaded Symmetrically with Respect
to Its Axis. In practical applications we frequently encounter problems
in which a circular cylindrical shell is submitted to the action of forces
distributed symmetrically with respect to the axis of the cylinder. The
stress distribution in eylindrical boilers submitted to the action of steam
pressure, stresses in eylindrical containers having a vertical axis and sub-
mitted to internal liquid pressure, and stresses in circular pipes under
uniform internal pressure are examples of such problems.

Fia. 235

To establish the equations required for the solution of these problems
we cousider an element, as shown in Figs. 228a and 235, and cousider the
equations of equilibrium. It can be concluded from symmetry that the
membrane shearing forces N, = N, vanish in this case and that forces
N, are constant along the circumference. Regarding the transverse
shearing forces, it can also be concluded from symmetry that only the
forces @, do not vanish. Considering the moments acting on the ele-
ment in Fig. 235, we also conclude from symmetry that the twisting
moments M., = M. vanish and that the bending moments M, are con-
stant along the circumference. Under such conditions of symmetry

466
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three of the six equations of equilibrium of the element are identically
satisfied, and we have to consider only the remaining three equations,
riz., those obtained by projecting the forces on the r and = axes and by
taking the moment of the forces about the y axis. Assuming that the
external forces consist only of a pressure normal to the surface, these
three equations of equilibrium are

x

Frakl drde = 0
dQ.
dxadxdga—i—Nwdxdw—i—Zadxd@:O (a)
d‘}[I oy e p —
I @ drde — Quadrde =0

The first one indicates that the forces N, are constant,! and we take them
equil to zero in our further discussion. If they are different from zero,
the deformation and stress corresponding to such constant forces can be
easily calculated and superposed on stresses and deformations produced
by lateral load. The remaining two equations can be written in the
following simplified form:

aQ, 1

G TaNe= 2

1 (b)
dM, 0, = 0
dx

These two equations contain three unknown quantities: N,, ., and M..
To solve the problem we must thercfore consider the displacements of
points in the middle surface of the shell.

From symmetry we conclude that the component v of the displace-
ment in the circumfercntial direction vanishes. We thus have to con-
sider only the components v and w in the » and z directions, respectively.
The expressions for the strain components then become

du w
B (o)
Hence, by applying Hooke’s law, we obtain
Ik Lh fdu W
Nz=1‘_;é(fw+”fw>=ﬂ<az_”i>:0 (@
Eh Eh w du
Ne=q e tve) =7 (‘ ot EE)
From the first of these equations it follows that
du w
de ’a

1 The effect of these forces on bending is neglected in this discussion.
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and the second equation gives
Ehw
N¢ = ———
a

(¢)

Considering the bending moments, we conclude from symmetry that
there is no ehange in curvature in the circumferential direction. The
curvature in the x direction is equal to —d?*w/dx%  Using the same equa-
tions as for plates, we then obtain

M, =vM,
- _p%uw ()
Me= =D g
En3
where D= 1—2‘(1—;*1}?3

is the flexural rigidity of the shell.
Returning now to KEgs. (b) and eliminating @, from these equations,
we obtain
dz?
from which, by using Eqgs. (¢) and (f), we obtain
d? d*w FEh .
(T):Z(DW>+?w—Z (273)
All problems of symmetrical deformation of circular eylindrical shells
thus reduce to the integration of Eq. (273).
The simplest application of this equation is obtained when the thick-
ness of the shell is constant. Under such conditions Eq. (273) becomes

+in, =z
a

dw |, I'h
Using the notation
Eh 3(1 — »?) -
O LTS AS B <
8 42D a*h? (275)
Eq. (274) can be represented in the simplified form
d*w VA
—_ 4, —_ e »
T + 484w D (276)

This is the same equation as is obtained for a prismatical bar with a
flexural rigidity D, supported by a continuous elastic foundation and
submitted to the action of a load of intensity Z.* The general solution
of this equation is

w = ef*(Cy cos Bz + C; sin Bz)
+ ¢#5(C5 cos Bz + Cysin Bx) + flz) (277)

* Qee 8. Timoshenko, “Strength of Materials,”’ part II, 3d ed., p. 2, 1956.
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in which f(x) is a particular solution of Eq. (276), and Cy, . . . , Cys are
the constants of integration which must be determined in each particular
case from the conditions at the ends of the cylinder,

Take, as an example, a long circular pipe submitted to the action of
bending moments M, and shearing forces §o, both uniformly distributed
along the edge z = 0 (Fig. 236). In this case
there is no pressure Z distributed over the sur-
face of the shell, and f(z) = 0 in the general solu-
tion (277). Since the forces applied at the end
z = 0 produce a local bending which dies out
rapidly as the distance z from the loaded end
increases, we conclude that the first term on
the right-hand, side of Eq. (277) must vanish.!
Hence, C; = C; = 0, and we obtain

w = e#(C; cos Bz + C4 sin Bz) (9) Fic. 236

The two constants C3 and €4 can now be determined from the conditions
at the loaded end, which may be written

(A[I)x=0 = —D (z—?—f> o = M,
. . (h)
@ (50). = 2 (i). - e

Substituting expression (g) for w, we obtain from these end conditions

J] 0

03 = z)ﬁ;}D (Qo + BIMO) 04 = ;Z_Bm (’L)
Thus the final expression for w 1s
w = £ [BM(sin Br — cos B2) — Qo cos ] 278)

The maximum deflection is obtained at the loaded end, where

(W)a—o = — 52;_1) BMo + Qo) (279)

The negative sign for this deflection results from the fact that w is taken
positive toward the axis of the eylinder. The slope at the loaded end is

1 Observing the fact that the system of forees applied at the end of the pipe is a
balanced one and that the length of the pipe may be incereased at will, this follows also
from the prineiple of S8aint-Venant; see, for example, 8. Timoshenko and J. N. Goodier,
“Theory of Klasticity,” 2d ed., p. 33, 1951,
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obtained by differentiating expression (278). This gives

dw e P

<Zl—£> "D [28M ¢ cos Bz + Qo(cos Bz + sin Bz)].—o

= sgp C8M0 + Q) (250)

By introducing the notation
¢(Bx) = e P*(cos Bx + sin Bx)
Y(8x) = e #(cos Bz — sin Bx)
8(Bx) = eP* cos Ba
¢(Bx) = e sin Bz

the expressions for deflection and its consecutive derivatives can be
represented in the following simplified form:

(281)

W= = ot (BMw(82) + Qui(E0)

d 1

E%) = 95D [28Mo0(Bx) + Qoe(B2)] 59
da? 1

T =~ 53 280 ee(82) + 2Qu5(60)]

d’w

i

1
T = 128Mut(B2) — Qub(82)]

The numerical values of the functions ¢(Bx), ¢(8z), 8(8x), and ¢(8x) are
given in Table 84. The functions ¢(8x) and ¥(8z) are represented graph-
ically in Fig. 237. It is secen from these curves and from Table 84

-0.4
-0.2

0 Bx
ozl /.
0.4
[ /
0.6 .
ool 1/
1.0 A
0 5

1 2 3 4
Fia. 237

r¥

that the functions defining the bending of the shell approach zero as the
quantity 8z becomes large. This indicates that the bending produced in
the shell is of a local character, as was already mentioned at the beginning
when the constants of integration were calculated.

If the moment M, and the deflection w are found from expressions

' The figures in this table are taken from the book by H. Zimmermann, “Die
Berechnung des Eisenbahnoberbaues,” Berlin, 1888,
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(282), the bending moment M, is obtained from the first of the equa-
tions (f), and the value of the force N, from Eq. (¢). Thus all neces-
sary information for calculating stresses in the shell can be found.

115, Particular Cases of Symmetrical Deformation of Circular Cylin-
drical Shells. Bending of o Long Cylindrical Shell by a Load Uniformly
Distributed along a Circular Section (Fig. 238). If the load is far enough
from the ends of the cylinder, solution (278) can be used for each half of

(a) (v)
Fia. 238

the shell. From considerations of symmetry we conclude that the value
of Q¢ in this case is — /2. We thus obtain for the right-hand portion

w = 531) [Bﬂ[o(qm Bz — cos Bz) -l— cos Bx] (a)

where x is measured from the cross section at which the load is applied.
To calculate the moment M, which appears in expression (a) we use
expression (280), which gives the slope at x = 0. In our case this slope
vanishes because of symmetry. Hence,

])
28M,y — 5 = 0
and we obtain
My=L ®)
46

Substituting this value in expression (a), the deflection of the shell
becomes

P
8,83D (%m Bx + cos Bx) = 85D ¢(Bx) (283)
and by differentiation we find

dw P . P
= —928 — ¢ B= —
e B8 ggp ¢ sin Bz vE)) ¢(Bx)
I _ P
Fr 28 S5°D e~ (gin Bx — cos Bz) = %—Dw(ﬁx) (c)
d*w

P P
W = 463 gﬁs“-ﬁ 6_‘9z cOoS Bx = E G(BLE)
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TasLE 84, TABLE oF FUNCTIONS ¢, ¢, 6, AND {

Bz e 2 0 e

0 1.0000 1.0000 1.0000 0

0.1 0.9907 0.8100 0.9003 0.0903
0.2 0.9651 0.6398 0.8024 0.1627
0.3 0.9267 0.4888 0.7077 0.2189
0.4 0.8784 0.3564 0.6174 0.2610
0.5 0.8231 0.2415 0.5323 0.2908
0.6 0.7628 0.1431 0.4530 0.3099
0.7 0.6997 0.0599 0.3798 0.3199
0.8 0.6354 —0.0093 0.3131 0.3223
0.9 0.5712 —0.0657 0.2527 0.3185
1.0 0.5083 —0.1108 0.1988 0.3096
1.1 0.4476 —0.1457 0.1510 0.2967
1.2 0.3899 —0.1716 0.1091 0.2807
1.3 0.3355 —0.1897 0.0729 0.2626
1.4 0.2849 —0.2011 0.0419 0.2430
1.5 0.2384 —0.2068 0.0158 0.2226
1.6 0.1959 —0.2077 —0.0059 0.2018
1.7 0.1576 —0.2047 —0.0235 0.1812
1.8 0.1234 —0.1985 —0.0376 0.1610
1.9 0.0932 —0.1899 —0.0484 0.1415
2.0 0.0667 —-0.1794 —0.0563 0.1230
2.1 0.0439 —0.1675 —0.0618 0.1057
2.2 0.0244 —0.1548 —0.0652 0.0895
2.3 0.0080 —0.1416 —0.0668 0.0748
2.4 —0.0036 —0.1282 —0.0669 0.0613
2.5 —0.0166 —0.1149 —0.0658 0.0492
2.6 —0.0254 —0.1019 —0.0636 0.0383
2.7 —0.0320 —0.0895 —0.0608 0.0287
2.8 —0.0369 —0.0777 —0.0573 0.0204
2.9 —0.0403 —0.0666 —-0.0534 0.0132
3.0 —0.0423 —0.0563 —0.0493 0.0071
3.1 —0.0431 —0.0469 —0.0450 0.0019
3.2 —0.0431 —0.0383 —0.0407 —0.0024
3.3 —0.0422 —0.0306 —0.0364 —0.0058
3.4 —0.0408 —0.0237 —0.0323 —0.0085
3.5 —0.0389 —0.0177 —0.0283 —0.0106
3.6 —0.0366 —0.0124 —0.0245 —-0.0121
3.7 —0.0341 —0.0079 —0.0210 —0.0131
3.8 —0.0314 —0.0040 —0.0177 —0.0137
3.9 —0.0286 —0.0008 —0.0147 —0.0140
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TapLE 84. TABLE OoF FUNCTIONS ¢, ¢, 8, aAND { (Continued)

Bz @ 12 0 ¢

4.0 —0.02568 0.0019 —0.0120 —0.0139
4.1 —0.0231 0.0040 —0.0095 —0.0136
4.2 —0.0204 0.0057 —0.0074 —0.0131
4.3 —0.0179 0.0070 —0.0054 —0.0125
4.4 —0.0155 0.0079 —0.0038 —0.0117
4.5 —0.0132 0.0085 —0.0023 —0.0108
4.6 —0.0111 0.008%9 —0.0011 —0.0100
4.7 —0.0092 0.0090 0.0001 —0.0091
4.8 —0.0075 0.0089 0.0007 —0.0082
4.9 —0.0059 0.0087 0.0014 —0.0073
5.0 —0.0046 0.0084 0.0019 —0.0065
5.1 —0.0033 0.0080 0.0023 —0.0057
5.2 —0.0023 0.0075 0.0026 —{0.0049
5.3 —0.0014 0.0069 0.0028 —0.0042
5.4 —0.0006 0.0064 0.0029 —0.0035
5.5 0.0000 0.0058 0.0029 —0.0029
5.6 0.0005 0.0052 0.0029 —0.0023
5.7 0.0010 0.0046 0.0028 —0.0018
5.8 0.0013 0.0041 0.0027 —0.0014
5.9 0.0015 0.0036 0.0026 —0.0010
6.0 0.0017 0.0031 0.0024 —0.0007
6.1 0.0018 0.0026 0.0022 —0.0004
6.2 0.0019 0.0022 0.0020 —0.0002
6.3 0.0019 0.0018 0.0018 +0.0001
6.4 0.0018 0.0015 0.0017 0.0003
6.5 0.0018 0.0012 0.0015 0.0004
6.6 0.0017 0.0009 0.0013 0.0005
6.7 0.0016 0.0006 0.0011 0.0006
6.8 0.0015 0.0004 0.0010 0.0006
6.9 0.0014 0.0002 0.0008 0.0006
7.0 0.0013 0.0001 0.0007 0.0006

Observing from Eqgs. (b) and (f) of the preceding article that
*w d*w
N—&.R“‘b&lﬁmﬂ @alld%
we finally obtain the following expressions for the bending moment and
shearing force:

P P
M. =g 06) Q= — 5 0(e) (284)
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The results obtained are all graphically represented in Fig. 239.
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It is

scen that the maximum deflection is under the load P and that its value

as given by Eq. (283) is

%
— _ P PaB -
55 , s = gD = apn (Y
\ / 88D #@) The maximum bending moment is
- dw P also under the load and is deter-

~N B8 T ‘ﬁg‘ BX)  mined from Eq. (284) as
1o NO

A M. = 5 (286)

T TN\ .
7 My = 11% ¥ (%) The maximum of the absolute value
= of the shearing force is evidently
K28 equal to P/2. The values of all
o these quantities at a certain dis-
/ Qf-ﬂe(ﬁx) tance from the load can be readily
Fro. 230 2 obtained by using Table 84. We

1G.

see from this table and from [ig.

239 that all the quantities that determine the bending of the shell are small

for x > w/B.

This fact indicates that the bending is of a local character

and that a shell of length [ = 27/8 loaded at the middle will have practi-
cally the same maximum deflection and the same maximum stress as a very

long shell.

Having the solution of the problem for the case in which a load is con-

centrated at a circular cross section, we can
readily solve the problem of a load dis-
tributed along a certain length of the cylinder

by applying the principle of superposition.
As an example let us consider the case of a

load of intensity ¢ uniformly distributed
along a length [ of a cylinder (Fig. 240).

Assuming that the load is at a considerable
distance from the ends of the eylinder, we can
use solution (283) to calculate the deflections.

Wiz

Fia. 240

The deflection at a point A produced by an elementary ring load of an
intensity?! ¢ d¢ at a distance £ from A is obtained from expression (283)
by substituting ¢ d¢ for P and ¢ for z and is

gdf
833D

e*¥(cos B¢ -+ sin B§)

The deflection produced at A by the total load distributed over the

1q dg is the load per unit length of circumference.
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length [ is then

/ 8&16(3% ePE(cos Bt 4+ sin B%) + / 8%’3}‘% ~88(cos BE - sin BE)

= qah (2 — e® cos Bb — eF¢ cos Be)

The bending moment at a point A can be calculated by similar appli-
cation of the method of superposition.

Cylindrical Shell with ¢ Uniform Internal Pressure (Fig. 241). If the
edges of the shell are free, the internal pressure p produces only a hoop
stress
pa
D

Ty =

and the radius of the cylinder increases by the amount

ao, _ pa’

=T = mh @)

If the ends of the shell are built in, as shown in I'ig. 241a, they cannot
move out, and local bending occurs at the edges. If the length [ of the

M°: ---------- L-—-mmm--) > = m e 1 --------- >
[¢]
g,HHHH?H x}{;rmufﬂu %
Qo [l P 1—>}<~~1——>‘Q°
T ) _ 2:0 9.z 7 1
ZETE TN 2y IR I,
(a) 4 ()
Fia. 241

shell is sufficiently large, we can use solution (278) to investigate this
bending, the moment M, and the shearing force @, being determined
from the conditions that the deflection and the slope along the built-in
edge © = 0 (Fig. 241a) vanish. According to these conditions, Eqs.
(279) and (280) of the preceding article become

1
—m(ﬁﬂfo-l-Qo) =4
1

587D (26Mo + Qo) =0

where 8 is given by Eq. (d).
Solving for M, and @, we obtain
= 282D5 = -

Q¢ = —483D§ = ~ (287)

Wit

BZ
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We thus obtain a positive bending moment and a negative shearing force
acting as shown in Fig. 241a. Substituting these values in expressions
(282), the deflection and the bending moment at any distance from the
end can be readily caleulated using Table 84,

If, instead of built-in edges, we have simply supported edges as shown
in Fig. 2410, the deflection and the bending moment 3, vanish along the
edege My = 0, and we obtain, by using Eq. (279),

Qu = —28°Ds

By substituting these values in solution (278) the deflection at any dis-
tance from the end can be caleulated.

It was assumed in the preceding discussion that the length of the shell
is large. If this is not the case, the bending at one end cannot be con-
sidered as independent of the conditions at the other end, and recourse
must be had to the general solution (277), which contains four constants
of integration. The particular solution of Iiq. (276) for the case of uni-
form load (Z = —p) is —p/48*'D = —pa?/Kh. The general solution
(277) ean then be put in the following form by the introduetion of hyper-
bolic functions in place of the exponential functions:

_ pat
Fh

+ (C, sin Bz sinh g2 + C; sin Bx cosh Bz
4+ C; cos Bx sinh Bz + C4 cos Bx cosh Bz (e)

If the origin of coordinates is taken at the middle of the eylinder, as shown
in Fig. 241b, expression (¢) must be an even function of . Hence

02:(73:0 (f)

The constants C; and 'y must now be selected so as to satisfy the con-
ditions at the ends. If the ends are simply supported, the deflection and
the bending moment M, must vanish at the ends, and we ohtain

d2
(W)erpp = 0 ((l._;))z:m =0 (9)

Substituting expression (e) in these relations and remembering that
Cy = C; =0, we find

m2
_%%+Clsinasinha+04005acosha=0 )

C, cos a cosh o — Cy sin a sinh @ = 0
where, for the sake of simplicity,

-Bz—l=a @
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From these equations we obtain

o — pal sin « sinh « _pa? 2sin asinh a

'7 Th sin® a sinh? & + cos? a cosh® @ Eh cos 2a + cosh 2a )
o pa? cos « cosh « pa® 2 cos a cosh o

= _

" Eh sin? « sinh? o + cos? « cosh? @ Eh cos 2a + cosh 2«

Substituting the values (7) and (f) of the constants in expression (e) and
observing from expression (275) that

Eh 84atD
@ A= ®)
we obtain
__ b _ 2sinasinha . .
Y7 T 6aDa ( cos 2a + cosh Za B sinh Bz

- ¢cos Bx cosh Bz

_ 2cos acosh a
cos 2a -+ cosh 2a

In each particular case, if the dimensions of the shell are known, the
quantity o, which is dimensionless, can be calculated by means of
notation (z) and q. (275). By substituting this value in expression (1)
the deflection of the shell at any point can be found.

For the middle of the shell, substituting x = 0 in expression (1), we

obtain
plt 2 cos a cosh «
— = - 1 -
(W) z—0 64 Dat ( cos 2a + cosh 2« ()

When the shell is long, « becomes large, the second term in the paren-
theses of expression (m) becomes small, and the deflection approaches
the value (d) calculated for the case of free ends. This indicates that in
the case of long shells the effect of the end supports upon the deflection
at the middle is negligible. Taking another extreme case, viz., the case
when « is very small, we can show by expanding the trigonometric and
hyperbolic functions in power series that the cxpression in parentheses in
Eq. (m) approaches the value 5a*/6 and that the deflection (I) approaches
that for a uniformly loaded and simply supported beam of length [ and
flexural rigidity D.

Differentiating expression (1) twice and multiplying it by D, the bend-
ing moment is found as

cosh Bz cos Bzr

At = ol

dw  pl? sin « sinh «
M.=—=Dos 1 <cos 2a + cosh 2«

cos « cosh «

— sin Bx sinh B:v) (n)

cos 2o + cosh 2«
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At the middle of the shell this moment is
B ﬁ sin « sinh «
4a? cos 2a + cosh 2«

(M) = (0)
It is seen that for large values of «, that is, for long shells, this moment
becomes negligibly small and the middle portion is, for all practical pur-
poses, under the action of merely the hoop stresses pa/h.
The case of a cylinder with built-in edges (I'ig. 241a) can be treated in
a similar manner. Going directly to the final result,! we find that the
bending moment 37, acting along the built-in edge is
p sinh 2o — sin 2« P
Mo = 282 sinh 2a 4+ sin 2« - 2432 x2(2a) (288)
sinh 2o — sin 2«
sinh 2a 4+ sin 2«
In the case of long shells, « is large, the factor x:(2«) in expression (288)
approaches unity, and the value of the moment approaches that given
by the first of the expressions (287). Ifor shorter shells the value of the
factor x2(2a) in (288) can be taken from Table 85.

where x2(2a) =

TABLE 85
2a x1(2e) x2(2a) xs(2a)
0.2 5.000 0.0068 0.100
0.4 2.502 0.0268 0.200
0.6 1.674 0.0601 0.300
0.8 1.267 0.1065 0.400
1.0 1.033 0.1670 0.500
1.2 0.890 0.2370 0.596
1.4 0.803 0.3170 0.689
1.6 0.755 0.4080 0.775
1.8 0.735 0.5050 0.855
2.0 0.738 0.6000 0.925
2.5 0.802 0.8220 1.045
3.0 0.893 0.9770 1.090
3.5 0.966 1.0500 1.085
4.0 1.005 1.0580 1.050
4.5 1.017 1.0400 1.027
5.0 1.017 1.0300 1.008

Cylindrical Shell Bent by Forces and Moments Distributed along the
Edges. In the preceding scction this problem was discussed assuming

! Both cases are discussed in detail by I. G. Boobnov in his “Theory of Structure
of Ships,” vol. 2, p. 368, St. Petersburg, 1913. Also included are numerical tables
which simplify the caleulations of moments and deflections.
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that the shell is long and that each end can be treated independently.
In the case of shorter shells both ends must be considered simultaneously
by using solution (e¢) with four constants of integration. Proceeding as
in the previous cases, the following results can be obtained. For the
case of bending by uniformly distributed shearing forces @, (Fig. 242a),
the deflection and the slope at the ends are

2Qo8a% cosh 2a + cos 20 20QBa’

= — = = 2
()20, Eh  sinh 2¢ + sin 2« Eh x1(2a) (289
dw I 2Qo8%? sinh 2a — sin 2a n 2Q 5% @ )
@t )ooo = T ER snh2a Fsnda - ER X3
In the case of bending by the moments A7y (I'ig. 2420), we obtain
(w) __ 2M8%a? sinh 2o — sin 2a . ZJ[082a2 9
Wemtzt = Eh smb2a fenZa ~  Eh 290
dw B 41[083(1 cosh 2a — cos 2a n 4 (B%a? (290)
drv Jecoer Eh sinh 20 + sin 2~ Eh x3(20)

In the case of long shells, the factors xi, x2, and x; in expressions (289)
and (290) are close to unity, and the results coincide with those given by

Qo Qo M M
y > N
z h* X AL 1/
pe- - - - - 1-mes > i Z 1 - >
- Qd -
Qo YQ J_{'M MJ
(o) ° (v °
Fra. 242

expressions (279) and (280). To simplify the calculations for shorter
shells, the values of functions xi, xs, and x; are given in Table 85.

Using solutions (289) and (290), the stresses in a long pipe reinforced
by equidistant rings (Iig. 243) and submitted to the action of uniform
internal pressure p can be readily discussed.

Assume first that there are norings. Then, under the action of internal
pressure, hoop stresses o, = pa/h will be produced, and the radius of the
pipe will increase by the amount

pa?
5 = 22
Lh
Now, taking the rings into consideration and assuming that they are abso-

lutely rigid, we conclude that reactive forces will be produced between
each ring and the pipe. The magnitude of the forces per unit length of
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the circumference of the tube will be denoted by P. The magnitude of
P will now be determined from the condition that the forces P produce a
deflection of the pipe under the ring cqual to the expansion & created by
the internal pressure p. In calculating this deflection we obgerve that a
portion of the tube between two adjacent rings may be considered as the
shell shown in Tig. 242a and b. In this case Q¢ = —1P, and the mag-
nitude of the bending moment M, under a ring is determined from the
condition that dw/dx = 0 at that point.

r-:._l_-_ _:]L . Hence from Eqs. (289) and (290) we find
b T
it 1 P3%a? 4 M oB%a?
!': :L:f i T x2(2a) + —12%— x3(2e) = 0
i i
! ::| from which
=== 'V S Px2(2a)
Fia. 243 Mo = 48x3(2a) 2

If the distance [ between the rings is large,’ the quantity
S —
2a = Bl = —=/3(1 — »?
a=8 ah v ( V)

is also large, the functions x2(2«) and x;(2«) approach unity, and the
moment M, approaches the value (286). For ecalculating the force P
entering in Eq. (p) the expressions for deflections as given in Eqs. (289)
and (290) must be used. These expressions give

PBa*  (auy — LBV G _ o pa?
o/ 25h x5(2e) ~ ° T Ik
1 x:(2a) ] algh
> . AL a4 e o
or PB [xl(Za 5 X3<2a)_| D v (291)
For large values of 2« this reduces to
PBa? s
2Eh

which coincides with Eq. (285). When 2« is not large, the value of the
reactive forces P is calculated from Eq. (291) by using Table 85. Solv-
ing Bq. (291) for P and substituting its expression in expression (p),
we find

M, = % x2(2a) (292)

This coincides with expression (288) previously obtained for a shell with
built-in edges.
To take into account the extension of rings we observe that the reactive

1 For » = 0.3, 2¢ = 1.285(//ah.
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forces P produce in the ring a tensile force Pa and that the corresponding
increase of the inner radius of the ring is!

Pa?

¥

where A is the cross-sectional area of the ring. To take this extension
into account we substitute § — 8; for § in Eq. (291) and obtain

1x@a)] _ . Ph .

From this equation, P can be readily obtained by using Table 85, and
the moment found by substituting p — (Ph/A) for p in Kq. (292).

If the pressure p acts not only on the cylindrical shell but also on the

ends, longitudinal forees

_ pa
NI——2~

are produced in the shell. The extension of the radius of the cylinder is
then

and the quantity p(1 — 1v) must be substituted for p in Kgs. (292) and
(293).

Equations (293) and (291) ean also be used in the case of external
uniform pressure provided the compressive stresses in the ring and in
the shell are far enough from the critical stresses at which buekling may
oceur.?  This case is of practical importance in the design of submarines
and has been discussed by several authors.?

116. Pressure Vessels. The method illustrated by the examples of the
preceding article can also be applied in the analysis of stresses in cylindri-
cal vessels submitted to the action of internal pressure.t In discussing
the “membrane theory” it was repeatedly indicated that this theory fails
to represent the true stresses in those portions of a shell close to the

1Tt is assumed that the cross-sectional dimensions of the ring are small in com-
parison with the radius a.

2 Buekling of rings and eylindrical shells is discussed in 8. Timoshenko, “Theory
of Elastic Stability,” 1936.

3 See paper by K. von Sanden and K. Giinther, “Werft und Reederei,” vol. 1, 1920,
pp. 163-168, 189-198, 216-221, and vol. 2, 1921, pp. 505-510.

18ce also M. Esslinger, “Statische Berechnung von Kesselboden,” Berlin, 1952;
G. Salet and J. Barthelemy, Bull. Assoc. Tech. Maritime Aeronaut., vol. 44, p. 505,
1945: J. L. Maulbetsch and M. Hetényi, ASCE Design Dala, no. 1, 1944, and I".
Schultz-Grunow, Ingr.-Arch., vol. 4, p. 545, 1933; N. L. Svensson, J. Appl. Mechanics,
vol. 25, p. 89, 1958,
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edges, since the edge conditions usually cannot be completely satisfied
by considering only membrane stresses. A similar condition in which
the membrane theory is inadequate is found in cylindrical pressure vessels
at the joints between the cylindrical portion and the ends of the vessel.
At these joints the membrane stresses are usually accompanied by local
bending stresses which are distributed symmetrically with respect to the
axis of the cylinder. These local stresses can be calculated by using
solution (278) of Art. 114.

Let us begin with the simple case of a cylindrical vessel with hemi-
spherical ends (Fig. 244).! At a sufficient distance from the joints mn

Q

Mo

(b)
Fia. 244

and mn; the membrane theory is accurate enough and gives for the
cylindrical portion of radius a

erpz_a N, = pa (@)

where p denotes the internal pressure.

For the spherical ends this theory gives a uniform tensile force

_ pa
N=" (b)

The extension of the radius of the eylindrical shell under the action of

the forces (a) is
L
= (1 z) (©)

and the extension of the radius of the spherical ends is
- P2
do 2% (1 — ) (d)

Comparing expressions (¢) and (d), it can be concluded that if we con-
sider only membrane stresses we obtain a discontinuity at the joints as
represented in Fig. 244b. This indicates that at the joint there must act

' This case was discussed by E. Meissner, Schweiz. Bauztg., vol. 86, p. 1, 1925.
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shearing forces @y and bending moments M, uniformly distributed along
the circumference and of such magnitudes as to eliminate this discon-
tinuity. The stresses produced by these forces are sometimes called
discontinuity stresses.

In calculating the quantities @, and M, we assume that the bending is
of a local character so that solution (278) can be applied with sufficient
accuracy in discussing the bending of the cylindrical portion. The
investigation of the bending of the spherical ends represents a more
complicated problem which will be fully discussed in Chap. 16. Here
we obtain an approximate solution of the problem by assuming that the
bending is of importance only in the zone of the spherical shell close to
the joint and that this zone can be treated as a portion of a long cylindri-
cal shell! of radius @. If the thickness of the spherical and the cylindrical
portion of the vessel is the same, the forces (o produce equal rotations
of the edges of both portions at the joint (I'ig. 244b). This indicates
that M, vanishes and that Q¢ alone is sufficient to eliminate the discon-
tinuity. The magnitude of Q,is now determined from the condition that
the sum of the numerical values of the deflections of the edges of the two
parts must be equal to the difference §; — 8 of the radial expansions
furnished by the membrane theory. Using Eq. (279) for the deflections,
we obtain
Qo — 5 — by = pa*

83D 2Lk
from which, by using notation (275),
_ pGZBaD - —2
Q= "0mE = 8 ©)

Having obtained this value of the force @, the deflection and the bend-
ing moment M, can be calculated at any point by using formulas (282),
which give?

w = ﬁ3D 0(Bx)
_— d*w
M, = —D- s“(Bx)

Substituting expression (¢) for @ and expression (275) for 8 in the
tormula for M., we obtain

M. = = oot o0 ()

t 3. Meissner, in the above-mentioned paper, showed that the ecrror in the mag-
nitude of the bending stresses as caleulated from such an approximate solution is small
for thin hemispherical shells and is smaller than 1 per cent if a/h > 30.

2 Note that the direction of @, in Fig. 244 is opposite to the direction in Fig. 236.
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This moment attains its numerical maximum at the distance x = = /48,
at which point the derivative of the moment is zero, as can be seen from
the fourth of the cquations (282).

Combining the maximum bending stress produced by M. with the
membranc stress, we find

ap ap ap
= - e 1.29
@ = Tt o=t (5) = 19 5 0

This stress which acts at the outer surface of the cylindrical shell is about
30 per cent larger than the membrane stress acting in the axial direction.
In calculating stresses in the circumferential direction in addition to the
membrane stress pa/h, the hoop stress caused by the deflection w as well
as the bending stress produced by the moment M, = »M, must be con-
sidered. Inthis way we obtain at the outer surface of the cylindrical shell

_ap _Bw_ by, _1 . 3
o= = g M- h [1 1 062) + T s“(B )}
Taking » = 0.3 and using Table 84, we find

(Ut>max = 1032%}‘ at va = 185 (h)

Since the membrane stress is smaller in the ends than in the cylinder
sides, the maximum stress in the spherical ends is
always smaller than the calculated stress (h). Thus
the latter stress is the determining factor in the design
of the vessel.

The same method of calculating discontinuity stresses
can be applied in the case of ends having the form of an
ellipsoid of revolution. The membrane stresses in this

. case are obtained from expressions (263) and (264) (see

Fic. 245 page 440). At the joint mn which represents the
equator of the ellipsoid (IFig. 245), the stresses in the

direction of the meridian and in the equatorial direction are, respectively,

a a a? .
O, = %L [’} ph <1 — ()I)2> (1)
The cxtension of the radius of the equator is
L parf, @ v
b= (o0 = ve) = g (1 OTE 2>

Substituting this quantity for 8, in the previous caleulation of the shear-
ing force Qo, we find

m

2a

)
i
A &

pa? a?

b1 — 8 = Ty o
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and, instead of Eq. (e), we obtain

_ra
Qo = 2578
It is seen that the shearing force @, in the case of cllipsoidal ends is
larger than in the case of hemispherical ends in the ratio a?/b%. The
discontinuity stresses will evidently increase in the same proportion.
For example, taking a/b = 2, we obtain, from expressions (g) and (h),

ap 3ap T ap
[ max:"‘"+_'—'“::: - :2172—
(o) T VEIIEED) ¢ (4) 2h
(¢)ume = 112852
Again, (04)m. 15 the largest stress and is consequently the determining
factor in design.!

117. Cylindrical Tanks with Uniform Wall Thickness. If a tank is sub-
mitted to the action of a liquid pressure, as shown in Fig. 246, the stresses
in the wall can be analyzed by using lq. (276). Substituting in this
equation

Z = —y(d — 1) (@)
where v is the weight per unit volume of the liquid, we obtain
di’v 4y — y(d _;T,) lmmom e 0 e
d.’l?4 N 46 v D (b) :—_—::i_—:j—r
A particular solution of this equation is b 1
_ yd - _ = e d
Vi T i T Bh @ |, 5
. . . ) Mol
This expression represents the radial expansion z Q [
7 TR

of a cylindrical shell with free edges under the
action of hoop stresses. Substituting expres-
sion (¢) in place of f(x) in expression (277), we obtain for the complete solu-
tion of Eq. (D)

_y(d — w)e?

w = ef(Cy cos Br + Cysin Bx) + e=#°(C5 cos Bx 4 Cysin Br) T

Fia. 246

In most practical cases the wall thickness A is small in comparison with
both the radius ¢ and the depth d of the tank, and we may consider the
shell as infinitely long. The constants Ci and C; are then equal to zero,

1 More detail regarding stresses in boilers with ellipsoidal ends can be found in the
book by Hohn, “Uber die Festigkeit der gewdlbten Biden und der Zylinderschale,”
Zirich, 1927. Also included are the results of experimental investigations of dis-
continuity stresses which are in a good agreement with the approximate solution.
See also Schultz-Grunow, loe, cit.
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and we obtain

— %
w = ¢#(C, cos Br + Cysin Bx) — 'L(Q—E_ﬁ@i (d)

The constants C; and C, can now be obtained from the conditions at the
bottom of the tank. Assuming that the lower edge of the wall is built
into an absolutely rigid foundation, the boundary conditions are

(W)omo = C; — %‘% =0
(%)z=o == [~ BC;eP=(cos B + sin Bz)
4 BCeP*(cos Br — sin Bx) + %%2]#0 = B8(Cy — C3) + }—:%2 =0
From these equations we obtain

_ yaid _yarf, 1
~Eh 04"Eh<d 3)

Expression (d) then becomes

Cs

ya?

W= = {d—-x—e—ﬂx[dcosﬁx—!-(d—%)Sinﬁﬂﬁ“

from which, by using the notation of Eqs. (281), we obtain

w= =T =5 a0 - (1 - 1) €60 | @

From this expression the deflection at any point can be readily calculated

by the use of Table 84. The force N, in the circumferential direction is
then

N, = _ETT”_=W(1[1 -—g——f)(ﬁx) —(1 —%)?(Bx)] 6

From the second derivative of expression (e) we obtain the bending
moment

dZ 2 2, 2Dd l
M= -DY = % [—;(Bx) + (1 ~ @) e(ﬁx)}

— ___vadh — (s — 1\ o2
= vm[ s“(ﬁ’x)—!-(l B_d)e(/n)] o

Having expressions (f) and (¢), the maximum stress at any point can
readily be calculated in cach particular case. The bending moment has
its maximum value at the bottom, where it is equal to

1 vadh
o= My = (1 — L)y ___xadh h
(M) (- ®) v Q)
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The same result can be obtained by using solutions (279) and (280)
(pages 469, 470). Assuming that the lower edge of the shell is entirely
free, we obtain from expression (c)

_ _yad dwy _ve? )
W1)emo = = “pp (?H)I:o ~ Th @

To eliminate this displacement and rotation of the edge and thus satisfy
the edge conditions at the bottom of the tank, a shearing force @, and
bending moment M, must be applied as indicated in Fig. 246. The
magnitude of each of these quantities is obtained by equating expressions
(279) and (280) to expressions (7) taken with reversed signs. This gives

1 . _ yaid
1 _ ya?
sgep 28Mo+ Q) = — pp

From these equations we again obtain expression (h) for My, whereas for
the shearing force we find!

yadh 1 .

Qo = - —— 26 —_— _ (])
VI12(1 — »?) d

Taking, as an example, ¢ = 30 ft, d = 26 ft, h = 14 in., v = 0.03613 b per in.3,

and » = 0.25, we find 8 = 0.01824 in."* and Bd = 5.691. TFor such a value of gd our

assumption that the shell is infinitely long results in an accurate value for the moment

and the shearing force, and we obtain from expressions

(7) and (j) feomommes DY P—— !
Mo = 13,960 in.-1b per in. Qo = —563.6 1b per in- —_— =

|
|
|
|
|
X

In the construction of steel tanks, metallic sheets of ™M T
several different thicknesses are very often used as l
shown in Fig. 247. Applying the particular solution m; i
(c) to each portion of uniform thickness, we find that 'L
the differences in thickness give rise to discontinuities 7
in the displacement w; along the joints mn and min,. g b

These discontinuities, together with the displace- Fic. 247
ments at the bottom b, can be removed by apply-
ing moments and shearing forces. Assuming that the vertical dimension of each
portion is sufficiently large to justify the application of the formulas for an infinitely
large shell, we calculate the discontinuity moments and shearing forces as before by
using Egs. (279) and (280) and applying at each joint the two conditions that the
adjacent portions of the shell have equal deflections and a common tangent. If the
use of formulas (279) and (280) derived for an infinitely long shell cannot be justified,
the general solution containing four constants of integration must be applied to each
portion of the tank. The determination of the constants under such conditions
becomes much more complicated, since the fact that each joint cannot be treated

my

I\ O I

1 The negative sign indicates that @, has the direction shown in Fig. 246 which is
opposite to the direction used in Fig. 236 when deriving expressions (279) and (280).
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independently necessitates the solution of a system of simultaneous equations. This
problem can be solved by approximate methods.?

118. Cylindrical Tanks with Nonuniform Wall Thickness. In the case of tanks of
nonuniform wall thickness the solution of the problem requires the integration of
Eq. (273), considering the flexural rigidity D and the thickness 4 as no longer constant
but as functions of z. We have thus to deal with a linear diffcrential equation of
fourth order with variable cocfficients. As an example, let us consider the ease when
the thickness of the wall is a linear function of the coordinate z.* Taking the origin
of the coordinates as shown in Fig. 248, we have for the thickness of the wall and for
the flexural rigidity the expressions

5 Eqd s
= aX = ——— 7
@ 1201 = ») (@)
and Eq. (273) becomes
Ay 12— 120 ey ) ®)
dz? dx? alg? ’ Ead
The particular solution of this equation is
‘ atlx — xg
[ Z ¢} w, = — L
A T 1 T z (c)
-0 J * ! %o This solution represents the radial expansion of a shell
‘ j X with free edges under the internal pressure v(x — zo)-
I S 1 Ly As a result of the displacement (c) a certain amount of
— - — — 0 bending of the generatrices of the cylinder occurs.
{ The corresponding bending moment is
¥ d
d2w 202
] : M, = —pPrr . valatto @)
\{ ; di? 6(1 — »¥)
L/ /// ¥ This moment is independent of x and is in all practical
RN 2‘a _________ > cases of such small magnitude that its action can

usually be neglected.
To obtain the complete solution of Eq. (b) we have
to add to the particular solution (¢} the solution of the homogeneous equation

d? 3d%v 4 12(1 — »2) o
— | 23— BRI =
dx? dz? o?a? w

L An approximate method of solving this problem was given by C. Runge, Z. Math.
Physik, vol. 51, p. 254, 1904. This method was applied by K. Girkmann in a design
of a large welded tank; see Stahlbau, vol. 4, p. 25, 1931.

* H. Reissner, Beton u. Eisen, vol. 7, p. 150, 1908; see also W. Fligge, “Statik und
Dynamik der Schalen,” 2d ed., p. 167, Berlin, 1957. For tanks slightly deviating
from the cylindrical form see K. Federhofer, Osterr. Bauzeitschrift, vol. 6, p. 149, 1951;
and for tanks with thickness varying in accordance with a quadratic law, see Feder-
hofer, Usterr. Ingr.-Arch., vol. 6, p. 43, 1952. A parameter method, akin to that
explained in Art. 40, has been used by H. Faure, Proc. Ninth Congr. Appl. Mech.
Brussels, vol. 6, p. 297, 1957. Many data regarding the design of water tanks arc
found in W. 8. Gray, “Reinforced Concrete Reservoirs and Tanks,” London, 1954,
and in V. Lewe, “Handbuch fiir Eisenbetonbau,”’ vol. 9, Berlin, 1934,
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which, upon division by z, can be also written
1d( dw 12(1 — »2)
e | 3 Sl = 0
x dz? <x dxz) + a?a? v ©

The solution of this equation of the fourth order can be reduced to that of two equa-
tions of the second order! if we observe that

1 a2 d2w 1d d|l1ld dw
iy S Siiagl RSNty SV Siadll el 6 Sustud
x dx? dx? z dr dy | x dx dx

For simplification we introduce the following symbols:

id dw
Lw) =~ = (762 EE) 6
12(1 — »?)
pt = R 0
Equation (e) then becomes
LiL(w)} + pw = 0 (h)

and can be rewritten in onc of the two following forms:

LIL(w) + ip2w] — ipYL(w) + ip®w] = 0 @)
LiL(w) — dp20] + ip¥L(w) — ip2w] = 0 ?
where 7 = \/—-1.
We see that Eq. (k) is satisfied by the solutions of the second-order equations
L{w) + ip*w =0 ()
Lw) — ip*w =0 k)
Assuming that
wy = ¢1 + ies Wy = @3 + io4 O]
are the two linearly independent solutions of Eq. (j), it can be seen that
Wz = @1 — L2 and Wy = @3 — iy (m)

are the solutions of Eq. (k). All four solutions (I) and (m) together then represent
the complete system of independent solutions of Eq. (k). By using the sums and the
differences of solutions (/) and (m), the general solution of Eq. (%) can be represented
in the following form:

w = Cip1 + Capz + Cs0s + Cipq (n)
in which Cy, . . ., C, are arbitrary constants. Thus the problem reduces to the
determination of four functions ¢1, . . . , ¢4, which can all be obtained if the com-

plete solution of either Eq. (j) or Eq. (k) is known.
Taking Eq. (j) and substituting for L(w) its meaning (f), we obtain

P 122 i = 0 @
— — 41 = 0
® dx? dz i

1 This reduction was shown by G. Kirchhoff, “Berliner Monatsberichte,” p. 815,
1879; see also 1. Todhunter and K. Pearson, * A History of the Theory of Elasticity,”
vol. 2, part 2, p. 92.
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By introducing new variables

Eq. (o) becomes

dz2 d
J+ni+<n — ¢ = )

We take as a solution of this equation the power scries
Si1=a0+am+am?4 (s)

Substituting this series in Eq. (r) and equating the coefficients of each power of 7 to
zero, we obtain the following relation between the coefficients of series (s):

2 — 1)@ + Aug =0 @)

Applying this equation to the first two coeflicients and taking a_, = a_» = 0, we find
that ao = 0 and that «¢, can be taken equal to any arbitrary constant. Calculating
the further coefficients by means of Eq. (f), we find that series (¢) is

7* 7"
4.6 2-(4-6)2 8

c=c%[1~—+2 +--~]=C'J1(17) @)

where J(n) is the Bessel function of the first kind and of the first order. For our
further discussion it is advantageous to use the relation

.4 _17_ 774 _ "76 .- . —.—%
Ji(g) = dn[l 22 + (2 - 4)2 (2.4-6)2+ ]— dn ®

in which the series in brackets, denoted by Jo, is the Bessel function of the first kind
and of zero order. Substituting the expression 2p iz for 7 [see notation (p)] in
the series representing Jo(n) and collecting the real and the imaginary terms, we
obtain

Jo(n) = ¥1(2p Vz) + 2(2p V') (w)
where

2o Vo)t (2 Vo)

(20 V) =1 — =

(2 - 4)2 (2-4-6-8)2

z _ (294)
B . 0 Ve B VA R 3
ne 2 2462 (2-4-6-8-10)
The solution (u) then gives
= —C'[¥i(20 Vo) + 520 V)] (@)

where ¢, and ¥, denote the derivatives of the functions (294) with respect to the

argument 2p \/x
The second integral of Eq. (r) is of a more complicated form. Without derivation
it can be represented in the form

e = C"[W3(20 VE) + )20 V)] ®")
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TaBLE 86. TABLE oF THE ¢(z) FUNCTIONS

— b

e

COoOO0oCcOo coooCc

LW WL w WL WW NN I VI I SR

.00
.10
.20
.30
.40

50
60

.80
.90

.00
.10
.20
.30
.40

.50
.60
.70
.80
.90

.00
.10
.20
.30
.40

50

.60

70

.80
.90

.00
.10
.20
.30
.40
.50
.60
.70
.80
.90

(@) Ya(z) Lﬁi%(i) )
x dx
+1.0000 0.0000 0.0000 0. 0000
+1.0000 —0.0025 —0.0001 —0.0500
+1.0000 —0.0100 —0.0005 —0. 1000
-+0.9999 —0.0225 —-0.0017 —0.1500
+0.9996 —0.0400 —0.0040 —-0.2000
+0.9990 —0.0625 —0.0078 —0.2499
+0.9980 —0.0900 —0.0135 —0.2998
+0.9962 —0.1224 —0.0214 —0.3496
+0.9936 —0.1599 —0.0320 ~0.3991
+0.9808 | —0.2023 | —0.0455 | —0.4485
+40.9844 ~0.2496 —0.0624 —0.4974
4+0.9771 —0.3017 —0.0831 —0.5458
+0.9676 —0.3587 —0.1078 —0.5935
-+0.9554 —0.4204 —0.1370 —0.6403
+0.9401 —0.4867 —-0.1709 —0.6860
+0.9211 —0.5576 —-0.2100 —0.7302
+0.8979 —0.6327 —0.2545 —-0.7727
+0 8700 —0.7120 —0.3048 —0.8131
+0.8367 —0.7953 —0.3612 —0.8509
+0.7975 —0.8821 —0.4238 —0.8857
+40.7517 —0.9723 —-0.4931 —0.9170
+0.6987 —1.0654 —0.5690 —0.9442
+0.6377 ~1.1610 —0.6520 —0.9661
+0.5680 —1.2585 —0.7420 —0.9836
+0.4890 —1.3575 —0.8392 —0.9944
-+0.4000 —1.4572 —0.9436 —0.9983
+0.3001 ~1.5569 —1.0552 —0.9943
+0.1887 ~1.6557 —1.1737 —-0.9815
+0.0651 —1.7529 —1.2993 —0.9589
—0.0714 —1.8472 —1.4315 —0.9256
—0.2214 —1.9376 —1.5698 —0.8804
—0.3855 —2.0228 —1.7141 —0.8223
—0.5644 —2.1016 —1.8636 —0.7499
—0.7584 —2.1723 —2.0177 —0.6621
—0.9680 —2.2334 —2.1755 —0.5577
—1.1936 —2.2832 —2.3361 ~0.4353
—1.4353 -2.3199 —2.4983 —0.2936
—1.6933 —2.3413 —2.6608 —0.1315
—1.9674 —2.3454 —2.8221 4-0.0526
—2.2576 —2.3300 —2.9808 +0.2596

491
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TasLe 86. TaBLE oF THE ¢(x) Funcrions (Continued)

z ¥(z) ¥a(z) (ﬁ%(ﬁ dy2(z)
x di
4.00 —2.5634 -2.2927 —3.1346 +0.4912
4.10 —2.8843 —2.2309 -3.2819 +0.7482
4.20 —3.2195 —2.1422 —3.4199 +1.0318
4.30 —3.5679 ~2.0236 —3.5465 +1.3433
4.40 —3.9283 ~1.8726 —3.6587 +1.6833
4.50 —4.2991 —1.6860 —3.7536 ~+2.0526
4.60 —4.6784 ~1.4610 —3.8280 +2.4520
4.70 —5.0639 —1.1946 —3.8782 +2.8818
4.80 —5.4531 —0.8837 —3.9006 +3.3422
4.90 —5.8429 —0.5251 —3.8910 +3.8330
5.00 —6.2301 ~0.1160 —3.8454 +4.3542
5.10 —6.6107 ~+0.3467 —3.7589 +4.9046
5.20 —6.9803 +0.8658 —3.6270 +5.4835
5.30 —7.3344 +1.4443 —3.4446 +6.0893
5.40 —7.6674 +2.0845 -3.2063 +6.7198
5.50 —7.9736 +2.7890 —2.9070 +7.3729
5.60 — 82466 +3.5597 —2.5409 +8.0453
5.70 —8.4794 +4.3986 -2.1024 +8.7336
5.80 —8.6644 +5.3068 —1.5856 +9.4332
5.90 —8.7937 -+6.2854 -—-0.9844 +410.1394
6.00 —8.8583 +7.3347 —0.2931 +10.3462

in which ¢} and ¢; are the derivatives with respect to the argument 2p \/; of the
following functions:

W2 Va) = 5020 V/3) - : [Rl +log 32"2‘/5 Yo x/aZ)]

o (295)
1 -2 2 -
Vi@e Va) = a2 Vo) + = [RZ +log? ”2 % 012 \/x>]
where
po- (YY) 5B (zp\/E6+ 5(5) (2,)\/5“’_.“
v 2 (3-2)2 2 (5-4-3-2)2 2
o 2 5@ (2 Va\' 8@ (Qp\/xs
2T o 2 (4-3-2)2 2
(O (2,, \/5>”_...
6-5-4-3-22\ 2
1 1 1
S(n)=1+§+§+-~-+;

log 8 = 0.57722
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TasLE 86. TaBLE oF THE ¢(z) Funcrions (Continued)

coooo cosos

N e

e b

50

.90

+0
+0

+0

+0

+0
+0
+0
+0

+0.
—+0.
+0.
+0.
+0.

+0.
+0.
+0.
+0.
+0.

+0.
+0.
+0.
+0.
+0.

+0.
+0.
+0.
+0.
+0.

+0.
+0.
+0.
+0.
+0.

.0705
0614
+0.
.0455
+0.

+0.
+0.
.0220
+0.
+0.

+0.
.0072
.0045
.0022
.0003

¥a(r)

5000
4946
4826
4667
4480

4275
4058
3834
3606
3377

3151
2929
2713
2504
2302

2110
1926
1752
1588
1433

1289
1153
1026
0911
0804

0531

0387

0326
0270

0176
0137

0102

dys(x) dya(z)
val®) dx dz
— 0.0000 + x
—1.5409 —0.0929 +6.3413
—1.1034 —0.1419 +3.1340
—-0.8513 -0.1746 +2.0498
—0.6765 —-0.1970 +1.4974
—0.5449 -0.2121 +1.1585
—0.4412 —0.2216 +0.9273
—0.3574 —0.2268 +0.7582
—0.2883 —0.2286 +0.6286
-0.2308 —0.2276 ~+0.5258
—0.1825 —0.2243 +0.4422
—0.1419 —0.2193 4-0.3730
—0.1076 —0.2129 —+0.3149
—-0.0786 —0.2054 —+0.2656
—-0.0542 —0.1971 +0.2235
—0.0337 —0.1882 +0.1873
—0.0166 —0.1788 —+0.1560
—0.0023 —0.1692 +4-0.1290
+0.0094 —0.1594 +0.1056
+0.0189 —0.1496 +0.0854
+0.0265 —0.1399 +0.0679
+0.0325 -0.1304 +0.0527
-+0.0371 —-0.1210 -+0.0397
+0.0405 —0.1120 —+0.0285
+0.0429 —0.1032 -+0.0189
+0.0444 —0.0948 +0.0109
+0.0451 —0.0868 +0.0039
—+0.0452 —0.0791 —0.0018
+0.0447 -0.0719 —0.0066
+0.0439 —0.0650 —0.0105
+0.0427 —0.0586 —0.0137
—+0.0412 —0.0526 —0.0161
+0.0394 —0.0469 —0.0180
-+0.0376 -~0.0417 —0.0194
+0.0356 —0.0369 —0.0204
—+0.0335 —0.0325 —0.0210
+0.0314 —0.0284 —0.0213
+0.0293 —0.0246 —0.0213
+0.0271 —0.0212 ~0.0210
+0.0251 -—0.0180 —0.0206
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TasLE 86. TaBLE or THE ¢(z) Funcrions (Continued)

z ws() Ya(x) -d‘//;—(z—) dyulz)
z dz
4.00 —0.0014 +0.0230 —0.0152 —0.0200
4.10 —0.0028 +0.0211 —0.0127 —0.0193
4.20 —0.0039 +0.0192 —-0.0104 —0.0185
4.30 —0.0049 +0.0174 —0.0083 —0.0177
4.40 —0.0056 +0.0156 —0.0065 —0.0168
4.50 —0.0062 +0.0140 —0.0049 —0.0158
4.60 —0.0066 +0.0125 —~0.0035 —0.0148
4.70 —0.0069 +0.0110 —0.0023 —0.0138
4.80 | —0.0071 +0.0097 —0.0012 —0.0129
4.90 ;1 —0.0071 -+-0.0085 —0.0003 —0.0119
5.00 —-0.0071 +0.0073 +0.0005 —0.0109
5.10 —0.0070 +0.0063 +0.0012 —0.0100
5.20 —0.0069 +0.0053 +0.0017 —0.0091
5.30 —0.0067 +-0.0044 +0.0022 —0.0083
5.40 —0.0065 +4-0.0037 +0.0025 —0.0075
5.50 —0.0062 +0.0029 40.0028 —0.0067
5.60 —0.0059 -+0.0023 +0.0030 -0.0060
5.70 —0.0056 +0.0017 40.0032 —0.0053
5.80 —0.0053 +0.0012 +0.0033 —0.0047
5.90 —0.0049 +0.0008 +0.0033 —0.0041
6.00 —0.0046 ~+0.0004 +0.0033 —0.0036

Having solutions (a’) and (b') of Eq. (r), we conclude that the general solution (n)
of Eq. (e) is

g‘ 1 ’ ’ ’ o
w= Tz = O V) + Cotiy(20 V2) + Cat(20 V')
z z
+ Ci2o V) ()
Numerical values of the functions ¢y, . . . , ¥4 and their first derivatives are given
in Table 86.1 A graphical representation of the functions ¢, . . . , ¢} is given in

Fig. 249. It is seen that the values of these functions increase or decrease rapidly as
the distance from the end increases. This indicates that in calculating the constants
of integration in solution (¢’) we can very often proceed as we did with functions
(281), i.e., by considering the cylinder as an infinitely long one and using at each
edge only two of the four constants in solution (¢’).

1 This table was calculated by F. Schleicher; see “Kreisplatten auf elastischer
Unterlage,” Berlin, 1926. The well-known Kelvin functions may be used in place
of the functions ¢, to which they relate as follows: y1(z) = ber z, ¢:(z) = — bei z,
Yslx) = —(2/7) keiz, ¥4 = —(2/7) ker z. For more accurate tables of the functions
under consideration see p. 266.
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In applying the general theory to particular cases, the calculation of the consecutive
derivatives of w is simplified if we use the following relations:

1 1 I .
\//1 (E) = ¢2(£) - %\1’1(5)
44 1 7
‘1’2 (5) = “¢1(€) - 231’2(5)
1 @)
P5(H = up) — Ew;(e)
" r,
i () = —y¢a(d) — §¢4(£)

where the symbol £ is used in place of 2p \/;. From cxpression (¢’) we then obtain

E}I. I’]a - r ’ ’ ’

No=~—w= -~ VEHCW () + Ca(®) + Cps(®) + Cu(d] (@)
dw 1 ’ 14
— = = C 2 — 2 1 - Cz 1 2 2
PRVl 0208 — 204D [e0:(8) + 20(8)]

4+ Calgde(®) — 205(O] — Culiga(®) + 20001 ()
dz’w Ea3 - t,. 7

M= =D5 = = ey ValOUEWLE — 406 + 80

— GO~ A () — S¢,(8)
+ OB — 40D + 8D
— Cl(e)(E) — 4B — 8B (g)
dM.  EBeb® )
= st = VEOlen® + 2]
+ ColEpa() — 2B + Caltds(®) + 205(D] + Culepy(®) — (O]} ()

By means of these formulas the deflections and the stresses can be caleulated at
any point, provided the constants Cy, . . ., Cs are determined from the edge condi-

Q: =
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tions. The values of the functions ¢y, . . . , ¥, and their derivatives are to be taken

from Table 86 if 2p V. z < 6. For larger values of the argument, the following
asymptotic expressions are sufficiently accurate:

wi(®) =~ ‘{/12;;5 t/V'2 cos <Tj§ _ g)

galf) =~ — ;/;—.Eaf/v@ sin (% - g)

0 = Vo (52 +5)

S ()

o) ~ ze /3 gin (\5/ LT ) (296)

Y4(§) =~ \/“e yv—cos(\/ 18r>

A

I

2

¥al®)

2 - £ -
’ - —_— “f/\/z 1 TR e —
¥a®) \/; ¢ S <\/2 s)
2 £ ™
4 2 2 o—i/V2 = .
Vi) \[7; ¢ oo (\/2 8)

As an example, consider a cylindrical tank of the same general dimensions as that
used in the preceding article (page 487), and assume that the thickness of the wall varies
from 14 in. at the bottom to 3% in. at the top. In such a casc the distance of the
origin of the coordinates (Fig. 248) from the bottom of the tank is

d + xo = £d = 416 in.

Hence, (2p \/x)mrﬁd = 21.45. For such a large valuc of the argument, the functions
Y1, - . -, ¥sand their first derivatives can be replaced by their asymptotic expressions
(296). The deflection and the slope at the bottom of the tank corresponding to the
particular solution (c) are

1) zemzqtd Ea d + 70 Az Jsmrora Ea (z0 + d)?

Considering the length of the cylindrical shell in the axial direction as very large, we
take the constants C; and €, in solution (¢’) as equal to zero and determine the con-
stants €1 and C2 so as to make the deflection and the slope at the bottom of the shell
equal to zero. These requirements give us the two following equations:

1
Vi
[C:20 V2 220 V7)) = 20120 VD) = Cal20 VT va(20 V/2) %0

ya: d
Ea d + Lo

O 20 VZ) + Cs(0 V&) loorgra =

1
2x \/x
va? Zo

+ 20420 V) earpra = Fa (@ + zo)?
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Caleulating the values of functions 1, ¥» and their derivatives from the asymptotic
formulas (296) and substituting the resulting values in Eqs. (j), we obtain

~va? 1

I}

—~ 269

It

where N

(e ¥/ V2 \/2755) £91.45

Substituting these values of the constants in expression (¢') we find for the bending
moment at the bottom
M, = 13,900 1b-in. per in.

In the same manner, by using expression (h'), we find the magnitude of the shearing
force at the bottom of the tank as

Qo = 527 1b per in.

These results do not differ much from the values obtained ecarlier for a tank with
uniform wall thickness (page 487).

119. Thermal Stresses in Cylindrical Shells. Uwniform Temperature
Distribution. If a cylindrical shell with free edges undergoes a uniform
temperature change, no thermal stresses will be produced. But if the
edges are supported or clamped, free expansion of the shell is prevented,
and local bending stresses are set up at the edges. Knowing the thermal
expansion of a shell when the edges are free, the values of the reactive
moments and forces at the edges for any kind of symmetrical support
can be readily obtained by using Egs. (279) and (280), as was donc in
the cases shown in Fig. 241.

Temperature Gradient in the Radial Direction. Assume that ¢ and ¢
are the uniform temperatures of the cylindrical wall at the inside and the
outside surfaces, respectively, and that the variation of the temperature
through the thickness is lincar. In such a case, at points at a large dis-
tance from the ends of the shell, there will be no bending, and the stresses
can be calculated by using Eq. (51), which was derived for clamped plates
(see page 50). Thus the stresses at the outer and the inner surfaces are

g = 0p — & L;f(%ili_;t)i) (CL)
where the upper sign refers to the outer surface, indicating that a tensile
stress will act on this surface if t1 > f..

Near the ends there will usually be some bending of the shell, and the
total thermal stresses will be obtained by superposing upon (a) such
stresses as are necessary to satisfy the boundary conditions. Let us con-
sider, as an example, the condition of free edges, in which case the stresses
o, must vanish at the ends. In ealculating the stresses and deformations
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in this case we observe that at the edge the stresses (@) result in uni-
formly distributed moments M, (Fig. 250a) of the amount

Ea(h - t2)h2

Mo———"‘—li(—l—___T)‘ (b)

To obtain a free edge, moments of the same magnitude but opposite in
direction must be superposed (Fig. 250b). Hence the stresses at a free
edge are obtained by superposing upon the stresses (a) the stresses pro-
duced by the moments — M (Fig. 2500). These latter stresses can be
readily calculated by using solution (278). From this solution it follows
that

D — 2
(M) e = Ea(ty, — t2)h

(M ) 0 = V(]L/[) o = VE!X(t1 —_ tz)h2
$/e= z)z=

121 — ) G-,
d Kh M, Fha(t, — t2 -
(Nemo = = Bt () = 22 200 = ;ﬁ\/—%_—”) Vit (@)

It is seen that at the free edge the maximum thermal stress acts in the
circumferential direction and is obtained by adding to the stress (a) the
stresses produced by the moment M, and the force N,. Assuming that
ty > ts, we thus obtain
_ Ea(t1 - tz) \/1 - VZ
(U«:)max = 21 ~‘1‘}’)" 1 v+ “—\/g (@)

For » = 0.3 this stress is about 25 per cent greater than the stress (a)
calculated at points at a large distance from the ends. We can therefore
conclude that if a crack will oceur in a brittle

g ———~ Material such as glass due to a temperature
Mo~pr_ ] difference t1 — £o, it will start at the edge and

R Y will proceed in the axial direction. In a similar

" @:ﬂx manner the stresses can also be calculated

° in cases in which the edges are clamped or
'z 5 supported.!

Temperature Gradient in the Axial Direction.
If the temperature is constant through the
thickness of the wall but varies along the length of the cylinder, the pro-
blem can be easily reduced to the solution of Eq. (274).2 Lett = F(x) be
the increase of the temperature of the shell from a certain uniform initial
temperature. Assuming that the shell is divided into infinitely thin rings
by planes perpendicular to the z axis and denoting the radius of the shell by
a, the radial expansion of the rings due to the temperature changeis aaF (z).

Fra. 250

1 Several examples of this kind are discussed in the paper by C. H. Kent, Trans.
ASME, vol. 53, p. 167, 1931.
* See Timoshenko and Lessells, ‘“ Applied Elasticity,” p. 146, 1925.
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This expansion can be eliminated and the shell can be brought toits initial
diameter by applying an external pressure of an intensity Z such that

2f
% = aal(2)
which gives
Eh w
7 = 73‘ F(z) (f)

A load of this intensity entirely arrests the thermal expansion of the shell
and produces in it only circumferential stresses having a magnitude

wo =~ = Bab) @)
To obtain the total thermal stresses, we must superpose on the stresses (g)
the stresses that will be produced in the shell kob o
by a load of the intensity —Z. This latter 21l
load must be applied in order to make the
lateral surface of the shell free from the ex- o4 .
ternal load given by Eq. (f). The stresses :
produced in the shell by the load —Z are ob- ¥
tained by the integration of the differential
equation (276), which in this case becomes

X
]‘_m

dw Ehe K
—— + 4fw = — —— F(2) (h)
dz? Da L}?({O l)

As an example of the application of this
equation let us consider a long cylinder, as
shown in Fig. 251a, and assume that the part
of the cylinder to the right of the cross section (c)
mn has a constant temperature ¢,, whereas that Fra. 251
to the left side has a temperature that decreases linearly to a temperature
t1 at the end z = b according to the relation

to — ti)a
t =ty - G )2

The temperature change at a point in this portion is thus

Fle) =t — to = — &to‘—rm-} 0)

Substituting this expression for the temperature change in Bq. (h), we
find that the particular solution of that equation is

wy = gbg (to — t)x (j)
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The displacement corresponding to this particular solution is shown in
Iig. 251b, which indicates that there is at the scction mn an angle of dis-
continuity of the magnitude

Wi 147

To remove this discontinuity the moments Mo must be applied. Since
the stress ¢, corresponding to the particular solution (j) cancels the
stresses (g), we conclude that the stresses produced by the moments M,
are the total thermal stresses resulting from the above-described decrease
in temperature. If the distances of the cross section mn from the ends
of the eylinder are large, the magnitude of the moment M, can be obtained
at once from kq. (280) by substituting

. dw
o =0 <(E(l‘j:‘l>x:0 = - %% (Lo — 1)

Mo = —8D Z—z (to — t1) 0

to obtain!

Substituting for g its value from expression (275) and taking v = 0.3,
we find that the maximum thermal stress is

6 D
(O-x)max = S)’hf(') == 03:)3 %Cf \/b‘ﬁ(f() - tl) (m)

It was assumed in this calculation that the length b to the end of the
cylinder is large. 1If this is not the case, a correction to the moment (1)
must be calculated ag follows. In an infinitely long shell the moment M,
produces at the distance » = b a moment and a shearing force (Iig. 251¢)?2
that are given by the gencral solution (282) as

Mo = =D = Maolsh)
| e o (n)
(L)'»': = — [) (l 1/75 = - /—rj*l[ 0?(3[))

Since at the distance » = b we have a free edge, it is necessary to apply
there a moment and a force of the magnitude

~ M. = —Mop(Bb)  —Q. = 28M{(8b) (0)
in order to climinate the forces (n) (Fig. 251¢).

LIf ¢, — ¢, is positive, as was assumed in the derivation, M, is negative and thus
has the direction shown in Fig. 251b.

2 The directions 3, and @, shown in Fig. 251c¢ are the positive directions if the
x axis has the direction shown in I'ig. 251a. |
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The moment produced by the forces (o) at the cross section mn gives
the desired correction AM, which is to be applied to the moment (1). Tts
value can be obtained from the third of the equations (282) if we substi-
tute in it — M oo(3b) for Moand —283 o (8b) * for Qy. These substitutions
give

d*w

AM = =D = —Mifp(b)] — 2M (b)) )

As a numerieal example, cousider a cast-iron eylinder having the following dimen-
sions:a = 94t in, h = 1$in, b =4} in.; @ = 101 - 1077 F = 14 - 10° psi,

ty — b = 180°C
The formula (m) then gives
Tmax = 7,720 pSl ((1)

In calculating the correction (p), we have

B
= ———l= —— (in. = 1.
P ath? 281" p
and, from Table 84,
#(Bb) = 0.238 c(Bh) = 0.223
Hence, from Eq. (p),
AM = —My(0.2382 + 2-0.2232) = —~0.156M,

This indicates that the above-calculated maximum stress (¢) must be diminished by
15.6 per cent to obtain the correct maximum valuc of the thermal stress.

The method shown here for the calculation of thermal stresses in the case of a linear
temperature gradient (7) can also be easily applied in cases in which F(z) has other
than a linear form.

120. Inextensional Deformation of a Circular Cylindrical Shell.? 1f
the ends of a thin circular eylindrical shell are free and the loading is not
symmetrical with respect to the axis of the eylinder, the deformation con-
sists prineipally in bending. In such cases the magnitude of deflection
can be obtained with sufficient accuracy by neglecting entirely the strain
in the middle surface of the shell. An example of such a loading con-
dition is shown in Fig. 252. The shortening of the vertical diameter
along which the forces P act can be found with good accuracy by con-
sidering only the bending of the shell and assuming that the middle sur-
face is inextensible.

Let us first consider the limitations to which the components of dis-
placement are subject if the deformation of a cylindrical shell is to be
inextensional. Taking an element in the middle surface of the shell at
a point O and dirccting the coordinate axes as shown in Fig. 253, we shall

* The opposite sign to that in expression (o) is used here, since Eqgs. 282 are derived
for the direction of the z axis opposite to that shown in Fig. 251a.

1 The theory of inextensional deformations of shells is due to Lord Rayleigh, Proc.
London Math. Soc., vol. 13, 1881, and Proc. Roy. Soc. (London), vol. 45, 1889.
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denote by u, v, and w the components in the z, y, and z directions of the
displacement of the point O. The strain in the x direction is then

ou
€ = '55 (a)

In calculating the strain in the circumferential direction we use Eq. (a)
(Art. 108, page 446). Thus,

1o w
=y 6——99 T a7 (b)
The shearing strain in the middle surface can be expressed by
ou v
Y=o = T oe + 55 (c)

which is the same as in the case of small deflections of plates except that
a de takes the place of dy. The condition that the deformation is inexten-

SRR g

b
.__4,;-‘}‘_# .2a
pl-c +{z - P

F1a. 252

sional then requires that the three strain components in the middle surface
must vanish; z.e.,

u Lo w ou v _
7" aae a” " GeetEm 0 @

These requirements are satisfied if we take the displacements in the
following form:

wu, = 0

"mo=a z (@, cos ne — al sin ne)

n=1
. (e)
wy = —a Z n(ay, $in ne + a. cos ne)

n=1

where a is the radius of the middle surface of the shell, ¢ the central
angle, and a, and a), constants that must be calculated for each particular
case of loading. The displacements (e) represent the case in which all
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cross sections of the shell deform identically. On these displacements
we can superpose displacements two of which vary along the length of
the cylinder and which are given by the following series:

©

Ug = —@ E % (b, sin ne + b, cos ny)

n=1
o

vy = X E (by cos ng — bl sin ne) N

n=1
w

Wy = —7 E n(b, sin ne + b, cos ne)

n=1

It can be readily proved by substitution in Eqs. (d) that these expressions
also satisfy the conditions of inextensibility. Thus the general expres-
sions for displacements in inextensional deformation of a cylindrical shell
are

U= Uy + U ? o= v + vy w = W, + we (9)

In calculating the inextensional deformations of a eylindrical shell
under the action of a given system of forces, it is advantageous to use
the energy method. To establish the required expression for the strain
energy of bending of the shell, we begin with
the calculation of the changes of curvature of Fre
the middle surface of the shell. The change )\\«
of curvature in the direction of the generatrix
is equal to zero, since, as can be seen from \
expressions (¢) and (f), the generatrices re- 9s s Ny dw, diw u
main straight. The change of curvature of n/ E‘/ *
the circumference is obtained by comparing Fie. 254
the curvature of an element mn of the circum-
ference (Fig. 254) before deformation with that of the corresponding cle-
ment mn; after deformation. Before deformation the curvature in the
circumferential direction is

as_a6<p a

The curvature of the element mn, after deformation is
d%w
d¢ +‘5g§d8

dor 0t
983 (¢ — w)dy
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Hence the change in curvature is

9w
Wt e de _1(, 0w
Xe = (a — w) do a6¢~a2 de?

By using the second of the equations (d) we can also write

1 fov 9w
Xe = a <5€—0 + 6—¢?> (h)
The bending moment producing this change in curvature is
Do  dw
M, = -2 (5; + Cw)

and the corresponding strain energy of bending per unit area can be calcu-
lated as in the discussion of plates (see page 46) and is equal to

D fov | *w\* D o*w\? .
20° (5; * a?) ~ 20 <“’ * 5,72) ®

In addition to bending, there will be a twist of each element such as
that shown at point O in Fig. 253. In calculating this twist we note that
during deformation an element of a gencratrix rotates! through an angle
equal to —dw/dz about the y axis and through an angle equal to ov/dx
about the z axis. Considering a similar element of a generatrix at a
circumferential distance a d¢ from the first one, we see that its rotation
about the y axis, as a result of the displacement w, is

ow J*w

ar 9o ox d¢ )

The rotation of the same element in the plane tangent to the shell is
i
gl
oLl <8”c>
PR Paal

do
Because of the central angle de between the two clements, the latter
rotation has a component with respect to the y axis equal to?

v
~ 3 de (k)

Trom results () and (k) we conclude that the total angle of twist between
the two elements under consideration is

*w v
— Xz de = — | z7—— + — ) d
Xre 08 <a¢ FER 81:) ¢
1 In determining the sign of rotation the right-hand screw rule is used.
® A small quantity of second order is neglected in this expression.
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and that the amount of strain energy per unit area due to twist is (see
page 47)

DA — ») < 9%w 62})2 0

a® do dxr ' dx

Adding together expressions () and (/) and integrating over the surface
of the shell, the total strain energy of a cylindrical shell undergoing an
inextensional deformation is found to be

_ D [[|( | owY 2(azw v 2J
V—sz—‘*//[<67p+8-‘p§)+2(l v)a 6¢8$+5§> adedx

Substituting for w and » their expressions (¢) and integrating, we find for
a cylinder of a length 20 (Iig. 252) the following expression for strain
energy:

@

Vooap Y L { 2 [a?(a}: b a) g B+ b }

4201 — a2 + b:f>} (207)

This expression does not contain a term with n = 1, since the corre-
sponding displacements

I

v1 = alay cos ¢ — afsin @)

wy = —alarsin ¢ 4+ af cos @)

(m)

represent the displacement of the cirele in its planc as a rigid body. The
vertical and horizontal eomponents of this displacement are found by
substituting ¢ = 7/2 in expressions (m) to obtain

1) prje = —aay (W1)gmrse = —am

Such a displacement does not contribute to the strain energy.
The same conclusion can also be made regarding the displacements
represented by the terms with n = 1 in expressions (f).

Let us now apply expression (297) for the strain encrgy to the calculation of the
deformation produced in a cylindrical shell by two equal and opposite forces P acting
along a diameter at a distance ¢ from the middle! (Fig. 252). These forces produce
work only during radial displacements w of their points of application, 7.e., at the
points z = ¢, ¢ = 0, and ¢ = =. Also, since the terms with coefficients a. and b,
in the expressions for w; and we [sce Eqgs. (¢) and (/)] vanish at these points, only terms
with coefficients a, and b;, will cnter in the expression for deformation. By using the

1 The case of a cylindrical shell reinforced by elastic rings with two opposite forces
acting along a diameter of every ring was discussed by R. 8. Levy, J. Appl. Mechanies,
vol. 15, p. 30, 1948.
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principle of virtual displacements, the equations for calculating the coefficients a,,
and b, are found to be

oV

i sa, = —na sa,(1 + cos nr)P
n

’9[/’ ’ ’

P &b, = -—ncéh, (1 + cos nw)P
)N

Substituting expression (297) for V, we obtain, for the case where n is an even number
? y b

, aP
a, = — - N
n(n? — 1) DI
b = nePad )
" (n? — D)2 DIEn%® + 2(1 — »v)a?)
If n is an odd number, we obtain
a, =b, =0 (o)

Hence in this case, from expressions (¢) and (f),

Pa? ac cos ne
u = i _
C T Dl (n? — D2(in22 + 2(1 — v)a?]
n=24,5,...
Pa3 ‘ 1 + nex .
v = —— : o ;
=Dl ]n(n? — 1) (n? — 1)2{%”212 + 201 = »)a? SN N (p)
n=246,...
Pa? 1 . n:x
w = b i e — T LOR o
xDl (2 — D (n2 — DEEar 4200 — watlf
n=24,6,... '

If the forces I” arc applied at the middle, ¢ = 0 and the shortening of the vertical
diameter of the shell is

s () () 20a3 1 0.1.4¢ Pa®
= (W) . W) oy = —— e = (14 - —
@) © =Dl ("’2 e 201 ('[}
n=24146 .

The increase in the horizontal diameter is

2Pqg? (—1)niztt Pas

81 = —[(®)per ] = , = 0.137 - —

1 (W) perrz = (W) g2l Y TR 0.137 5D ()
n=24,96,...

The change in length of any other diameter can also be readily calculated. The same
calculations can also be made if ¢ is different from zero, and the deflections vary with
the distance z from the middle.

Solution (p) does not satisfy the conditions at the free cdges of the shell, since it
requires the distribution of moments M, = »M, to prevent any bending in meridional
planes. This bending is, however, of a local character and does not substantially
affect the deflections (¢) and (»), which are in satisfactory agreement with experiments.

The method just deseribed for analyzing the inextensional deformation of cylindrical
shells can also be used in caleulating the deformation of a portion of a cylindrical
shell which is cut from a complete eylinder of radius a by two axial sections making
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an angle o with one another (Fig. 2565). For example, taking for the displacements

the series
ad bn . nme
U = - — —sin —
7r n o

nwe nre
v=aqa (1, COS —— + & b, cos —
o o

T . nhwe Tm . hwe
W= — — na, sin — — — nb, sin —
a L o o Ly o

we obtain an inextensional deformation of the shell such that the displacements w
and w and also the bending moments M, vanish along the edges mn and min,. Such
conditions are obtained if the shell is
supported at points mi, n, m;, ny by bars
directed radially and is loaded by a
load P in the plane of symmetry. The
deflcetion produced by this load can be
found by applying the principle of
virtual displacements.

121. General Case of Deformation
of a Cylindrical Shell.! To establish
the differential equations for the dis-
placements w, #, and w which define
the deformation of a shell, we proceed as in the case of plates. We begin
with the equations of equilibrium of an element cut out from the cylindri-
cal shell by two adjacent axial sections and by two adjacent scctions
perpendicular to the axis of the cylinder (Fig. 253). The corresponding
element of the middle surface of the shell after deformation is shown in
Fig. 256a and b. In Fig. 256a the resultant forces and in Fig. 256 the

Fra. 255

! A general theory of bending of thin shells has been developed by A. E. H. Love;
see Phil. Trans. Roy. Soc. (London), ser. A, p. 491, 1888; and his book “Elasticity,”
4th ed., chap. 24, p. 515, 1927; sce also H. Lamb, Proc. London Math. Soc., vol. 21.
For bending of e¢ylindrical shells see also H. Reissner, Z. angew. Math. Mech., vol. 13,
p. 133, 1933; L. H. Donnell, NACA Repi. 479, 1933 (simplificd theory); I&. Torroja
and J. Batanero, “Cubiertos laminares cilindros,” Madrid, 1950; H. Parkus, Osterr.
Ingr.-Arch., vol. 6, p. 30, 1951; W. Zerna, Ingr.-Arch., vol. 20, p. 357, 1952; P. Csonka,
Acta Tech. Acad. Sci. Hung., vol. 6, p. 167, 1953. The effcct of a concentrated load
has been considcred by A. Aas-Jakobsen, Bauingenieur, vol. 22, p. 343, 1941; by
Y. N. Rabotnov, Doklady Akad. Nauk S.8.8.R., vol. 3, 1946; and by V. Z. Vlasov,
“A General Theory of Shells,” Moscow, 1949. For cylindrical shells stiffened by
ribs, sece N. J. Hoff, J. Appl. Mechanics, vol. 11, p. 235, 1944; “H. Reissner Anniver-
gary Volume,” Ann Arbor, Mich., 1949; and W. Schnell, Z. Flugwrss., vol. 3, p. 385,
1955. Anisotropic shells (together with a general theory) have been treated by
W. Fliigge, Ingr.-Arch., vol. 3, p. 463, 1932; also by Vlasov, op. cil., chaps. 11 and 12.
FFor stress distribution around stiffened cutouts, see bibliography in L. 8. D. Morley’s
paper, Nall. Luchtvaarlab. Eappts., p. 362, Amsterdam, 1950. A theory of thick
eylindrieal shells is due to %, Bazant, Proc. Assoc. Bridge Structural Engrs., vol. 4, 1936.
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resultant moments, discussed in Art. 104, are shown. Before defor-
mation, the axes z, y, and z at any point O of the middle surface had the
directions of the generatrix, the tangent to the circumference, and the
normal to the middle surface of the shell, respectively. After defor-
mation, which is assumed to be very small, these directions are slightly
changed. We then take the z axis normal to the deformed middle sur-
face, the = axis in the direction of a tangent to the generatrix, which may
have become curved, and the y axis perpendicular to the 2z plane. The

4 f
7 dMx B ! OMex
Mx+a—x dx MPX+ a)/ dy

()
Fra. 256

directions of the resultant forces will also have been slightly changed
accordingly, and these changes must be considered in writing the equa-
tions of equilibrium of the element OABC.

Let us begin by establishing formulas for the angular displacements of
the sides BC and AB with reference to the sides OA and OC of the cle-
ment, respectively. In these caleulations we consider the displacements
u, v, and w as very small, calculate the angular motions produced by
each of these displacements, and obtain the resultant angular displace-
ment by superposition. We begin with the rotation of the side BC with
respect to the side OA. This rotation can be resolved into three com-
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ponent rotations with respect to the z, y, and z axes. The rotations of
the sides 04 and BC with respect to the z axis are caused by the dis-
placements » and w. Sinee the displacements » represent motion of the
sides OA and BC in the circumferential direction (I'ig. 253), if @ is the
radius of the middie surface of the cylinder, the corresponding rotation
of side 04 about the x axis is v/a, and that of side BC is

1 (v + o dx)
a oz
Thus, owing to the displacements », the relative angular motion of BC
with respect to 0 A about the z axis is
Lo
a ox

(a)

Because of the displacements w, the side OA rotates about the x axis
through the angle dw/(a d¢), and the side BC through the angle

ow 0 ow
a de T dx <a 6(@) dv

Thus, because of the displacements w, the relative angular displace-

ment is
0 dw
e (a—&p) dzx b)

Summing up (@) and (b), the relative angular displacement about the
z axis of side BC with respect to side 04 is

1/ av 02w
a (a + 5}@) a (c)

The rotation about the y axis of side BC with respect to side O A is caused
by bending of the generatrices in axial planes and is equal to
0w
— S da ()
The rotation about the z axis of side BC with respect to side O A4 is due to
bending of the gencratrices in tangential planes and is equal to
a2
e 0o ()
The formulas (¢), (d), and (e) thus give the three components of rotation
of the side BC with respect to the side OA.
Let us now establish the corresponding formulas {or the angular dis-
placement of side AB with respect to side OC. Because of the curvature
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of the eylindrical shell, the initial angle betwecn thesc lateral sides of the
element OABC is dp. However, because of the displacements v and w
this angle will be changed. The rotation of the lateral side OC about

the z axis is

v ow
Pl ade h

The corresponding rotation for the lateral side AB is

v ow d fv ow \
H+ad¢+(7(;<a+a({gp>(/g

Hence, instead of the initial angle dey, we must now use the expression

ov 9*w
de + de (m + afaw) (g)

In calculating the angle of rotation about the y axis of side AB with
respect to the side OC we use the expression for twist from the preceding
article (see page 504); this gives the required angular displacement as

d*w v
(i + 52) de ®
Rotation about the z axis of the side A B with respect to OC is caused by

the displacements » and w. Because of the displacement », the angle of
rotation of side OC is dv/dx, and that of side AB is

o o v
o T aap (55) o de

so that the relative angular displacement is

0 §2) .
m (a) a f{(,') (’L)

Because of the displacement w, the side AB rotates in the axial plane
by the angle dw/dx. The component of this rotation with respect to the
2 axis is

Jw

- = de &)

Summing up (¢) and (j), the relative angular displacement about the
z axis of side AB with respect to side OC is

0% Jw .
(a(p o %) de¢ (k)

Having the foregoing formulas' for the angles, we may now obtain
three equations of equilibrium of the element OABC (Fig. 256) by pro-
jecting all forces on the x, y, and z axes. Beginning with those forces

! These formulas can be readily obtained for a cylindrical shell from the general
formulas given by A. E. H. Love in his book ““Elasticity,”” 4th ed., p. 523, 1927.
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parallel to the resultant forces N, and N,, and projecting them on the
& axis, we obtain

N, ON gz
oz xa dgo W dga dz

Because of the angle of rotation represented by expression (%), the forces
parallel to N, give a component in the x direction equal to

% ow
— N <a¢ o 6x> do a2
Because of the rotation represented by expression (e), the forces parallel
to N, give a component in the x direction equal to

?Vw — Ydva de
ax
I'inally, because of angles represented by expressions (d) and (h), the
forces parallel to ), and ), give components in the z direction equal to

. QRw a*w
-szd.ba de — Q, <3<p e -+ al>d<pdn

Regarding the external forces acting on the element, we assume that
there is only & normal pressure of intensity ¢, the projection of which
on the z and y axes is zero.

Summing up all the projections calculated above, we obtain

()Nz , 0% dw
9 a de _{_, - deodr — N, (6 F (n)dcp dx
VP ivade — 0. % ade — 0, (-2 4 Y dpde =0
’”“’a° ”'; YT Ne\gpar T ax) ¥

In the same manner two other equations of equilibrium can be written.
After simplification, all three equations can be put in the following form:

IN. | ONo 3%
“ 5z T qu Nz 50

v d*w a% ow
- Q¢<$+axa¢> - N“’(axaga —55> =0
aN N a v v d*w
+ d + (ZJV Qx <_ >
or dxr d¢
. 3% ow dv Aw\
+A“’x(ax8 ax) Q“"<1+aa¢+aa¢2>_0

an aQ¢ v a%w
@ or + de +N“< +61 6ga>+ N

av a*w o 9w
+ <1+ +aa¢2>+N¢x(‘(ﬁ+axa¢)+qa

Il
=)
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Going now to the three equations of moments with respect to the z, y,
and z axes (Fig. 256b) and again taking into consideration the small angu-
lar displacements of the sides BC and AB with respect to 04 and OC,
respectively, we obtain the following equations:

M., M, o O 3% ow .
a‘]';“ - 0(‘0 all{x %Q ZL{({,,; (“—‘ax 6¢ - 3;[) + aQ¢ =0

¥ /] 2 i :
Mer o OMs | oar,, 20— Mso( o - 5&0) —aQ. =0

do ox dx? dr de Ox (200)
v d*w 1w o ow
M, <£ + 6".1: ang) -+ aMw &T{ -+ sz <1 + a‘éz + a 6(,02)

2 2
~ M, (g% + 52—%) + a(Ney — Nyo) = 0
By using the first two of these equations! we can eliminate (. and Q,
from Eqgs. (298) and obtain in this way three equations containing the
resultant forces N, N,, and N, and the moments M., M, and M_,.
By using formulas (253} and (254) of Art. 104, all these quantities can be
expressed in terms of the three strain components e, €, and vg, of the
middle surface and the three curvature changes xs, X, and x.,. By
using the results of the previous article, these latter quantities can be
represented in terms of the displacements «, v, and w as follows:?

du L w au v
““3% YT asp a Yo = G ap T

0w 1 fov w 1/0ov o*w (300)
Xe = 53 Xw=?<@+a—¢g> X”":c—l(gz_v_}—&c—é;)

Thus we finally obtain the three differential equations for the determi-
nation of the displacements u, v, and w.

In the derivation equations (298) and (299) the change of curvature
of the element O ABC was taken into consideration. This procedure is
necessary if the forces N., N,, and N, are not small in comparison with
their critical values, at which lateral buckling of the shell may occur.®
If these forces are small, their effect on bending is negligible, and we can
omit from Tgs. (298) and (299) all terms containing the products of the
resultant forces or resultant moments with the derivatives of the small
displacements u, v, and w. In such a case the threc Iigs. (298) and the

1To satisfy the third of these equations the trapezoidal form of the sides of the
element OABC must be considered as mentioned in Art. 104. This question is dis-
cussed by W. Fliigge, “Statik und Dynamik der Schalen,” 2d ed., p. 148, Berlin, 1957.

2 The same expressions for the change of curvature as in the preceding article are
used, since the effcet of strain in the middle surface on curvature is neglected.

3 The problems of buckling of cylindrical shells are discussed in 8. Timoshenko,
“Theory of Elastic Stability,” and will not be considered here.
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first two equations of system (299) can be rewritten in the following
simplified form:

AN, | N,

“or T e 0
N, aNW

WN=e 9, =0

a]l/[zga ‘J[\O .
O TR P

aM . oM, _
a(pﬁ a—ax - an =0

Eliminating the shearing forces @, and Q,, we finally obtain the three
following equations:

N, | N
@ M T e T
aN, N. | oM., 10M, _
o tat ar T ar aae 0 (302)
920, oM,  9M,, 19°M, _
Noet Geoe T 0% " axd, Ta ag e =

By using Eqs. (253), (254), and (300), all the quantities entering in these
equations can be expressed by the displacements %, », and w, and we
obtain

92U 1 —v ()214 14+ v 0% p Ow

0t T var g0t T 94 Gwoe " adw = O
1+V7621;€7 , L—VdQZ) 161) la_w
2 orde 2 a (')(,/ a 9o
h? a%w % R .
* i <8x2 5 @ oo > T 12 [“ T T m] =0 (303)
au v w h d'w d'w ot
T ¢_a_ﬁ< T+afaﬁa<p2 a36¢4>

R (2= O v \ _ _ aq(l —v?)
12 a 9xde | addet) Eh

More elaborate investigations show! that the last two terms on the
left-hand side of the second of these cquations and the last term on the
left-hand side of the third equation are small quantities of the same order
as those which we already disregarded by assuming a linear distribution
of stress through the thickness of the shell and by neglecting the stretch-
ing of the middle surface of the shell (see page 431). In such a case it

L See Vlasov, op. cit., p. 316, and, for more exact equations, p. 257.
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will be logical to omit the above-mentioned terms and to use in analysis

of thin eylindrical shells the following simplified system of equations:
LY 1—u@+1+v % vow
dx? 202 dp® 20 dxde adx

14+ v 0% 1 — v 0% 10% 1ow
2 dvap V0T o Tader ade D (304)
du v w2 w2 Jdw dw ag(1 — »?)
p— F e — — — —la— + = : =
dr ' ade a 12\ ozt a dx? dg? ' ald ot Eh

Some simplified expressions for the stress resultants which are in
accordance with the simplified relations (304) between the displacements
of the shell will be given in Art. 125.

From the foregoing it is seen that the problem of a laterally loaded
cylindrical shell reduces in each particular case to the solution of a sys-
tem of three differential equations. Several applications of these equa-
tions will be shown in the next articles.

122. Cylindrical Shelis with Supported Edges. Let us consider the
case of a cylindrical shell supported at the ends and submitted to the

0
X- ——— M -
o~
' ) Y
¥ v

e 1 e S

)] (b
Fia. 257

pressure of an enclosed liquid as shown in Fig. 257.1 The conditions at
the supports and the conditions of symmetry of deformation will be
satisfied if we take the components of displacement in the form of the

following series:
mre
U = Aomn COS N COS e

2 : z : . . ommx

v = By sin ne sin e (a)
. ommx

E E Crun COS N Sin 7

in which [ is the length of the cylinder and ¢ is the angle measured as
shown in Fig. 257.2

w

1 See 8. Timoshenko, “Theory of Elasticity,” vol. 2, p. 385, St. Petersburg, 1916
(Russian).

® By substituting expressions (a) in Egs. (300) it can be shown that the tensile
forces N, and the moments M, vanish at the ends; the shearing forces do not vanish,
however, since vso and M,, are not zero at the ends.
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The intensity of the load ¢ is represented by the following expressions:

g = —va(cos ¢ — €OS @) when ¢ < a
g=0 when ¢ > «

(b)

in which v is the specific weight of the liquid and the angle « defines the
level of the liquid, as shown in Tig. 257b. The load ¢ can be represented

by the series
g = 22 D,.., cos ne sin m—sz (c)

in which the coefficients D, can be readily calculated in the usual way
from expressions (b). These coefficients are represented by the expression

8ya ) . .
Dy, = — o = 1) (cos @ sin na — n €os na sin a) (d)
where m= 1,35, ... and n=234 ...
4va , .
whereas Dy = — o (sin @ — @ €O8 ) (e)
2va .
and D= — o (2a — sin 2a) N

In the case of a cylindrical shell completely filled with liquid, we denote
the pressure at the axis of the eylinder! by vd; then

q= —x(d+ acos¢) (@
and we obtain, instead of expressions (d), (e), and (f),

wd

mmw mmw

Dmn=0 DmO':— éyg

(h)

To obtain the deformation of the shell we substitute expressions (a)
and (¢) in Eqgs. (304). In this way we obtain for each pair of values of
m and n a system of three linear equations from which the corresponding
values of the coefficients A,n, Bmn, and C,, can be calculated.? Taking a
particular case in which d = a, we find that forn = Gandm = 1,35, . . .
these cquations are especially simple, and we obtain

N
Bo=0 Caom —TTap—— N
3m [)\2(1 — %) + % m“ﬂ-“‘]
) _ 2val®h 1 _h
where N = =D A== n =5

11In a closed eylindrical vessel this pressure can be larger than ay.

2 Such ealeulations have been made for several particular cases by I. A. Wojtaszak,
Phil. Mag., ser. 7, vol. 18, p. 1099, 1934; see also the paper by 1. Reissner in Z. angew.
Math. Mech., vol. 13, p. 133, 1933.
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For n = 1 the expressions for the coeflicients are more complicated. To
show how rapidly the coeflicients diminish as m increases, we include in
Table 87 the numerical values of the coefficients for a particular case in
which @ = 50 cm, [ = 25 em, h = 7 cm, » = 0.3, and a = .

Tasrs 87. Tur VaLues or THE COEFFICIENTS IN IEXPRESSIONS (@)

2.10% c 2.103 2108 B 2108 c 2103
m mo Nk mo Nk m1 Nh m1 Nh mi Nk
1 57 .88 —1,212. 49.18 —66.26 —1,183
3 0.1073 —6.742 0.1051 —0.0432 — 6.704
5 0.00503 —0.526 0.00499 —0.00122 |— 0.525
Tt is seen that the coefficients rapidly diminish as m increases. Hence,

by limiting the number of coeffi-
cients to those given in the table,
we shall obtain the deformation of
the shell with satisfactory accuracy.

123. Deflection of a Portion of
a Cylindrical Shell. The method
used in the preceding article can
also be applied to a portion of a
cylindrical shell which is supported
along the edges and submitted to
the action of a uniformly distrib-
uted load ¢ normal to the surface
(Fig. 258).' We take the compo-
nents of displacement in the form of the series

z : z : . NE mmrx
A pn 81N —— €OS e
o A

Fig. 258

u =
nwe . MmMmwI
v = B, cos §in —— (a)
« l
. nwe . mwx
w = EE (o SIN ITE sin N
(63 5

in which « is the central angle subtended by the shell and [ is the length
of the shell. It can be shown by substitution of expressions (a) in Kqgs.
(300) that in this way we shall satisfy the conditions at the boundary,
which require that along the edges ¢ = 0 and ¢ = a the deflection w,
the force N, and the moment M, vanish and that along the edges z = 0

and z = [ the deflection w, the force N,, and the moment M, vanish.

1 See Timoshenko, “Theory of Elasticity,” vol. 2, p. 386, 1916.
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The intensity of the normal load ¢ can be represented by the series

q = 22 Dy sin "TT" sin ﬁl@ (b)

Substituting series (a) and (b) in Eqs. (304), we obtain the following sys-
tem of linear algebraic equations for calculating the cocflicients A,.., By,
and Cy:

Aot [(@@)2 4+ (1 — V)_nz:l Ny S ( + vjamn + Chn _V_aan -0

{ 2¢? 2al
(1 4+ v)amn (1 = »)a*m> | n? n_
A _‘2;[ + Boar [ 272 + P + Chun a 0 (C)
am nw mh? fa?m? | n*\*| _ a?(l — »?)
AmnVﬂ- T + an ; + Cmn [1 + mg (ﬁ“ + (?) ]_ Dmn T

To illustrate the application of these equations let us consider the case
of a uniformly distributed load?! acting on a portion of a cylindrical shell
having a small angle « and a small sag f = a[l — cos («/2)]. In this
particular case expression (b) becomes

. 16g . mmr . nwe
q = 2 Z ooy Sin = sin — (d)
1,3,5,... 1,3,5,...
and the coefficients D,,, are given by the expression
16q
Dmn = C
mnm? (e)

Substituting these values in Iigs. (¢), we can calculate the coefficients
Amny B, and Cr. The caleulations made for a particular case in which
aa = [ and for several values of the ratio f/h show that for small values
of this ratio, series {a) are rapidly convergent and the first few terms give
the displacements with satisfactory accuracy.

The calculations also show that the maximum values of the bending
stresses produced by the moments M, and M, diminish rapidly as f/h
increases. The calculation of these stresses is very tedious in the case of
larger values of f/h, since the series representing the moments become
less rapidly convergent and a larger number of terms must be taken.

The method used in this article is similar to Navier’s method of calculating bending
of rectangular plates with simply supported edges. If only the rectilinear edges
¢ = 0and ¢ = a of the shell in Fig. 258 are simply supported and the other two edges
are built in or free, a solution similar to that of M. Lévy’s method for the casc of
rectangular plates (sce page 113) cun be applicd. We assume the following series
for the components of displacement:

! The load is assumed to act toward the axis of the cylinder.
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. Mmwe

u = U sin —
[+3

. mmre

v o= Vi cos — )

a

. mme

w = W,, sin ——
o

in which Um, V., and W, are functions of z only. Substituting these series in
Eqgs. (304), we obtain for Unm, V., and W,, three ordinary differential equations with
constant coeflicients. These equations can be integrated by using exponential func-
tions. An analysis of this kind made for a closed cylindrical shell' shows that the
solution is very involved and that results suitable for practical application can be
obtained only by introducing simplifying assumptions. It could be shown that each
set of the functions Un,, V., W, contains eight constants of integration for each
assumed value of m. Accordingly, four conditions on each edge x = constant must
be at our disposal. Let us formulate these conditions in the following three cases.

Built-in Edge. Usually such a support is considered as perfectly rigid, and the
edge conditions then are

qw
u=0 ov=0 w=0 -— =0 (9)
ox

Should it happen, however, that the shell surface on the edge is free to move in the
dircetion z, then the first of the foregoing conditions has to be replaced by the condi-
tion N, = 0.

Simply Supporied Edge. Such a hinged edge is not able to transmit a moment
M needed to enforce the condition dw/dz = 0. Assuming also that there is no edge
resistance in the direction z, we arrive at the boundary conditions

v =0 w =10 M, =0 N.=0 (h)

whereas the displacement « and the stress resultants N.o, Mo, and Q. do not vanish
on the edge.

The reactions of the simply supported edge (Fig. 259a) deserve brief consideration.
The action of o twisting couple M., ds, applied to an element A BCD of the edge, is
statically equivalent to the action of three forces shown in Fig. 259b. A variation of
the radial forces M., along the edge yields, just as in the case of a plate (Fig. 50), an
additional shearing force of the intensity —0/.,/ds, the total shearing force being
(Fig. 259¢)

7. - - Do @
a de¢

The remaining component M., de (Fig. 259b) may be considered as a supplementary
membrane force of the intensity M., de¢/ds = M,,/a. Hence the resultant mem-
brane force in the direction of the tangent to the edge becomes

Moo
a

S = Naoy + )]

1 See paper by K. Miesel, Ingr.-Arch., vol. 1, p. 29, 1929. An application of the
theory to the calculation of stress in the hull of a submarine is shown in this paper,
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Free Edge. Letting all the stress resultants vanish on the edge, we find that the
four conditions characterizing the free edge assume the form

N.=0 M.=0 8=0 T.=0 (k)

where S; and T'; are given by expressions () and (7), respectively.?

124. An Approximate Investigation of the Bending of Cylindrical Shells. From the
discussion of the preceding article it may be concluded that the application of the
general theory of bending of eylindrical shells in even the simplest cases results in
very complicated calculations. To make the theory applicable to the solution of
practical problems some further simplifications in this theory are nccessary. In con-
sidering the membrane theory of cylindrical shells it was stated that this theory
gives satisfactory results for portions of a shell at a considerable distance from the
edges but that it is insufficient to satisfy all the conditions at the boundary. It is
logical, therefore, to take the solution furnished by the membrane theory as a first

chpd<P
(b) Q-

Fre. 259

approximation and use the more elaborate bending theory only to satisfy the condi-
tions at the edges. In applying this latter theory, it must be assumed that no external
load is distributed over the shell and that only forces and moments such as are neces-
sary to satisfy the boundary conditions are applied along the edges. The bending
produced by such forces can be investigated by using Eqs. (303) after placing the
load ¢ equal to zero in these equations.

In applications such as are encountered in structural engineering? the cnds x = 0
and z = [ of the shell (Fig. 260) are usually supported in such a manner that the

!t For a solution of the problem of bending based on L. H. Donnell’s simplified
differential equations see N. J. Hoff, J. Appl. Mechanics, vol. 21, p. 343, 1954; see also
Art. 125 of this book.

2 In recent times thin reinforced cylindrical shells of concrete have been successfully
applied in structures as coverings for large halls. Descriptions of some of these
structures can be found in the article by F. Dischinger, ¢ Handbuch firr Eisenbeton-
bau,” 3d ed., vol. 12, Berlin, 1928; see also the paper by F. Dischinger and U. Finster-
walder in Bauingenieur, vol. 9, 1928, and references in Art. 126 of this book.
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displacements » and w at the ends vanish. Experiments show that in such shells
the bending in the axial planes is negligible, and we can assume M, = 0 and Q. = 0
in the equations of equilibrium (301). We can also neglect the twisting moment ;..
With these assumptions the system of Eqs. (301) can be considerably simplified, and

Fia. 260

the resultant forces and components of displacement can all be expressed in terms! of
moment M,. From the fourth of the equations (301) we obtain

1M,
o= T (a)
a Jd¢

Substituting this in the third equation of the same system, we obtain, for ¢ = 0,

3 1a0:M
Ny = - R 100y ®)
de a Op?

The second and the first of the equations (301) then give

IN . 1 aN 1 /oM M

== Q- ) ==+ .f (e)
ar a do a®\ Jde¢ de°

BN 1 Nep 1/92M, o'M, @
dz? a dpdx  ab \ de? Aot

The components of displacement can also be expressed in terms of M, and its deriva-
tives. We begin with the known relations [see Eqs. (253) and (254)]

ou 1
L = — = N, — »i
€ o Eh( VV«J)
du v 2(L + »)
=4 — = ——= N,
Yoo = 9 | oz Eh ¢ ©
9 1
€ = o w_ 2 (Ne — »N2)

1 This approximate theory of bending of cylindrical shells was developed by U.
Finsterwalder; scc Ingr.-Arch., vol. 4, p. 43, 1933.
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From these equations we obtain

a9
e (N — wN,)
axr
% 1 6)N e 1 fON N,
2(1 - S
:3‘:1':2 Eh[ 1+ ox a(aw g de W
92 1 E)ZNI V_, 1 (32N, AN
o aflv - +2(1+V) —_ - —L'Wl—~<f
dr? Eh Jx? dx? a \ d¢* Jp?
Using these expressions together with Egs. (b), (¢), and (d) and with the expression
for the bending moment
D [ o 92w
M, =22 L2
¢ a? <0‘P + 6(p2> (g)

we finally obtain for the determination of M, the following differential equation of the
eighth order:

0 M¢ M, 0 My M,
+(2+u)252—6‘—6+ +(]+2u)a4 !
9°M, M‘, M, aGM¢
+ 22 + v)a*— P Zé X P + va' P + (1 + »)%? o 00k
rtM 9° Zl/[
+ @2+ var i F1200 — 0 & =0 (k)
h% ozt

A particular solution of this equation is afforded by the expression
. mm
M, = Ae*¢ sin —zr— (@)

Substituting it in Eq. (h) and using the notation

the follo‘wing algebraic equation for calculating « is obtained:
af +12 = (2 + at + [(1+ 200 — 22 + 22 + 1o’

+ = (14 )2 — (2 4 p)nHa? - 12(1 — »2) %—: M =0 (k)
The eight roots of this equation can be put in the form

annge = t(v1 £ 161) as,er,s = T (ve & 182 ()]

Beginning with the edge ¢ = 0 and assuming that the moment 3/, rapidly diminishes
as ¢ increases, we use only those four of the roots (I) which satisfy this requirement.
Then combining the four corresponding solutions (¢), we obtain

My = [e719(C1 cos Big + Casin Big) + e772¢(C cos Brp + C4ysin Bue)] sin 'rAn_;r_x (m)

which gives for ¢ = 0

= (Cy + Cy) sin ’-’3;3
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If instead of a single term (4) we take the trigonometric series

M, = E A ne%n® sin 71;-2—: (n)

any distribution of the bending moment M, along the edge ¢ = 0 can be obtained.
Having an expression for 3 ,, the resultant forces @, Ny, and N, are obtained from
Egs. (¢), (b), and (c).

If in some particular case the distributions of the moments M¢ and the resultant
forces Qg, Ny, and N, along the edge ¢ = 0 are given, we can represent these dis-
tributions by sine series. The values of the four coefficients in the terms containing
sin (mxz/l) in these four series can then be used for the caleulation of the four con-
stants €', . . ., Cy in solution (m); and in this way the complete solution of the
problem for the given force distribution can be obtained.

1f the expressions for u, », and w in terms of M, are obtained by using Egs. (f), we
can use the resulting expressions to solve the problem if the displacements, instead
of the forces, are given along the edge ¢ = 0. IExamples of such problems can be
found in the previously mentioned paper by Finsterwalder,! who shows that the
approximate method just described can be successfully applied in solving important
structural problems.

125. The Use of a Strain and Stress Function. In the general case of bending of
a cylindrical shell, for which the ratio {/a (Fig. 260) is not necessarily large, the effect
of the couples M, and M., cannot be disregarded. On the other hand, the simplified
form [Eqgs. (304)] of the relations between the displacements allows the introduction
of a function? F(z,¢) governing the state of strain and stress of the shell. Using the
notation
h? z a* a*

£=A A= —

€ = -——
12q2 a 9L 9

(a)

we can rewrite Eqs. (304) in the following form, including all three components X, ¥,
and Z of the external loading,

8%u I — » 9% 14+ v 9% Jw (1 - p)q2
il i AU ol
o9& 2 J¢* 2 0t de at Eh
14+ » 0% 0% 1 — » 3% ow 1 — »2)a?
— ~———.—A=—( — ety (305)
2  9JEdp d? 2 9 o Eh
du e | — p2)q2
v— Al—w—czAAw=—(——y)a
a9k d¢ Eh

The set of these simultaneous equations can be reduced to a single differential equation
by putting
a3 33K

u = 3% 90t - V'a; + o
I3F F (306)
= — — (2 .
v Py (2 + ») 05" 0g + v
w = —AAF + Wy

L [bid.

: Due to Vlasov, op. cil. Almost cquivalent results, without the use of a stress
function, were obtained by L. H. Donnell, NACA Rept. 479, 1933.  See also N. J. Hoff,
J. Appl. Mechanics, vol. 21, p. 343, 1954,
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where uo, vo, wo are a system of particular solutions of the nonhomogeneous equations
(305). As for the strain and stress function F(f,¢), it must satisfy the differential
equation

assar + 1 =7 Qf =0 (307)

¢ gt

which is equivalent to the group of Eqs. (305),if X = ¥ = Z = 0.* It can be shown
that in this last case not only the function F but also all displacement and strain
components, as well as all stress resultants of the shell, satisfy the differential equa-
tion (307).

For the elongations, the shearing strain, and the changes of the curvature of the
middle surface of the shell, the expressions (300) still hold. The stress resultants
may be represented either in terms of the displacements or directly through the func-
tion F. In accordance with the simplifications leading to Egs. (304), the effect of
the displacements « and v on the bending and twisting moments must be considered
as negligible. Thus, with the notation

Eh Ehs

K = -
1 — 2 12(1 — »?) (308)
the following expressions are obtained:
K| on o Eh  oF
Ne=—|—+»v{— —~w =——
a | 9t de a 0L dp?
" K [ov + ou Eh 0*F 309
= — — W —_ = ———
7 @ \oe T a ot (309)
K1 — u W Eh o%F
P YT\
2a de of a 38 de
Dfow  ow\ Dfo o
M,=—-g;<g§ vb;;>=l;<a—gz—rv—‘pé>AAF
D [ o*w 9w I a? a2
My=——| — - =5\l — | AAF
4 ,12 <6<P2 v 622) aZ ( ‘pZ + v 352) (310)
D1 —») 0w D 2
¢ @ pn EYE o ( ) "
D a3 D 3
Q= == aw =22 anar
a® 3¢ 3 9¢ 311
Q b2 A Do AAAF )
- - T A = = —
¢ a® de ad e
Representing the differential equation (307) in the form
(A)F + 4 4@—0 3
Y 2t )
P —
3(1 — »?)a?
where y = — (c)

* Purther stress functions F,, F,, F, were introduced by Vlasov, op. cit., to represent
the particular integral of Eqgs. (305) if X, Y, or Z, respectively, is not zero.
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we see that Eq. (307) is also equivalent to the group of four equations

ar,
) =0 (@

AF, + (1
¥( o

H

withe = v/ —1andn = 1,2, 3, 4. Putting, finally,

Py = e~dva+okg,
Fy = brtikp, .
Fy = e tra—ikgp, )
I, = (fi'“/(l“i)frbé

for the four new functions ¢, a set of four equations

A®, + pui®, =0 )
is obtained, in which for the constant u, we have to assume

a O
. V31—
(¢4 T T (g)
O ays — 2
57 Vv o3(1 23!

®
=
it

The form of cach of the equations (f) is analogous to that of the equation of vibration
of a membrane. In comparison with Eqs. (d), Egs. (f) have the advantage of being
invariant against a change of coordinates on the eylindrical surface of the shell.

rrorri

126. Stress Analysis of Cylindrical Roof Shells.! Three typical roof layouts are
shown in Figs. 261 and 265. The shells may be cither continuous in the direction z
or else supported only twice, say in the planes £ = 0 and z = . We shall confine
oursclves to the latter case. We suppose the supporting struetures to be rigid with

T See also ““Design of Cylindrical Concrete Shell Roofs,” ASCE Manuals of Eng.
Practice, no. 31, 1952; J. E. Gibson and D. W. Cooper, “The Design of Cylindrical
Shell Roofs,” New York, 1954; R. 8. Jenking, “Theory and Design of Cylindrical
Shell Structures,” London, 1947; A. Aas-Jakobsen, “Die Berechnung der Zylinder-
shalen,” Berlin, 1958. Many data on design of roof shells and an interesting compari-
son of differcnt methods of stress analysis may be found in Proceedings of a Symposium
on Concrele Shell Roof Construction, Cement and Conercte Association, London, 1954.
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respect to forees acting in their own planes, = constant, but as perfectly flexible
with respect to transverse loading. In TFig. 261a the tension members at ¢ = ¢ are
flexible, whereas the shells shown in Tigs. 261b and 265 are stiffened by beams of
considerable rigidity, especially so in the vertical plane.

Any load distribution over the surface of the shell may be represented by the mag-
nitude of its three components in the form of the series

x

. Al
X = Xoale) cos -
o

m=1
0
- . Nl N
Y = 2 Yol(e) sin - {a)
a
m=1
k]
. Amit
Z = E Zn(p) sin ——
a
m=1
in which
mra
Am = e )

Likewise, let us represent the particular solutions w., ve, wo in expressions (306) in
the form

@0
AT
uy = Uin(g) cos -
[/
m=1
o
. Ami
vy = E Vom{e) sin —= (e)
a
m=1

. AmZ
Wom (@) sin >;L

g
i
Ingt

m=1

Txpressions for the stress resultants N, and M, obtained from these series by means of
Eqs. (309) and (310), in which £ = x/a, show that the conditions (&) of Art. 123 for
hinged cdges are fulfilled at the supportsz = Oandz = [

In order to obtain the general expressions for the displacements in the case

X=Y=2Z=0

we make use of the resolving function F (Art. 125) by taking it at first in the form
. AnZ
Fn = ¢ sin — (d)
a

Substitution of this expression in the differential cquation (307) yields the following
charaeteristic equation for a:

—p2

1
(a? — AL)* + N, =0 (@

c?



526 THEORY OF PLATES AND SHELLS

in which ¢ = h?/12a%.  The eight roots of this equation can be represented in the
form

o) = 7y ‘*‘ I«ﬁ1 qf = ~—a)
ay = vy — 15 ag = —ag )
as = vy + 16s ar = —ag
ag = vy ~ 182 ag = —ay

with real values of v and 8. Using the notation

= AL
SV v\ Lo o

we obtain

oA/DP AL 14 p V2

(1 -

Y= \/_ 7
VZ=VL_\/\/EI—0\/§)2+1 ~ (1 =5 V2)

1 (k)
' T \/8

1 2
B2 = ?

7 /3

Returning to the series form of solution, we find that the general expression for the
stress function becomes

0

| \ . A .
F = Fm(e) sin — @)
a
m=1
where fm(o) = Cime®® 4 Came®? + -« -+ Cypeer )
and Cym, Cam, . . . are arbitrary constants.

We are able now to calculate the respective displacements by means of the rela-
tions (306). Adding to the result the solution (¢), we arrive at the following expres-
sions for the total displacements of the middle surface of the shell:

o

u = E <>\mfin/ + V>\;:nfm + l7

e AmT

{2 + )AL S — fir' + Vo) sin e (k)

©
// ’ . AmI
w = E {))\z - _— )\‘ fm I’Vom) sin ——
a

m=1

Sl
fi

where primes denote differentiation with respect to ¢.
The strain and stress components now are obtained by means of expressions (300),
(309), (310), and (311). Iu the most general case of load distribution four conditions
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on each edge ¢ = +¢o are necessary and sufficient to calculate the constants C,,,
., Cgassociated with each integer m = 1,2,3, . . . .
As an example, let us consider the case of a vertical load uniformly distributed
over the surface of the shell. From page 460 we have

X=0 Y =psing Z = pcos ¢ O

Hence the coeflicients of the series (a) are
defined by

8 /W <
2 [ A &
Xm == X cos —dzr =0 r P
Lo a ! / ~
2 1 X 4 MY
mx «
Y =— / Y sin — dr = i sin ¢ (m) ”{‘.\/4\
[ a mmr -
o o
9 [1 . AmZ 4p
I =~ Z sin dx = ——cos ¢ Fic. 262
l Jo a mmr
inwhichm =1,3,5, . ... An appropriate particular solution (¢) is given by
Usn = Aom cOS @ Vom = Bom sin ¢ Wom = Com cOs 4 (n)

The coeflicients A,m, Bom, and Con are readily obtained by substitution of the expres-
sions (¢), (n), and (m) in Eqgs. (305).

To satisfy the conditions of symmetry with respect to the meridian plane ¢ = 0, a
suitable form of the function (j) is

fm(p) = A cos Bre cosh v1g 4+ Aam sin B sinh vi¢ + Ay cos Bog cosh yap
+ A 4w sin Bre sinh yep (o)

in which By, 85, v1, and . are defined by the expressions (k) and m = 1, 3,5, . . . .

In order to formulate the edge conditions on ¢ = ¢, in the simplest way, let us
write the expressions for the vertical and horizontal components of the edge displace-
ment and of the membrane forces on the edge as well (Fig. 262). We obtain

7 = v 8in @o + w cos ¢ (p1)
8 = v Cos o — w sin ¢y (p2)
] IM o
V = Ngsin ¢o + <Q¢, -+ a:: )cos @0 (p3)
Mo\ .
H = N, cos po — (Qq) + -#) sin e (pa)

Finally, the rotation of the shell with respect to the edge line is expressed by

v w

X =~ .

)
a adeg (ps)

In all terms on the right-hand side of the foregoing expressions we have to put ¢ = @
The following three kinds of edge conditions may be considered in particular.

Roof with Perfectly Flexible Tension Rods (Fig. 261a). Owing to many conneccted
spans supposed to form the roof, the deformation of the roof can be considered as
symmetrical with respect to the vertical planc through an intermediate edge ¢ = -+ ¢y,
where the displacement 8 and the rotation x must vanish. Hence
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v CoS gp — w sin @ = 0 (g1)
dw

»+— =0 (q2)
dep

on ¢ = gg. Letting Qo be the weight of the tension rod per unit length, we have, by
Eq. (ps), a further condition

2V = @ (g5)
in which Q, if constant, can be expanded in the series

0

40, 1 . Amzx
= — — sin — (ps)

s m a

Qo

Finally, the clongation e, of the shell on the edge ¢ = ¢o must be equal to the elonga-
tion of the tension member. If A4, denotes the cross-sectional area of the latter and
E, the corresponding Young modulus,! then we have, for ¢ = ¢,

1 z ON. d ou @)
Noo dr = —
Eoﬁlo 1) e ax g
in which the integral represents the tension force of the rod.
The further procedure is as follows. We calculate four coefficients Aim, . . . , Aum
foreachm = 1,3,5, . . . from the conditions (¢1), . . . , (gy). The stressfunction I

is now defined by Egs. (0) and (¢), and the respective displacements are given by the
expressions (306) or (k). Finally, we obtain the total stress resultants by means of
expressions (309) to (311), starting from the known displacements, or, for the general
part of the solution, also directly from the stress function 7.

Roof over Many Spans, Stiffened by Beams (Fig. 261b). The conditions of symmetry

v COS ¢g — W SIn ¢y = () (r1)
[é]
and »+2 =0 (rs)
de

on ¢ = ¢o arc the same as in the preceding case. To cstablish a third condition, let
o be the given weight of the beam per unit length, h¢ its depth, E¢Jy the flexural
rigidity of the beam in the vertical plane, and A4, the cross-sectional area. Then the
differential equation for the deflection » of the beam becomes
d*y ho N op

EOIO&‘;:QO—_QV_FQEW (7'3)
the functions 5, V, and Qo being given by the expressions (p1), (ps), and (ps), respec-
tively. The last term in Eq. (r3) is due to the difference of level between the edge
of the shell and the axis of the becam. As for the elongation e, of the top fibers of the
beam, it depends not only on the tension force but also on the curvature of the beam.
Observing the effect of the curvature d¥yp/dx?, we obtain in place of Eq. (gs) the

condition )
2 z ho d2y Ju
/ Npwdz + 5 - = (re)

Eu; a 0 d.’l72 N 51;

L In the case of a tension member composed of two materials, say steel and concrete,
a transformed cross-sectional area must be used.
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The further procedure of analysis remains essentially the same as in the foregoing
case.

The distribution of membrane forces and bending moments M, obtained! for the
middle span of a roof, comprising three such spans in all, is shown in Fig. 263. In the
direction z the span of the shell is I = 134.5 ft, the surfacc load is p = 51.8 psf, and
the weight of the beam Qo = 448 lb per ft. Stress resultants obtained by means of
the membrane theory alone are represented by broken lines.

-741 Ib/in?
(=13

1751 1b/in.

2
3
L
RS

| ecam |, snell_|

£
™~
=4
~
0
N

=139 b-in/in.

Fic. 263

One-span Roof, Stiffened by Beams (Fig. 265). In such a case we have to observe
not only the deflection of the beam, given by the edge displacements » and 8§, but the
rotation of the beam x as well (Fig. 264). The differential equation for the vertical
deflection is, this time, of the form
ko ON 4z

Edo St — Qo= V +
Oodx'*- 0 2 ox

(s1)

1 By Finsterwalder, loc. cit., using the method described in Art. 124; see also Proc.
Intern. Assoc. Bridge Structural Engrs., vol. 1, p. 127, 1932,
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the notation being the same as in the previous case. The horizontal deflection is
governed in like manner by the equation

, di k
Bl <5 - X—}) = —H (s9

in which EoI}, denotes the flexural rigidity
of the beam in the horizontal plane,
whereas 3, x, and H are given by the
expressions (p2), (ps), and (p4).

The condition of equilibrium of couples
acting on an element of the beam and
taken about the axis of the beam (Fig.
264) yields a further equation

dM.  Hho
g TMe=0 @

where M, is the torsional moment of the
beam. Now, the relation between the
moment. M, the twist 6 = dx/dz, and
Fia. 264 the torsional rigidity Cq of the beam is

d
M=o (W)
dzx
Substituting this in Eq. (¢}, we obtain the third edge condition
Co—x— "2+ My =0 (s2)

in which x is given by the expression (p:) and ¢ = ¢o.

The elongation ¢, of the top fibers of the beam due to the deflection & may be
neglected, the average value of e through the thickness of the beam being zero.
Thercfore, the condition (r.) of the foregoing case can be rewritten in the form

1 ® ho dz’I] ou
Ne=d —— =
o, L ez dz + = (s4)

Again the remaining part of the stress analysis is reduced to the determination of the
constants A, . . ., Ay for each m =1, 3, 5, . . . from Eqs. (s1) to (s4) and to
the computation of stresses by means of the respective series.

Figure 265 shows the stress distribution in the casc of a shell with I = 98.4 {ft and
¢o = 45°. It is seen in particular that the distribution of the membrane stresses o,
over the depth of the whole beam, composed by the shell and both stiffeners, is far
from being linear. However, by introducing 8 = 0 as the edge condition instead of
the condition (s.), an almost linear stress diagram 2 could be obtained. If we sup-
pose, in addition, that the rotation x vanishes too, we arrive at a stress distribution
given by curve 3.*

* For particulars of the calculation see K. Girkmann, “Flichentragwerke,” 4th ed.,
p. 499, Springer-Verlag, Vienna, 1956. The diagrams of Figs. 265 and 263 are
reproduced from that book by permission from the author and the publisher.



GENERAL THEORY OF CYLINDRICAL SHELLS 531

Various simplifications can be introduced into the rather tedious procedure of stress
calculation described above.

Thus, if the ratio I/a is sufficiently large, the stress resultants M., Q., and M., can
be disregarded, as explained in Art. 124. Again, the particular solution (¢) may be
replaced by a solution obtained dircctly by use of the membrane theory of cylindrical

Fra. 265

shells (Art. 112). The corresponding displacements, neceded for the formulation
of the boundary conditions, could be obtained from Egs. (309). The method con-
sidered in Art. 124 is simplified still more if from all derivatives with respeet to ¢
needed to represent the strain and stress components, only those of the highest order
are retained.?

On the other hand, the procedure of the stress computation can be greatly reduced
by use of special tables for strain and stress components due to the action of the edge

' See H. Schorer, Proc. ASCE, vol. 61, p. 181, 1935.
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forces on the cylindrical shell.! A method of iteration? and the method of finite
differences? have also been used in stress analysis of shells.

If edge conditions on the supports z = 0, = [ of the shell are other than those
assumed on page 524, the stress disturbance arising from the supplementary edge
forees would require special investigation. !

Provided [/a is not small, the roof shell may also be considered primarily as a beam.5
Various methods of design of such a beam are based on different assumptions with
respect to the distribution of membrane forces N, over the depth of the beam. A
possible procedure, for example, is to distribute the membrane forces along the contour
of the shell according to the theory of elasticity and to distribute them along the
generatrices according to the elementary beam theory.

In the case of very short roof shells continuous over many supports, the edge condi-
tions on ¢ = * ¢, become secondary, and a further simplification of the stress analysis
proves possible.®

So far only circular cylindrical shells have been considered; now let us consider
a cylindrical shell of any symmetrical form (Fig. 266). Given a vertical loading
Funicular varying only with the angle ¢, we always can obtain a
curve . cylindrical surface of pressure going through the gen-
eratrices 4, C, and B. If, for instance, the load is
K l distributed uniformly over the ground plan of the shell,
D the funicular curve 4ACB would be a parabola. Now

A ™~ 0 ;{ B suppose the middle surface of the shell to coincide with

\N the surface of pressure due to a given load. The total

load then is transmitted by the forces N, toward the

Fre. 266 edges A and B of the shell to be carried finally by the

side beams over the whole length of the cylinder. If,

instead, we want the load to be transmitted toward the end supports of the shell by

the action of the membBrane forces N, and N.,, 2 shell contour overtopping the
funicular (thrust-line) curve must be chosen (Fig. 266).

From the relation N, = —Za {see Eqgs. (270)] we also conclude that for a vertical
load, i.e., for Z = p, cos ¢, we have N, = —p.a cos ¢, where p, is the intensity of the
load. Therefore the ring forces Ny, on the edge vanish only when ¢o = /2, that is,
when the tangents to the contour line of the shell are vertical at the edges A and B.
This condition is satisfied by such contours as a semicircle, a semicllipse, or a cycloid,”
which all overtop the pressure line due to a uniformly distributed load.

'Such tables (for » = 0.2) arc given by H. Lundgren in his book “Cylindrical
Shells,”” vol. 1, Copenhagen, 1949. For tables based on a simplified differential
equation, due to L. H. Donnell, sece D. Riidiger and J. Urban, “ Kreiszylinderschalen,”
Leipzig, 1955. See also references, page 524.

2 A. Aas-Jakobsen, Bauingenieur, vol. 20, p. 394, 1039,

# H. Hencky, ““Neuere Verfahren in der Festigkeitslehre,” Munich, 1951, For the
first application of the method to stress analysis of shells, sec H. Keller, Schweiz.
Bauztg., p. 111, 1913.  The relaxation method has been applied to stress analysis of
shells by W. Fltigge, ““ Federhofer-Girkmann-Festschrift,” p. 17, Vienna, 1950.

* By application of Miesel’s theory, op. cit,, or by an approximate method due to
Finsterwalder, op. cit.

8 This approach has especially been used by A. Aas-Jakobsen, op. cit., p. 93.

® See B. Thiirlimann, R. O. Bereuter, and B. G. Johnston, Proc. First U.S. Natl.
Congr. Appl. Mech., 1952, p. 347.  For application of the photoelasticity method to a
cylindrical shell (tunnel tube), see G. Sonntag, Bauingenieur, vol. 31, p. 408, 1956.

? FFor membrane stresses in shells of this kind see, for example, Girkmann, op. c¢it.,
and A, Pfliger, ‘““‘Elementare Schalenstatik,” Berlin, 1957. The bending of semi-
elliptical shells was considered by A. Aas-Jakohsen, Génie civil, p. 275, 1937. For
other shapes of eylindrical roofs, see E. Wiedemann, Ingr.-Arch., vol. 8, p. 301, 1937,

Sheli



CHAPTER 16

SHELLS HAVING THE FORM OF A SURFACE OF
REVOLUTION AND LOADED SYMMETRICALLY
WITH RESPECT TO THEIR AXIS

127. Equations of Equilibrium. Let us consider the conditions of
equilibrium of an element cut from a shell by two adjacent meridian
planes and two sections perpendicular to the meridians (Fig. 267).1 Tt
can be concluded from the condition of symmetry that only normal
stresses will act on the sides of the element lying in the meridian planes.
The stresses can be reduced to the resultant force Nyryde and the
resultant moment M, r; de, Ny and M, being independent of the angle 8
which defines the position of the meridians. The side of the element
perpendicular to the meridians which is defined by the angle ¢ (Fig. 267) is
acted upon by normal stresses which
result in the force N,risin ¢df
and the moment M, r; sin ¢ df and
by shearing forces which reduce
the force @, 72 sin ¢ dé normal to the
shell. The external load acting
upon the element can be resolved,
as before, into two components
Yriresin ¢ dedband Zrr; sin ¢ de db
tangent to the meridians and nor-
mal to the shell, respectively.
Assuming that the membrane forces
Ny and N, do not approach their 2
critical values,? we neglect the Ut 3, 99
change of curvature in deriving the Fra. 967
equations of equilibrium and pro-
ceed as was shown in Art. 105. In Eq. (f) of that article, obtained by
projecting the forces on the tangent to the meridian, the term —@.ro
must now be added to the left-hand side. Also, in Eq. (j), which was

1 We use for radii of curvature and for angles the same notation as in Fig. 213.
2 The question of buckling of spherical shells is discussed in 8. Timoshenko, ¢ Theory
of Elastic Stability,” p. 491, 1936.
533
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obtained by projecting the forces on the normal to the shell, an additional
term d(Q.ro)/de must be added to the left-hand side. The third equation
is obtained by considering the equilibrium of the moments with respect to
the tangent to the parallel circle of all the forees acting on the element.
This gives!

<7‘{ (i ]L[ d(a) (7,. dT) d<p> d@ — 7/[ r ,le J[ g1 COS @ d dG
d¢ d(p [ S @
QqﬂQSin(p?ld@dG = 0

After simplification, this equation, together with the two equations of
Art. 105, modified as explained above, gives us the following system of
three equations of equilibrium:

% (Nyry) — Ngricos ¢ — roQ, + r¢r YV = 0

Noro + Nory sin o + fl_(%;i’)  Zrre = 0 (312)
a (Mro) — Morycos ¢ — Qurirg =0

de

In these three equations of equilibrium are five unknown quantities,
three resultant forces N,, Ny, and @, and two resultant moments M, and
M,. The number of unknowns can be reduced to three if we express the
membrane forces N, and Ny and the moments M, and M, in terms of
the components » and w of the displacement. In the discussion in Art.
108 of the deformation produced by membrane stresses, we obtained for
the strain components of the middle surface the expressions

v cot e
€, = — — — — €g = — —
M 71 dg&‘ (A T @ To

from which, by using Hooke’s law, we obtain

Eh 1/d
N¢:tﬁ[—<g~w>+%(vcot¢—w)]

1 (1(;.*

Eh 1 v (dv
N(]——'l_ 172|:7'2<1)00t¢ - w>+a(@_lv>:|

To get similar expressions for the moments M, and My let us consider
the changes of curvature of the shell element shown in Fig. 267. Con-
sidering the upper and the lower sides of that element, we see that the
initial angle between these two sides is dy. Because of the displace-
ment v along the meridian, the upper side of the element rotates with

(313)

1In this derivation we observe that the angle between the planes in which the
moments Mg act is equal to cos ¢ dd.
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respect to the perpendicular to the meridian plane by the amount »/7,.
As a result of the displacement w, the same side further rotates about
the same axis by the amount dw/(r1 dp). Hence the total rotation of the
upper side of the element is

v dw

™ 71 d(p

(a)

For the lower side of the element the rotation is

v dw d (v dw
ri+rﬁﬁf+JEQ§+%uw)dw

Hence the change of curvature of the meridian is!

1 d (v dw

M—E@@+nw> ©
To find the change of curvature in the plane perpendicular to the
meridian, we observe that because of symmetry of deformation each of
the lateral sides of the shell element (Fig. 267) rotates in its meridian plane
by an angle given by expression (a). Since the normal to the right lateral
side of the element makes an angle (7/2) — cos ¢ df with the tangent to
the y axis, the rotation of the right side in its own plane has a com-
ponent with respect to the y axis equal to

v dw
_ <771 + i d(p) cos ¢ df

This results in a change of curvature

_{v dw \ceose (v dw \ cot ¢
X8 = (’7‘1 _'_ ri d(p> To - (7‘1 + T d(,9> To (C)

Using expressions (b) and (¢), we then obtain
1L d [fv dw v v dw
M,=—D| % (Y W Bl BLANNTRUC I
® D [TI (l(,’i <T1 + 7 dgﬂ) + 7o <7'1 + r1 d(p) cot (P]

My= —~p| (& 4 T \obe v d (v dw
7y r1 d(,f‘r/ T Ty dg@ T 8] dg&‘

Substituting expressions (313) and (314) into Eqs. (312), we obtain three
equations with three unknown quantities », w, and @,. Discussion of
these equations will be left to the next article.

We can also use expressions (314) to establish an important conclusion
regarding the accuracy of the membrane theory discussed in Chap. 14.
In Art. 108 the equations for caleulating the displacements v and w were

(314)

! The strain of the middle surface is neglected, and the change in curvature is
obtained by dividing the angular change by the length r, de of the arc.
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established. By substituting the displacements given by these equations
in expressions (314), the bending moments and bending stresses can be
caleculated. These stresses were neglected in the membrane theory. By
comparing their magnitudes with those of the membrane stresses, a con-
clusion can be drawn regarding the accuracy of the membrane theory.

We take as a particular example a spherical shell under the action of its
own weight (page 436). If the supports are as shown in Fig. 215a, the
displacements as given by the membrane theory from Eqgs. (f) and (b)
(Art. 108) are

_cﬁq(l—i—v) 1 _ 1 1 4 cos ¢\ .
- Eh <1—{—cosa 1—|—cos<p+10g1+cosa Sin @
N @)
w:vcotga—M —'j—L—coma
Eh\1 -+ cos ¢

Substituting these expressions into formulas (314) for the bending
moments, we obtain

[, =M, =12+7

Mg—Mq,—ml_ycowp (e)
The corresponding bending stress at the surface of the shell is numeri-

cally equal to

+

(SIS

cos ¢

<

Taking the ratio of this stress to the compressive stress ¢ given by the
membrane theory [see Eqs. (257)], we find

g2+ / @ 2t hyy
21— %/ M Foosg) ~ 2(1 —»ja s T oS eose

The maximum value of this ratio is found at the top of the shell where
¢ = 0 and has a magnitude, for » = 0.3, of

h
3.2 - 03]

It is seen that in the case of a thin shell the ratio (f) of bending stresses
to membrane stresses is small, and the membrane theory gives satisfactory
results provided that the conditions at the supports are such that the
shell ean freely expand, as shown in Fig. 215a. Substituting expression
(¢) for the bending moments in Egs. (312), closer approximations for the
membrane forces N, and N, can be obtained. These results will differ
from solutions (257) only by small quantities having the ratio h?/a? as a
factor.

From this discussion it follows that in the calculation of the stresses in
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symmetrically loaded shells we can take as a first approximation the
solution given by the membrane theory and caleulate the corrections by
means of Eqs. (312). Such corrected values of the stresses will be accu-
rate enough if the edges of the shell are free to expand. If the edges are
not free, additional forces must be so applied along the edge as to satisfy
the boundary conditions. The calculation of the stresses produced by
these latter forces will be discussed in the next article.

128. Reduction of the Equations of Equilibrium to Two Differential
Equations of the Second Order. From the discussion of the preceding
article, it is seen that by using expressions (313) and (314) we can obtain
from Eqs. (312) three equations with the three unknowns ¢, w, and Q..
By using the third of these equations the shearing force @, can be readily
eliminated, and the three equations reduced to two equations with the
unknowns v and w. The resulting equations were used by the first
investigators of the bending of shells.! Considerable simplification of
the equations can be obtained by introducing new variables.? As the
first of the new variables we shall take the angle of rotation of a tangent
to a meridian. Denoting this angle by V, we obtain from Eq. (a) of the
preceding article

1 dw
V= " (U + ?l;) (a)

As the second variable we take the quantity
U =0, (®)

To simplify the transformation of the equations to the new variables
we replace the first of the equations (312) by one similar to Eq. (255)
(see page 435), which can be obtained by considering the equilibrium of
the portion of the shell above the parallel circle defined by the angle ¢
(Fig. 267). Assuming that there is no load applied to the shell, this
equation gives

2mreN, sin o + 2w7¢Q, cos ¢ = 0
from which

N¢=—Q¢cot¢:~:—2Ucot¢ (e)

Substituting in the second of the cquations (312), we find, for Z = 0,

PWosing = N, — 101
de

18ee A. Stodola, “Die Dampfturbinen,” 4th ed., p. 597, 1910; H. Keller, Mtz
Forschungsarb., vol. 124, 1912; E. Fankhauser, dissertation, Zurich, 1913.

2 This method of analyzing stresses in shells was developed for the case of a spherical
shell by H. Reissner, “Miiller-Breslau-Festschrift,” p. 181, Leipzig, 1912; it was
generalized and applied to particular cases by E. Meissner, Physik. Z., vol. 14, p. 343,
1913 and Vierteljahrsschr. naturforsch. Ges. Zvrick, vol. 60, p. 23, 1915.
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and, observing that 7o = 73 sin ¢, we obtain

14y
1 d<p

No= = 12 = - @

T
Thus the membrane forces N, and N, are both represented in terms of
the quantity U, which is, as we see from notation (D), dependent on the
shearing force @,.

To establish the first equation connecting V and U we use Eqgs. (313),
from which we readily obtain

d
o~ v =g Ve = wN) (o)
vcot<p—w=%(Ne—VN¢) 6]

Eliminating w from these equations, we find

d 1 )
%p ~veot ¢ = g [+ »ro)N, — (r2 + )Nl (@)

Differentiation of Eq. (f) gives!

v dw d | ry
d_go cot @ — SlilZC,ﬁ —_ % = @ I:m (JV(; — VN¢)j| (h)

The derivative dv/de can be readily eliminated from Egs. (¢) and (h)
to obtain

v—}-d—w:er—COt(p
de

[(r1 + vra) N, — (re + vr1) Nyl
d
——_[ h(NB_ VN«P)]

Substituting expressions (¢) and (d) for N, and Ny, we finally obtain the
following equation relating to U and V:

rgdZU 1 Nd e T3 T2 dhydU
7% dg? +z[az(a)+a“°w ;:m]%
Yy, vdh _ -
il e cot? ¢ — » hde cot (,9] U = ERV (315)
The second equation for U and V is obtained by substituting expressions
(314) for M, and M, in the third of the equations (312) and using nota-
tions (a) and (b). In this way we find

1 We consider a general case by assuming in this derivation that the thickness &
of the shell is variable.
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ro d2V 11 d [re T2 re dh1dV
qW*‘E[@(ﬂ)ﬂﬁ“ ¢T3 hde dga

1 3v cot ¢ dh . _ U \
(v - - cot ) V = ) (316)

1 h d<p

Thus the problem of bending of a shell having the form of a surface of
revolution by forces and moments uniformly distributed along the parallel
circle representing the edge is reduced to the integration of the two Eqs.
(315) and (316) of the second order.

If the thickness of the shell is constant, the terms containing dh/de
as a factor vanish, and the derivatives of the unknowns U and V in both
equations have the same coefficients. By introducing the notation

d( SR ) rycot? ¢ .
do - o1 ( . ) (7')

the equations can be represented in the following simplified form:

LU + ;”—1 U = EhV

v U
L(vV) — " V= D
From this system of two simultaneous differential equations of the second
order we readily obtain for each unknown an equation of the fourth order.
To accomplish this we perform on the first of the equations (317) the
operation indicated by the symbol L( - - - ), which gives

(317)

LL(U) 4 »L <%> = EhL(V)

Substituting from the second of the equations (317),

_ Y U
L =3V-p= th[L(U)+‘“ U] D

we obtain
U v vl Eh .
LL(U) + »L <7‘_1> - T—IL(U) —a U= -7 U (318)
In the same manner we also find the second equation
14 v v? Eh
LL(V) — »L (T—1> + T—IL(V) 5 V== 14 (319)

If the radius of curvature ri is constant, as in the case of a spherical or
a conical shell or in a ring shell such as is shown in Fig. 220, a further
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simplification of Eqgs. (318) and (319) is possible. Since in this case

U 1

Eh ! .
W= - ()

t

by using the notation

both equations can be reduced to the form
LL(U) + ptU =0 (320)
which can be written in one of the two following forms:

LIL(U) 4+ 42U — p?L(U) + U] =0

or LIL(U)Y — p?U] + ip?L(U) = w?U] =0
These equations indicate that the solutions of the second-order equations
LU) £ iU =0 (321)

are also the solutions of Kq. (320). By proceeding as was explained in
Art. 118, it can be shown that the complete solution of Eq. (320) can be
obtained from the solution of one of the equations (321). The appli-
cation of Egs. (321) to particular cases will be discussed in the two
following articles.

129. Spherical Shell of Constant Thickness. In the case of a spherical
shell of constant thickness r; = ry = @, and the symbol (¢) of the pre-
ceding article is

Considering the quantity a€),, instead of U, as one of the unknowns in
the further discussion and introducing, instead of the constant u, a new
constant p defined by the equation
, _ap® el — %)t
FES TN o T ®)

we can represent the first of the equations (321) in the following form:

a’Q, dQ,
e’ ~+ cot ¢ do

A further simplification is obtained by introducing the new variables!

— cot? ¢ Q, + 2ip*Q, = 0 (322)

x = sin? ¢
Q,

gin ¢

()

U This solution of the equation was given by Meissner, ap. cit.
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With these variables Eq. (322) becomes

iz | (5 de | 1—2%p
o -0 Ga+ (3o —2) F+ =0 @

This equation belongs to a known type of differential equation of the
second order which has the form

(1 =2y +ly—(@+8+ Daly —aBy =0 (e)
Equations (d) and (e) coincide if we put
3+ 5+ 8ip? 3 F V5 + 8ip?
v =2 a=7_\/4+ ip g = +\/4+ ip f)

A solution of Eq. (¢) can be taken in the form of a power series
= A¢+ Aw + A + Asx® + - - - (g)

Substituting this series in Eq. (¢) and equating the coefficients for
each power of x to zero, we obtain the following relations between the
coefficients:
_ aB (a+ 1B+
B R 2 T S R
(a-{—n—l)(B—i—n— 1)
n(y +n — 1)

With these relations series (¢) becomes

ale + BB+ 1)

1-2-vy(v+ 1)
a(a + 1)(a + 2)8(B + (8 + 2) .
B+ Uy +2 7 i J )

This is the so-called hypergeometrical series. It is convergent for all
values of z less than unity and can be used to represent one of the inte-
grals of Eq. (d). Substituting for «, 8, and v their values (f) and using
the notation

y=4 [1+ T+

_|_

— 54 8ip =5+ 4 \/m (}‘l[ Y) @)

we obtain as the solution of Eq. (d)

(37 — (7 = &%) ;
61223 © ] @

which contains one arbitrary constant A..

3% —
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The derivation of the second integral of Eq. (d) is more complicated.!
This integral can be written in the form

22 = z1 log ¢ + % e(x) (k)

where ¢(z) is a power series that is convergent for jz| < 1. This second
solution becomes infinite for x = 0, that is, at the top of the sphere (Fig.
267), and should not be considered in those cases in which there is no
hole at the top of the sphere.

If we limit our investigation to these latter cases, we need consider only
solution (j). Substituting for §2 its value (¢) and dividing series (j) into
its real and imaginary parts, we obtain

z1=8+ ’1:82 (l)

where S; and S, are power series that are convergent when |z| < 1. The
corresponding solution of the first of the equations (321) is then

U1=a21SiIlg0"—-‘Il+7:[2 (m)

where I; and I, are two series readily obtained from the series S; and S..

The necessary integral of the second of the equations (321) can be
represented by the same series I; and I. (see page 489). Thus, for the
case of a spherical shell without a hole at the top, the general solution
of the differential equation (320), which is of the fourth order, can be
represented in the form

U=aQ, = AI, + BI, (n)

where A and B are constants to be determined from the two conditions
along the edge of the spherical shell.

Having expression (n) for U, we can readily find the second unknown V.
We begin by substituting expression (m) in the first of the equations (321),
which gives

L(Il + ’LIz) = '—?:/.Lz(ll + ’le)
Hence L(I,) = u?I; L(I,) = —utl, (0)

Substituting expression (n) in the first of the equations (317) and apply-
ing expressions (o), we then obtain

EhaV = aL(U) + »U = (Av — Bap?) I, + (Aag® + B,  (p)

It is seen that the second unknown V is also represented by the series
Il and Iz.

1 Differential equations that are solved by hypergeometrical series are discussed in
the book ‘“ Riemann-Weber, Die partiellen Differential-Gleichungen,” vol. 2, pp. 1-29,
1901. See also E. Kamke, ““Differentialgleichungen,” vol. 1, 2d ed., p. 465, Leipzig,
1943.
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Having the expressions for U and V, we can obtain all the forces,
moments, and displacements. The forces N, and N, are found from
Eqs. (¢) and (d) of the preceding article. The bending moments M, and
M, are obtained from Eqs. (314). Observing that in the case of a spheri-
cal shell r; = r» = a and using notation (a), we obtain

,
M, = ——2<Cﬂ+vcot¢V>
@ e @
q
D{ dV
My, = —E(V%—i—co’MpV)

In calculating the components v and w of displacement we use the
expressions for the strain in the middle surface:

1 1
e‘,,=E—h(N,p—VN9) 65=H(N3—VN¢)

Substituting for N, and N, their expressions in U and V, we obtain
expressions for ¢, and e, which can be used for calculating v and w as was
explained in Art. 108.

In practical applications the displacement § in the planes of the parallel
circles is usually important. It can be obtained by projecting the com-
ponents » and w on that plane. This gives (IFig. 267)

§ =wvcose — wsin ¢

The expression for this displacement in terms of the functions U and V is
readily obtained if we observe that § represents the increase in the radius
ro of the parallel circle. Thus

) =asin¢eg=CL—Sl%riio(Ng— vN,) = —%Bf(%—— vaot<p) )

Thus all the quantities that define the bending of a spherical shell by
forces and couples uniformly distributed along the edge can be repre-
sented in terms of the two series Iy and 7.

The ease with which practical application of this analysis can be made
depends on the rapidity of convergence of the series I'; and I,. This con-
vergence depends principally upon the magnitude of the quantity

43 2 2
=m0 — (9

which, if »? is neglected in comparison with unity, becomes

P VBl
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Calculations show! that for p < 10 the convergence of the series is satis-
factory, and all necessary quantities can be found without much diffi-
culty for various edge conditions.

As an example we shall take the case
of a spherical shell submitted to the
action of wuniform normal pressure p
(Fig. 268). The membrane stresses in
this case are

pa
2h

Tp = 0f =

®

and the corresponding membrane forces
that keep the shell in equilibrium are

Voo = — & (u)

By superposing on the membrane forces
horizontal forces

(b)
Fic. 268 2

a
H=7~)—c05a

uniformly distributed along the edge of the shell, we obtain the case, represented in
Tig. 268a, in which the loaded shell is supported by vertical reactions of a horizontal
plane. The stresses in this case are obtained by superposing on the membranc stresses
(t) the stresses produced by the horizontal forces H. These latter stresses can be
obtained by using the general solutions (n) and (p) and determining the constants
4 and B in these solutions so as to satisfy the boundary conditions

(Np)g—a = H cos « (Mppea = 0

The stresses obtained in this way for a particular case in which a = 56.3 in., b =
2.36in., « = 39° p = 284 psi, and » = 0.2 are shown in Fig. 269.

By superposing on the membrane forces (u) the horizontal forces H; and bending
moments M, uniformly distributed along the edge, we can also obtain the case of a
shell with built-in edges (Fig. 268b). The stresses in this case are obtained by super-
posing on the membrane stresses (¢) the stresses produced in the shell by the forces
H, and the moments M,. Thesc latter stresses are obtained as before from the
general solutions (n) and (p), the constants 4 and B being so determined as to satisfy
the boundary conditions

(59)40:—-04 =0 (V)¢:a =0

The total stresses obtained in this way for the previously cited numerical example are
shown in Fig. 270.

From the calculation of the maximum compressive and maximum tensile stresses
for various proportions of shells submitted to the action of a uniform normal pressure
p, it was found? that the magnitude of these stresses depends principally on the

! Such caleulations were made by L. Bolle, Schweiz. Bauztg., vol. 66, p. 105, 1915,
2 [bid.
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magnitude of the quantity

a | 2

- Sln‘ «

h

and can be represented by comparatively simple formulas. For the case represented
in Fig. 268a these formulas for the numerically greatest stress are as follows:

a sin a\?
—1.24p cos o
3
For 1.2 < L gin? o < 12 P 16 4 244 si o 1
. — 8 = -— . . sin C —
or h%ma 2 2h o h 0S «

For the case represented in Fig. 268b the formulas are:

. 2 : 2 M 2
For & Sl: %<3 o= —p (“ S;n “) [0.75 — 0.038 <a s:‘ “) sin? a]

< ? a
as e 9 ¢ = —1.277’

Q
]

a
For 7 sin? @ < 1.2

|

For 3 <

It was assumed in the forcgoing discussion that the shell has no hole at the top.  If
there is such a hole, we must satisfy the boundary conditions on both the lower and
the upper edges of the shell. This requires consideration of both the integrals (j)
and (k) of Eq. (d) (see p. 541) and finally results in a solution of Eq. (320) which con-
tains four constants which must be adjusted in each particular case so as to satisfy
the boundary conditions on both edges. Caleulations of this kind show! that, if the
angle « is not small, the forces distributed along the upper edge have only a very small
influence on the magnitude of stresses at the lower edge. Thus, since thesc latter
stresses are usually the most important, we can obtain the necessary information for
the design of a shell with a hole by using for the calculation of the maximum stresses
the formulas derived for shells without holes.

The method of calculating stresses in spherical shells discussed in this article can
also be applied in calculating thermal stresses. Assume that the temperatures at the
outer and at the inner surfaces of a spherical shell are constant but that there is a
linear variation of temperature in the radial direction. If ¢ is the difference in the
temperatures of the outer and inner surfaces, the bending of the shell produced by
the temperature difference is entirely arrested by constant bending moments
(see Art. 14):

alD(1 + »)

M, = My = -

@)

In the case of a complete spherc these moments actually exist and produce bending
stresses the maximum values of which are

6atD(1l +3)  olB

X! T 21 — ) ()

(0p) max = (G0)max =

If we have only a portion of a sphere, supported as shown in Fig. 268a, the edge is
free to rotate, and the total thermal stresses are obtained by superposing on stresses

1 Ibid.
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(w) the stresses that are produced in the shell by the moments

. atD(1 + »)

My =
h

uniformly distributed along the edge. These latter stresses are obtained by using
the method discussed in this article.! In the case shown in Fig. 2680 the thermal
stresses are given by formula (w), if the tcmperature of the middle surface always
remains the same. QOtherwise, on the stresses (w) must be superposed stresses pro-
duced by forces H and moments M, which must be determined in each particular
case so as to satisfy the boundary conditions.

130. Approximate Methods of Analyzing Stresses in Spherical Shells.
In the preceding article it has alrcady been indicated that the application
of the rigorous solution for the stresses in spherical shells depends on the
rapidity of convergence of the series entering into the solution. The con-
vergence becomes slower, and more and more terms of the series must be
calculated, as the ratio a/h increases, i.e., as the thickness of the shell
becomes smaller and smaller in comparison with its radius.? For such
shells approximate methods of solution have been developed which give
very good accuracy for large values of a/h.

One of the approximate methods for the solution of the problem is the
method of asymptotic integration.? Starting with Eq. (320) and intro-
ducing, instead of the shearing force @,, the quantity

z = Q, Vsin ¢ (@)
we obtain the equation
2V 4 @' + a + (B + ag)z = 0 ®)
in which
_ 63 9 9 _3cos g
= T Gsnte  Ssme (16 T sme
Gy = __3_._+§ 485 = (1 — »?) 1+12a2 ©
2 2sinze | 2 N ’ h?

It can be seen that for thin shells, in which a/h is a large number, the
quantity 484 is very large in comparison with the coeflicients ao, a1, and
as, provided the angle ¢ is not small.  Since in our further discussion we
shall be interested in stresses near the edge where ¢ = « (Fig. 268) and

L Thermal stresses in shells have been discussed by G. Eichelberg, Forschungsarb.,
no. 263, 1923. For shells of arbitrary thickness see also I. L. McDowell and E.
Sternberg, J. Appl. Mechanics, vol. 24, p. 376, 1957.

2 Calculations by J. E. Ekstrom in Ing. Vetenskaps. Akad., vol. 121, Stockholm,
1933, show that for a/h = 62.5 it is necessary to consider not less than 18 terms of the
series.

3 See O. Blumenthal’s paper in Repts. Fifth Intern. Congr. Math., Cambridge, 1912;
see also his paper in Z. Math. Physik, vol. 62, p. 343, 1914.
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« is not small, we can neglect the terms with the coefficients ao, a1, and
@z in Eq. (b). In this way we obtain the equation

2V 4482 =0 @
This equation is similar to 13q. (276), which we used in the investigation

of the symmetrical deformation of circular cylindrical shells. Using the
general solution of Eq. (d) together with notation (@), we obtain
1

Q, = —=—=[e?*(C cos By + C: sin Be)
Vsin ¢

+ e7#¢(C5 cos B + Cysin Be)]  (e)

From the previous investigation of the bending of eylindrical shells we
know that the bending stresses produced by forces uniformly distributed
along the edge decrease rapidly as the distance from the edge increases.
A similar condition also exists in the case of thin spherical shells. Observ-
ing that the first two terms in solution (¢) decrease while the second two
increase as the angle ¢ decreases, we conclude that in the case of a sphere
without a hole at the top it is permissible to take only the first two terms
in solution (¢) and assume

Q,

efe

\/sin ¢
Having this expression for , and using the relations (b), (¢), and (d) of
Art. 128 and the relations (p), (¢), and (r) of Art. 129, all the quantities
defining the bending of the shell can be calculated, and the constants C,
and C, can he determined from the conditions at the edge. This method
can be applied without any difficulty to particular cases and gives good
accuracy for thin shells.?

Instead of working with the differential equation (320) of the fourth
order, we can take, as a basis for an approximate investigation of the
bending of a spherical shell, the two Egs. (317).2 In our case these
equations can be written as follows:

(Cy cos Be + Cs sin Be) H

2

%%’ + cot @ dd%’ — (cot? ¢ — »)Q, = ERV
d2v awv L atQ, @)
(ZT;‘Z + cot © ’dZ -— (LOt [€o] + V)l = — *‘Dh

L An example of application of the method of asymptotic integration is given by
S. Timoshenko; see Bull. Soc. Eng. Tech., St. Petersburg, 1913. In the papers by
Blumenthal, previously mentioned, means are given for the improvement of the
approximate solution by the calculation of a further approximation.

2 This method was proposed by J. W. Geckeler, Forschungsarb., no. 276, Berlin,
1926, and also by I. Y. Staerman, Bull. Polytech. Inst. Kiev, 1924; for a generaliza-
tion see Y. N. Rabotnov, Doklady Akad. Nauk S.8.8.R., n.s., vol. 47, p. 329, 1945.
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where Q, is the shearing force and V is the rotation of a tangent to a
meridian as defined by Eq. (@) of Art. 128. In the case of very thin
shells, if the angle ¢ is not small, the quantities @, and V are damped out
rapidly as the distance from the edge increases and have the same oscilla-
tory character as has the function (f). Since 8 is large in the case of thin
shells, the derivative of the function (f) is large in comparison with the
function itself, and the second derivative is large in comparison with the
first. This indicates that a satisfactory approximation can be obtained
by neglecting the terms containing the func-
tions @, and V and their first derivatives

in the left-hand side of Eqs. (g). In this /5\
way Eqgs. (g) can be replaced by the follow- ;

ing simplified system of equatiouns:’

2
CO: _ iy

de? ,
eV e ")
W = D Qsa

By eliminating V from these equations, we
obtain

44 , .

ng 4+ ANQ, = 0 (2)
- 3 a’ 2 ) (C)
where M= 3(1 — ) (E) () Fia. 271

The general solution of this equation is
Q, = Cie*¥ cos Ao + Cae??sin Ag + Cie™™? cos Ag + Che e sin h¢e (k)

Considering the case in which there is no hole at the top (Fig. 271a) and
the shell is bent by forces and moments uniformly distributed along the
edge, we need consider from the general solution (k) only the first two
terms, which decrease as the angle ¢ decreases. Thus

Q, = C1e* cos Ao + Coeh* sin A¢ )

The two constants €', and C; are to be determined in each particular case
from the conditions at the edge (¢ = a). In discussing the edge con-
ditions it is advantageous to introduce the angle ¢ = o« — ¢ (I'ig. 271).
Substituting @ — ¢ for ¢ in expression (I) and using the new constants

1 This simplification of the problem is equivalent to the replacement of the portion
of the shell near the edge by a tangent conical shell and application to this conical
shell ‘of the equation that was developed for a circular cylinder (Art. 114); see E.
Meissner, ‘‘A. Stodola Festschrift,” p. 406, Ziirich, 1929.
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C and v, we can represent solution (I) in the form
@, = Ce™ sin (W + ) (m)
Now, employing Iqgs. (b), (¢), and (d) of Art. 128, we find
N, = —@Q,cot ¢ = — cot (a« — y)Ce~™ sin (\y + 7)

No = _ 44

do —) V2 Ce™ sin (A\p + v — %‘;) (323)
4

From the first of the equations (h) we obtain the expression for the angle
of rotation

2 2
V= Elh ddQ¢= A ¥ cos (W + ) (324)

The bending moments can be determined from Egs. (¢) of the preceding
article. Neglecting the terms containing V in these equations, we find

DAV r
M,= -~ = Wsm<x¢+~y+—>
d 3
@ e a"‘f (325)
Mo =M, = \/§Ce“w sin (w + 7 +£>

Finally, from Eq. (r) of the preceding article we find the horizontal com-
ponent of displacement to be

~ _ SinedU . A N
6~ Th de = Fh $in (@ — YIN V2 Ce ¥ sin ()\\// + v —> (326)

4
With the aid of formulas (323) to (326) various particular cases can
readily be treated.
Take as an example the case shown in Fig. 2716. The boundary con-
ditions are

(Msa)¢=a = M, (No)o=e = 0 (n)

By substituting ¢ = 0 in the first of the equations (323), it can be con-
cluded that the second of the boundary conditions (n) is satisfied by
taking the constant v equal to zero. Substituting v = 0 and ¢ = 0 in
the first of the equations (325), we find that to satisfy the first of the
conditions (n) we must have

Ma = g): C
which gives
C = M .2\
a

Substituting values thus determined for the constants v and C in expres-
sions (324) and (326) and taking ¢ = 0, we obtain the rotation and the
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horizontal displacement of the edge as follows:

(Mimo = = DM (g, = 2oy (327)

In the case represented in Fig. 271¢, the boundary conditions are
(My)p—a =0 (Nyp)gma = —H c0s « (0)
To satisfy the first of these conditions, we must take vy = —n/4. To

satisfy the second boundary condition, we use the first of the equations
(323) which gives
—Hcosa= C’cotasin%

from which we determine
_2H sin «

2
Substituting the values of the constants v and C in (324) and (326),
we find

C =

2 o g
(V)pmo = 2—*%‘1—“ H  (8)ymo = — 2‘“;‘2—“? big (328)

It can be seen that the coefficient of M, in the second of the formulas

(327) is the same as the coefficient of H in the first of the formulas (328).
This should follow at once from the reciprocity theorem.

Formulas (327) and (328) can readily be applied in solving particular problems
Take as an example the case of a spherical shell
with a built-in edge and submitted to the action
of a uniform normal pressure p (Fig. 272q).
Considering first the corresponding membrane
problem (Fig. 272b), we find a uniform compres-
sion of the shell

pa
N, =Ny = — ==
@ ¢ 2

The edge of this shell experiences no rotation and
undergoes a horizontal displacement
a sin « pa®(l — v)

5= E N LN, = ,
g o) 2Eh

sin «
{(p)

To obtain the solution of the given problem we
superpose on the membrane forces of Fig. 272b
forces and moments uniformly distributed along
the edge as in Fig. 272¢. These forces and mo-
ments are of such magnitude that the correspond- Fig. 272

ing horizontal displacement is equal and opposite

to the displacement (p), and the corresponding rotation of the edge is equal to zero.
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In this way, by using formulas (327) and (328), we obtain the following equations for
the determination of M, and H:

s 272 gin @

— I, + —— H=0
Eah T Eh
2Msin @ 2an sin? o H - pa*(l — »)
g ElL = om M
from which
s o P =) ek |1 -
42 4 3(1 4+ ,,)
~ al — ) (7}
H=-2 g, - 20—
a sin «a 2) sin «

The negative signs indicate that M, and H have directions opposite to those shown
in Fig. 271.

The approximate equations (k) were obtained by neglecting the unknown functions
Q, and V and their first derivatives in the exact equations (g). A better approxima-
tion is obtained if we introduce the new variables?

@ =Q Vsing Vi=Vsino

v
Substituting Qp = — @ Vo= 1

\/sin @ B \/sinq;:

in ¥qgs. (¢), we find that the terms containing the first derivatives of @, and Vi vanish.
Hence, to obtain a simplified system of equations similar to Egs. (h), we have to
neglect only the terms containing the quantities @y and V; in comparison with the
terms containing the second derivatives of the same quantities. This gives

dZ

Q: _ ERV,

de?

eve e

det D'

The solution of these equations can be obtained in the same manner as in the case of
Egs. (k). Returning to the original variables @, and V, we then obtain, instead of
expressions (m) and (324), the following solutions:2

Qp = 0 ——=——=sin (W + )
¢ \/ sin (¢ — ) Y
. 9)\2 e N
——e e o8 (MW )

\/sm (¢ — ¥)

Proceeding now in exactly the same way as in our previous discussion, we obtain the
following expressions in place of formulas (323), (325), and (326):

(329)
1%

1 This is the same transformation as was used by O. Blumenthal; see Eq. (a), p- 547.

2 The closer approximation was obtained by M. Hetényi, Publs. Intern. Assoc.
Bridge Structural Engrs., vol. 5, p. 173, 1938; the numerical example used in the
further discussion is taken from this paper.
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e
Np = = cot (@ — $)C ———————sin (\¢ + 7)
¢ * A/sin (@ — )
Y
No=C— 2 [2cos W + ) — (s + ko) sin O + )]
2 Vsin (a — ¢)
My =20l cos (v + ) +sin O + )]
= - —— oS sin
TR Ve Y v (330)
My = Lo {4 99 (s + ko) — 2ks) cos (A - 7)
= — Vv 1 e) — 2
T Ven @ -
+ 2»%sin (AW + )}
asin (a — ¢) e ¥ .
8 = C ——— {cos (AW + v) — k2 sin (AW + v)]
Eh Viin -9 Vo v
O
where Pl = o cot (o — )
1 2y
ky =1 — ;;\ cot (a — ¢)

Applying formulas (330) to the particular cases previously discussed and repre-
sented in Fig. 271b and ¢, we obtain, instead of formulas (327) and (328), the follow-
ing better approximations:

4)\3]”“ 222 sin « \
=T -0 = — M. 331)
(Vg Fahk, (8)y =0 T, M G31)
222 8in « AG SINZ o 1
B == L 332,
(Moo= "5, H - Oy Eh ( ¥ k1> (332,
40 —
yyeeef/) " inch?
X
\ I 2 \__h:3"
30 \p Lk /7
\\ X\ 559 o 90"
N2
\ % ,
20
\
\ Meridional bending moments M, inch Ibs./inch
\
10 it
\
(—) \
O \ e —
fipprox.l +) P
N //[xacf//<:_,_—"
L L=—="" ‘APP/’OIX.II
5% 3 2 5 w0 5 0

¢, Deg.
Fi1c. 273
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By applying these formulas to the particular case shown in Fig. 272a, second
approximations for the reactive moments M, and reactive forces H are readily
obtained.

To compare the first and second approximations with the exact solution, we shall
consider a numerical example in which ¢ = 90in., A = 3in., & = 35° p = 1 psi, and
v =+ The first and second approximations for A{, have been calculated by using
the first of the equations (325) and the third of equations (330) and arc represented by
the broken lines in Fig. 273. For comparison the exact solution?! has also been caleu-
lated by using the series of the preceding article. This exact solution is represented by
the full line in Fig. 273. In Fig. 274 the force Ny as calculated for the same numerical

50 ‘

X

\ T

40 ~Membrane hoop force Ng=450/bs. per inch

30 N
\ Hoop forces due to bending Ng Ibs/inch
20

Y
N
Fract” ~Approx. Tk
10 =

Approx. I/i\\i\
() ™~

~
0 [ G o Ry—
10
35 30 25 20 15 10 5 0
# Deg.
Fia. 274

example is shown. From these two figures it can bce concluded that the second
approximation has very satisfactory accuracy. Observing that in our example the
ratio a/h is only 30 and the angle « = 35° is comparatively small, it can be concluded
that the second approximation can be applied with sufficient accuracy in most cases
encountered in present structural practice.z

1Tt was necessary to take 10 terms in the series to obtain sufficient accuracy in
this case.

2 In the case in which the angle « is small and the solution (329) is not sufficiently
aceurate, the shell may be considered “shallow”” and treated accordingly (sce Art.
132).  Application of the equations of finite differences to the same problem has been
made by P. Pasternak, Z. angew. Math. Mech., vol. 6, p. 1, 1926. The case of non-
isotropic shells is considered by E. Stcuermann, Z. angew. Math. Mech., vol, 5, p. 1,
1925. One particular case of a spherical shell of variable thickness is discussed by
M. T. Spotts, J. Appl. Mechanics (Trans. ASME), vol. 61, 1939, and also by T. Télke,
Ingr.-Arch., vol. 9, p. 282, 1938. For the effect of concentrated loads, see F. Martin,
Ingr.-Arch., vol. 17, p. 107, 1949, and Art. 132. The problem of nonsymmetrical
deformation of spherical shells is considered by A. Havers, Ingr.-Arch., vol. 6, p. 282,
1935. Further discussion of the same problem in connection with the stress analysis
of a spherical dome supported by columns is given by A. Aas-Jakobsen, Ingr.-Arch.,
vol. 8, p. 275, 1937.



SHELLS FORMING SURFACE OF REVOLUTION 555

131. Spherical Shells with an Edge Ring. In order to reduce the effect of the
thrust of a dome in its action upon the supporting structure, an edge ring (Figs. 275a
and 276a) is sometimes used. The vertical deflection of this ring, supported either
continuously or in a number of points, may be neglected in the following analysis.

(b} (c)
Mg
S I ——
Mg '
(d)
Fra. 275

Let us consider the conditions on the edge ¢ = « of the dome carrying some dis-
tributed, symmetrical load. The membrane forces N, Ny due to this load would
produce, according to Eq. (r) (page 543) an increase of the radius ro = a sin « equal to

.
b = 2o (No = N ) gua (@)

This displacement will be accompanied by a rotation of the edge tangent

1 dw 1 d
Vo=olv+ o e TR | Ot AW = N — o (Ve = wN ®)

p=a

according to results obtained on page 538, and by a thrust

Hy = —co0s a(Ny)pea ()
. . . . . . . Horo
The corresponding tension force in the ring is Horo, and the clongation is ey = EZ&—’

where E denotes Young’s modulus of the material of the ring. The increase of the
radius ro due to the action of Ho will be
Ho?‘g

81 = egro = Ebd (d)
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In order to bring the edge deformation of the shell in accordance with the deforma-
tion of the ring, let us apply along the circumference of both the edge and the ring
uniformly distributed couples of an intensity M, and radial forces of an intensity H
(Fig. 275b). Using the results (327) and (328), we obtain the following expressions
for the horizontal displacement of the edge and the rotation V:

2\ gin o 2aX sin? o u
- Eh “ Eh "
€
423 2\? sin «
V=-—M ——H
Bt T
where M = 3(1 — »%)(a/h)?

The action of M, and H upon the ring is statically equivalent to the combined
action of the overturning couples

T = Ma + He o

and of forces H applied on the level of the centroid of the ring section (Fig. 275¢).
These latter cause a radial displacement of the ring equal to

2
Hr}

= Ebd 9

d2

as follows from Eq. (d), but no rotation.

It still remains to consider the deformation of the ring due to the couples 7. An
element of the ring of length ds = ro d6 is held in equilibrium by the action of an
overturning couple 7T ds and two bending couples My = T ds/do = Tro (see Fig. 275d,
where all three couples are represented by equivalent vectors). Thus, the maximum
hoop stress in the ring due to the couples T is

o= +6My/bd* = £6Tr./bd?

The corresponding unit elongation of the top and bottom fibers of the ring is seen
to be € = +61r,/Ebd? respectively. Hence the rotation of the transverse section
of the ring becomes
12773 12:2
= — = Mo+ H h
mods — Boas M THO "

_ 27‘0

Vs P

fel
where l¢| denotes the absolute value of the largest unit elongation.

Now, the total horizontal displacement of the shell edge must be equal to that of the
ring, and the same holds for the rotation. This yields the following relations:

S0 + 8 = 81 + 8y + Vae @)
Veo+V =V, ()

in which the term Ve represents the effect of the rotation on the radial displacement
of the ring at the level of the edge of the shell. After substitution of the expressions
(a) to (h) for the displacement and the rotation in (7) and (j), we obtain two linear
cquations for the unknown values of M, and H. These values also define the con-
stants of integration of the approximate solution, as shown in Art. 130. The total
stress resultants and deflections of the shell can be found then by combining the effect
of membrane forces with the effect of bending, this latter being expressed, for example,
by Egs. (323), (324), and (325).

As an illustrative example, let us consider a spherical dome (Fig. 276a) with a =
76.6 ft, a = 40° o = 49.2 ft, b = 2.36 in., and the cross-sectional dimensions of the
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(b)
Fia. 276

ring b = 1.97 ft, d = 1.64 ft, and ¢ = d/2; the modulus E is the same for the shell
and the ring, and the constant » is assumed equal to zero. The dome is submitted
to the action of its own weight ¢ = 41 psf of the surface of the dome. The membrane
forces due to this load are given by Egs. (257), and the procedure of computation
indicated above leads to the following values of the edge forces:!

My = —24.84 lb-in. per in.
H = —8.951b per in.

The corresponding values of bending moment M, are shown in Fig. 276b.
In the foregoing the simplified differential equation (z), Art. 130, has been employed

! The details of computation may be found in K. Girkmann, ‘‘Flichentragwerke,’’
4th ed., p. 442, Springer-Verlag, Vienna, 1956. The diagram Fig. 276b is repro-
duced here by courtesy of Professor K. Girkmann and the Springer-Verlag, Vienna.
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to determine the effect of the edge forces. The reasoning and the procedure remain
substantially the same, however, if a more exact differential equation is used.

132. Symmetrical Bending of Shallow Spherical Shells. Let the middle surface
of a spherical shell (Fig. 277a) be given in the form

2= Var =1 —(a —2) {a)
¥f we have to deal with a “shallow” spherical shell, we put
dz/dr = —r/ Vat—r =~ —r/a

and take for symmetricall load distribution the radius r (Fig. 277a) as the sole inde-

pendent variable.  The differential equa-
tions of equilibrium (312) then become

N, ,
L. No—=-Q+rpr=0 ()
dr a
4O,
(;J) + XN, AN+ =0 (©
T a
d T
M) oy 0 =0 (@)
dr

where p and p, designate the load inten-
sity in the normal and in the meridional
direction, respectively. The relations
between the stress resultants, the strain
components, and the displacements w
— and v (in the directions p and p,) are the

¥re. 277 following:
1 dv  w
e,—=ﬁ(N,—vN6) =¢—7l7_5
1 vow ©
55=E(N0—VNr) 2;";
M, = =D(xs + vxa) = =D ("21,” +” gqf)
dr? rdr
My = =D(xo + »x) = —D (1 d i“) ?
rodr dr?
in which
Eh3
= 20 = 9 0

Now we take the fact into account that the effect of transverse shear Q- on mem-
brane forces in Eq. (b) can be neglected in the case of a shallow shell. Assuming,
furthermore, that the load term p, is derivable from a load potential @, so that pr =
—dQ/dr, we satisfy Eq. (b) by setting

1 The general theory of shallow spherical shells, due to E. Reissner, is free from this
limitation; see J. Math. and Phys., vol. 25, p. 80, 1946; vol. 25, p. 279, 1947,
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1dF
N,=Ad—r+9

r

& Q)
N(’:W—i_

where F is a stress function. It is easy to verify also that the relations (¢) between the
strain and the displacement components correspond to the equation of compatibility:

1d 2(leo lder_*_lA —0 @
rtdr 7‘d,r rodr a v v

in which A = d2/dr? + (1/r)(d/dr).
Combining Egs. (¢) and (z), we arrive at the following fundamental equation for
F and w:

ER
AAF + —Aw = —(1 — ») AQ 6))
a

In order to obtain a second fundamental relation between the same functions, we
substitute Q. from (d) in Iiq. (¢). We obtain

d [d(rM,)

— My |+ - (N.+No) +7p =0 *)
dr dr a

Using now the expressions (f) and (h) in combination with Eq. (k), we find

1 P 2Q
AAW — —— AF = L
“ 7 Da b Da

o

Finally, let us write the expressions for the vertical shearing force @, and the horizontal
displacement &, both of which may be used in formulating the edge conditions of the
shell. We obtain

r r
Q. = Q- +-N, d=0v——-w (m)
a a
in which the expression for the transverse force
d
Qr = —D— (Aw) (n)
dr

is of the same form as in the theory of plates.

In the case p = @ = 0, the integration of the simultaneous equations (j) and (I) can
be carried out by multiplying Eq. (j) by a factor —x and adding the result to Eq. (0).
This yields

AA(w — NF) — MEh/a)A(w + F/Ah DE) =0 (0)

From (0) we obtain an equation for a single function w — AF by putting\ = —1/Ah DE:
that is,

A= Eih, Vi2(l =% )
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where 1 = v/ —1. Let us also introduce a characteristic length 7 defined by the
relation NEh/a = /12, so that
V/ah

l = -
V1201 — »?) @

The differential equation (o) then assumes the form

AA(w — NF) — ZéA(w —AF) =0 (r)

Next, setting
: w— A =04+ ¥ (s)

we obtain ® and ¥ as the general solution of the equations

-\ 2
AP =0 A‘I’——(—\—/—;) ¥ =0 ®

l

The respective solutions are of the form

& =4, + A, log x ()
¥ = Afyi(x) + (@] + Advalz) + igs(@)] ()
where z = % w)
A, are arbitrary complex constants and ¢,(z), . . . , ¢4(x) are functions defined on

page 490 and tabulated in Table 86. Using the solutions (u) and (») and a set of real
constants C, and separating in Eq. (s) real and imaginary parts after substitution,
we can obtain the following general expressions for the normal deflection w and the
stress function F:!

I

Cipr1 (@) + Coye(@) + Csds(x) + Coyhul) + Cs ()

Eh2
F=————co— [-Cux) + Cor(x) — Caba(ar) + Cuslx) + Colog 2] (9)
V12(1 = »?)

To illustrate the use of the foregoing results, let us consider a shallow shell with a
very large radius subjected to a point load P at the apex r = 0.
In such a case we have to satisfy the obvious condition

Q= —g— = 2

while w, dw/dr, N,, and N¢ must be finite at r = 0, and w, M,, and Mg must vanish for
r = o, Using the first of the expressions (m) to satisfy Eq. (2), we obtain

Pa \/129: »2)

Co = o Eh?

and for the other constants we get the values

1 Tt can be shown that a term C; log # must be omitted in expression (z), while a
constant term Cs can be suppressed as immaterial in expression (y).
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-1.0
04 = 0 03 = ;r‘ (/'6 \
-0.9
Ciy=C,=0C; =
1 2 A 08 5
Accordingly, the final results are _07 \ \5 o8
V31 — 42 Pa -06/—\ \
p o= ——— " —— yn(r
2 A 2 05 -
Pa 2 I
F=— [xh(x) — = log x:| -0.4 \
4 T
-03 -
Since ¥5(0) = 0.5 we obtain for the deflec- 02 \'50'
tion of the shell at the point of the appli- ’ \Q ,, gzar
cation of the load the value =01 > L]
\ \\\
S 0
\/3(1 — %) Pa ,\\ hZ%,,ﬁ\\__
Wo = """ T +0.4 P
+0.2
The distribution of the membrane stresses 0 04 08 12 1-r6 20 24 28 32
or = N,/h and 9 = Ng/h and that of the T
bending stresses o, = T6M,/h? and Fic. 278

oy = F6Ms/h? on the upper surface of
the shell (for which the upper signs must be taken) are shown in Fig. 278.

When the central load P is uniformly distributed over a circular area of a small
radius ¢, the following results hold at the center of the loaded area r = 0:

20— Pal1 « ,
wn = V120 =) Pa [ - moJ
m

- Eh? | w2
Viza—we o«
o, =09 = o W [“2 3 ‘/'4(#)]
. 3(1 4 ») Py
g, =gy = £ ——F — —
2 h? I
where uo= ¢ - \4/172(1 —72) c¥
l \/ah

Since the expressions (z) and (y) contain six arbitrary constants in all, any symmet-
rical conditions at the center and on the outer edge of the shell could be fulfilled.

It should be noted also that, as far as bending is concerned, a shallow spherical shell
behaves somewhat like a plate on an elastic foundation. This time the characteristic
length is given by Eq. (¢) instead of expression (a), page 260, which we had in the
case of the plate. Thus, when ! as defined by Eq. (g) is small compared with the
radius of the edge, this is equivalent to the case of a plate on a very rigid foundation.
The deflections and the bending moments at the center of such a shell are affected
very little by the respective conditions on the outer edge, which only govern the
state of the edge zone of the shell.?

1 For inextensional deformations of shallow elastic shells see M. W. Johnson and
E. Reissner, J. Math. and Phys., vol. 34, p. 335, 1956; singular solutions were considered
by W. Fliigge and D. A. Conrad, Stanford Univ. Tech. Rept. 101, 1956. Some of the
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133. Conical Shells. To apply the general equations of Art. 128 to the particular
case of a conical shell (Fig. 279a), we introduce in place of the variable ¢ a new vari-
able y which defines the distance from the apex of the cone. The length of an infini-
tesimal element of a meridian is now dy, instead of 7; dp as was previously used. Asa

A

|

i >
()

F1a. 279

result of such changes in the variables, the following transformations of the deriva-
tives with respect to ¢ are necessary:

d d d? d d , d? " dry d

— gy — —_— = — Py — = pi— _

de 'dy det de\ dy Ydyr | de dy
With these transformations, the symbol (7) in Art. 128 becomes

_o ) fdre o ac- - -) 1,
L( ) =72 g +<dy —{—rlcotq;) a _ECOt o ) (a)

Observing that for a cone the angle ¢ is constant and using notation « for »/2 — ¢
(Fig. 279), we obtain

Ta

ro = y tan a = tan «

previous results were already given by J. W. Geckeler, Ingr.-Arch., vol. 1, p. 255, 1930.
General differential equations for curved plates (shallow shells) were established by
K. Marguerre, Proc. Fifth Intern. Congr. Appl. Mech., 1938, p. 93. F¥or bending of
shallow shells of translation, see G. Ac. Oravas, Osterr. Ingr.-Arch., vol. 11, p. 264, 1957,
and for nonlinear bending of shallow spherical shells, R. M. Simons, J. Math. and
Phys., vol. 35, p. 164, 1956. For bending of shallow helicoidal shells see IE. Reissner,
J. Appl. Mechanics, vol. 22, p. 31, 1955. Helicoidal shells were also considered by
R. Malcor, Travauz, vol. 32, p. 605, December, 1948, and by L. Solomon, Prikiad.
Mal. Mekhan., vol. 18, p. 43, 1954, For shallow shells see V. Z. Vlasov, ‘A General
Theory of Shells,”” Moscow, 1949,
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Substituting the expressions into (z) and putting r; = o, the symbol L( - - - )

becomes
dz - - - d - - - 1
L<~~~>=tana[y (dy2 L4 (dy )—;(m)]

Equations (321) of Art. 128 are then

CBU AU U

tan y— F— — =1+ 42U =0
a( dy* = dy y)

or, with U = rQ, = y tan a Q,,*

2Q) | dwQy)

Tu?y
~Q, + w2y Qy =0
dy? dy tan o

Using the notation (j) of Art. 128 and introducing the new notation

1 Eh 12(1 — »?
o BB e 220 e ®)
tan?e D 2
we finally obtain
a2 (yQ, d(yQ,
y (!/Qq) . (yQy) _ Qy + i)\ZyQy =0 ©)

dy* dy

Considering the first of these equations, we transform it into the known Bessel equa-
tion by introducing, instead of y, a new variable

7 =22vV7Vy @

MyQy) | 1dyQy
a*(yQy) + (y&y) + (1 — %) Q) =0 (&)

which gives

dn? n  dn

A similar equation has already been discussed in the treatment of a eylindrical shell of
nonuniform thickness (Art. 118). The functions ¢, . . . , ¥4 which were introduced
at that time and whose numerical values are given in Table 86 can also be applied in
this case. The general solution for yQ, which satisfies both of the equations (¢) can
then be represented in the following form:!

2 ’ 2 ’
yQy = Ci [%(5) +E'/’z($):| + Cs l:\h(f) - E‘/ﬁ(’?)]
+a, [mz) n éw;m] e [ma - Zw;m] o

where £ = 2\ V@, and the primes denote derivatives with respect to £, From our
previous discussion and from the values of Table 86 we know that the functions ¥,

* The subseript ¥ is used instead of ¢ in the further discussion of conical shells.

1 A comprehensive discussion of conical shells is given in F. Dubois’ doctoral
dissertation “Uber die Festigkeit der Kegelschale,” Zurich, 1917; this paper also
contains a series of numerical examples with curves illustrating the stress distribution
in conical shells having various angles at the apex. The case of an arbitrary loading
has been considered by N. J. Hoff, J. Appl. Mechanics, vol. 22, p. 557, 1955, and
thermal stresses by J. H. Huth, J. Aeronaut. Sci., vol. 20, p. 613, 1953.
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and y; and their derivatives ¢, and ¢, have an oscillatory character such that the
oscillations are damped out rapidly as the distance y decrcases. These functions
should be used in investigating the bending of a conical shell produced by forces and
moments distributed uniformly along the edge y = I.  The functions ¥; and ¥, with
their derivatives also have an oscillatory character, but their oscillations increase
as the distance y decreases. Hence the third and fourth terms in solution (f), which
contain these functions and their derivatives, should be omitted if we are dealing with
a complete cone. The two constants C; and Cs, which then remain, will be determined
in each particular case from the boundary conditions along the edge y = [.

In the case of a truncated conical shell there will be an upper and a lower edge, and
all four constants Cy, . . . , Csin the gencral solution (f) must be considered to satisfy
all the conditions at the two edges. Calculations show that for thin shells such as
are commonly used in engineering and for angles « which are not close to =/2, the
forces and moments applied at one edge have only a small effect on the stresses and
displacements at the other edge.! This fact simplifies the problem, since we can use a
solution with only two constants. We use the terms of the integral (f) with the con-
stants C; and C; when dealing with the lower edge of the shell and the terms with
constants C; and C; when considering the conditions at the upper edge.

To calculate these constants in each particular case we need the expressions for the
angle of rotation V, for the forces Ny and N, and for the moments M, and My. From
Egs. (c) and (d) of Art. 128 we have

N, = —Q, tan «
- au d(l‘ng) d(va)
Ng= —— = — = — ta
’ dy dy dy an« @)

From the first of the equations (317) we obtain the rotation

1 tan® o | d2(yQy) | d(yQy)
V=—LU) = 1 - -
& () h [ 4y + dy Q, (h)
The bending moments as found from Eqgs. (314) are
dv
M, = —D < + 2 V)
dy vy .
v av @
Mo = —D <~ + Vi>
y dy
By substituting y tan « for a in Eq. (r) of Art. 129 we find
y sin o tan « d(yQ,) .
5 = _ 40, .
Eh [ dy - vQ, {4

Thus all the quantities that define the bending of a conical shell are expressed in terms
of the shearing force @,, which is given by the general solution (f). The functions
Y1, « - ., ¥4 and their first derivatives are given in Table 86 for £ < 6. For larger
values of ¢ the asymptotic expressions (296) (page 496) of these functions can be used
with sufficient accuracy.

1For o =~ 84° F. Dubois found that the stress distribution in a truncated conical
shell has the same character as that in a circular plate with a hole at the center. This
indicates that for such angles the forces and the moments applied at both edges must
be considered simultaneously.
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Ag an example we take the case represented in Fig. 279a. We assurae that the
shell is loaded only by its weight and that the edge (y = [) of the shell can rotate
freely but cannot move laterally. Considering first the corresponding membrane
problem (Fig. 279b), we find

Ny = —qysin o tan «
7y k)
Ny, = —-——
¢ 2 cos a

where ¢ is the weight per unit area of the shell.  As a result of these forces there wily
be a circumferential compression of the shell along the edge of the amount

ql

1
€ *ﬁme — Ny = " 2cos « Eh

(2 sin? a — p) )

To satisfy the boundary conditions of the actual problem (Fig. 279a) we must super-
pose on the membrane stresses given by Eqgs. (k) the stresses produced in the shell by
horizontal forees H (¥Fig. 279¢) the magnitude of which is determined so as to eliminate
the compression (I). To solve this latter problem we use the first two terms of solution
(f) and take

2, 2,
yQy = 1 [x/u(é) + : %(E)] + Cs [\l/z(é) - E%(E)] (m)

The constants C'; and C'; will now be determined from the boundary c¢onditions

ql? tan o

(Mg=onyi =0 (=2l = —eolsin a = Yo

(2sin>a — ») (n)

in which expressions (7) and (j) must be substituted for M, and 8.  After the introduc-
tion of expression (m) for yQ,, expressions (¢) and (j) become

<

2 , 4(1 —v») ,
M, = {Ci [ —Epa(8) + 2(L — »)¢(h) — 1a ) %(E)]

& £
’ 41 -~ , .
+ Co | 81(8) — 2(1 — »)a(d) — f‘h(é)il} (0)
. ¥ sin e , sin « tan « [ , 4 .,
b= (Ng — »Ny) = — Tomh le [E%(E) - 2¢1(§) — Et//z(é)J

’ 4 ’
+ [E%(E) = (8 + E\h(é)]]

y Sin « tan «

2, 2,
+ — o {(»1 [ll/l(é) -i—g%(é)} +Cs [\Lz(i) - E%(E):“ ()

Substituting 2x /1 for £ in expressions (o) and (p) and using Table 8 or expres-
sions (296), we obtain the left-hand sides of Eqs. (n). We can then calculate Ciand O,
from these equations if the load ¢ and the dimensions of the shell are given. Calcula-
tions show that for shells of the proportions usually applied in engineering practice
the quantity ¢ is larger than 6, and the asymptotical expressions (296) for the func-
tions entering in Tigs. (o) and (p) can be used. An approximate solution for conical
shells, similar to that given in the preceding article for spherical shells, ean also
readily be developed.
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The case of a conical shell the thickness of which is proportional to the distance y
from the apex can also be rigorously treated. The solution is simpler than that
for the case of uniform thickness.!

134. General Case of Shells Having the Form of a Surface of Revolu-
tion. The general method of solution of thin-shell problems as developed
in Art. 128 can also be applied to ring shells such as shown in Fig. 220.
In this way the deformation of a
ring such as shown in Fig. 280a

can be discussed.?2  Combining sev-
\ eral rings of this kind, the problem
‘ 4 of compression of corrugated pipes

" . such as shown in Fig. 280b can be
\‘\/ treated.? Combining several coni-

cal shells, we obtain a corrugated
pipc as shown in Fig. 280c. The
compression of such a pipe can be
investigated by using the solution
developed for conical shells in the
previous article. The method of

Art. 128 is also applicable to more

general surfaces of revolution pro-

Q vided that the thickness of the

Fia. 280 wall varies in a specific manner,

that the general cquations (315)

and (316) obtain the forms (317).* The solution of these equations,

provided it can be obtained, is usually of a complicated nature and
cannot readily be applied in solving practical problems.

! Meissner, Vierteljahrsschr. naturforsch. Ges. Ziirich, vol. 60, p. 23, 1915; see also
E. Honegger, “Festigkeitsberechnung von Kegelschalen mit linear verinderlicher
Wandstirke,” doctoral thesis, Ziirich, 1919. For the casc of an arbitrary loading see
H. Nollau, Z. angew. Math. Mech., vol. 24, p. 10, 1944,

? Problems of this kind are rigorously trcated in the paper by H. Wissler, «Festig-
keitsberechnung von Ringflichenschalen,” doctoral thesis, Ziirich, 1916.  For toroidal
shells see also R. A. Clark, J. Math. and Phys., vol. 29, p. 146, 1950; for those with an
elliptical cross scction, see R. A. Clark, T. I. Gilroy, and E. Reissner, J. Appl.
Mechanics, vol. 19, p. 37, 1952, Short axisymmetrical shells under edge loading have
been considered by G. Horvay, C. Linkous, and J. 8. Born, J. Appl. Mechanics, vol. 23,
p. 68, 1956. For calculation of annular, conical, and spherical shells in combination
with a flat bottom, sce G. Horvay and I. M. Clausen, J. Appl. Mechanics, vol. 22,
p. 25, 1955.

3 Buch corrugated pipes were considered by K. Stange, Ingr.-Arch., vol. 2, p. 47,
1931. R. A. Clark and E. Reissner have considered some corrugated pipes as “nearly
cylindrical shells”; see J. Appl. Mechanics, vol. 23, p. 59, 1956. For the theory of
such shells sce also . F. Burmistrov, Priklad. Mat. Mekhan., vol. 13, p. 401, 1949.

4 See Meissner paper, loc. cit.
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At the same time, all the existing solutions indicate that, for thin shells
for which the angle ¢ is not small, the stresses produced by forces and
moments uniformly distributed along the edge are of a local character
and die out rapidly as the distance from the edge increases. This fact
suggests the use in more general cases of the same kind of approximate
solutions as were discussed in the case of spherical shells. Starting with
the general equations (313) and (316) (page 538), we neglect on the left-
hand sides of these equations the functions U and V and their first deriva-
tives in comparison with the second derivatives.! This results in the
following simplified system of equations:

y 2
';ZE‘UE/ — EnV
e (a)
ndV. U ’
r2de® D
Differentiating the first of these equations twice, we obtain
d? [r.d*U d? .
io (55) = e w0 @

If after differentiation we again retain on each side only one term con-
taining the derivative of the highest order of the functions U and V,
we obtain

U @V _ Bt U

d*
dor = PG n D (c)

Ty
'2

After the introduction of the notation

_ 1 Ehry
4 TQD

4

= 3(1 — »?)- th ()

! This method of obtaining an approximate solution in a general case is due to J. W.
Geckeler, Forschungsarb., no. 276, p. 21, Berlin, 1926. An extension of Blumenthal's
method of asymptotic integration on the general case of shells in form of a surface of
revolution was given by L. Steuermann, Proc. Third Intern. Congr. Appl. Mech., vol. 2,
p- 60, 1930. For the method of asymptotic integration see also F. B. Hildebrand,
Proc. Symposia Appl. Math., vol. 3, p. 53, 1950. For the general theory of shells and
the limits of its application see F. B. Hildebrand, E. Reissner, and G. B. Thomas,
NACA Tech. Note 1833, 1949; W. Zerna, Ingr.-Arch., vol. 17, p. 149, 1949: A. E.
Green and W. Zerna, Quart. Mech. Appl. Math., vol. 3, p. 9, 1950; H. Parkus, Osterr.
Ingr.-Arch., vol. 4, p. 160, 1950; J. K. Knowles and E. Reissner, J. Math. and Phys.,
vol. 35, p. 351, 1957; H. Neuber, Z. angew. Math. Mech., vol. 29, p. 97, 1949. The
effect of transverse shear deformation on shells of revolution has been considered by
P. M. Naghdi, Quart. Appl. Math., vol. 15, p. 41, 1957. Advances in the nonlincar
theory of shells are especially duc to N. A. Alumyae, K. Z. Galimov, and K. M.
Mushtari; see bibliography in A. S. Volmir, “Flexible Plates and Shells,” Moscow,
1956. Seec also 4. Parszewski, Proc. Ninth Intern. Congr. Appl. Mech., vol. 6, p. 280,
Brussels, 1957; G. Schwarze, Ingr.-Arch., vol. 25, p. 278, 1957.
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Eq. (¢) becomes

477
%+4>\4U=0 ©

This is of the same form as Eq. (4) in Art. 130, which was obtained for
spherical shells. The difference between the two equations consists only
in the fact that the factor A, given by expression (d), is no longer con-
stant in the general case but varies with the angle ¢.  Since the function
U dies out rapidly as the distance from the edge increases, we can obtain
a satisfactory approximate solution of Eq. (¢) by replacing A by a certain
constant average value. The approximate solution previously obtained
for a sphere can then be directly applied here.

To obtain a more satisfactory result the shell can be divided by parallel
cireles into several zones for each of which a certain eonstant average
value of X is used. DBeginning with the first zone at the edge of the shell,
the two constants of the general solution (329) are obtained from the
conditions at the edge in the same manner as was illustrated for a spheri-
cal shell. Then all quantities defining the deformations and stresses in
this zone are obtained from Eqs. (330). The values of these quantities
at the end of the first zone give the initial values of the same quantities
for the second zone. Thus, after changing the numerical value of X for
the second zone, we can continue the calculations by again using the
general solution (329).1

If the factor X can be represented by the expression

a
N = e
b+ e

in which @ and b are constants, a rigorous solution of Iiq. (e) ean be
obtained.? However, since liq. (e) is only an approximate relation, such
a rigorous solution apparently has little advantage over the previously
described approximate calculation.?

L An application of this method to the calculation of stresses in full heads of pres-
sure vessels is given in the paper by W. M. Coates, Trans. ASME, vol. 52, p. 117, 1930.

2Bee Geckeler, op. cit. An application of this solution to the calculation of
stresses in a steep-sided dome is given by W. Fligge; see “Statik und Dynamik der
Schalen,” 2d ed., p. 194, Berlin, 1957. Shells with varying thickness were also con-
sidered by C. N. DeSilva and P. M. Naghdi, Quart. Appl. Math., vol. 15, p. 169, 1957.

3 For bibliography regarding shells, see also the books of W. Fliigge, op. cit.; K. Girk-
mann, op. ctt.; and R. L'Hermite, “Resistance des matériaux théorique et expéri-
mentale,” Paris, 1954. The theory of prismatic and pyramidal shells is considered in
the above-mentioned books, and also by J. Born, ‘“‘Faltwerke,” Stuttgart, 1954. For
bibliography in the field of roof shells see especially A. Aas-Jakobsen, op. cil., and
Proc. Symposium on Concrete Shell Roof Consitruction, Cement and Conerete Associa-
tion, London, 1954,
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SUBJECT INDEX

Anisotropic plates, 364
bending of, strain energy in, 377
circular, 376
elliptie, 376
rectangular, 371
rigidities of, flexural, 366
Approximate investigation of bending, of
continuous plates, 236
of cylindrical shells, 519
of shells having form of surface of revo-
lution, 567
of spherical shells, 547
Asymptotic integration of cquation for
bending of spherical shells, 547
Average curvature, 35

Bending of plates, to anticlastic surface,
37, 44

bipolar coordinates in, 290, 298

characteristic functions in, 334

under combined action of lateral load
and forces in middle plane of
plate, 378

cylindrical (see Cylindrical bending)

to cylindrical surface, 4

to developable surface, 47, 418

elongations due to, 38, 384

having initial curvature, 27, 393

influence surfaces in, 328, 329, 332

by lateral load, 79

methods in, approximate, 325

by moments distributed along edges,
37, 180

photoelasticity in, 362

plane-stress analogy with, 363

polar coordinates in, 282

pure (see Pure bending of plates)

rigorous theory of, 98

singularities in, 325

to spherical surface, 43

virtual-displacements principle in, 342,
387

(See also Approximate investigation of
bending; Strain energy in bending;
specific types of plates)

514

Bipolar coordinates, use in bending of
plates, 2490, 298
Boundary conditions, for built-in edges,
83, 171
for curvilinear boundary, 87
for ecylindrical roof shells, 518, 527
for elastically supported edges, 86
for free edges, 83, 171
Kirchhoft’s derivation of, 88
for simply supported edges, 83, 171
in using finite differences, 361
Buckling (eritical) load, 389, 392
Built-in edge, boundary conditions for, 83
(See also Clamped cdges)

Cantilever plate, 210, 327, 336
reaction under partial load, 334
Characteristic functions in bending of
plates, 334
Circular hole, in circular plate, 17, 58, 303
in infinitely extended plate, 319
in square plate, 322
stress concentration around, 321
Circular inclusion, 323
Circular plates, circular hole in, 58, 61,
303
with clamped cdges, 55, 68, 290
under combined action of lateral load
and forces in middle plane of plate,
391
corrugated, 404
critical load for, 392
deflections of, large, 396
differential equation for, 53, 54, 283
on elastic foundation, 259
under linearly varying load, 285
loaded, at center, 67
eccentrically, 2090
gymmetrically, 53
uniformly, 54
supported at several points, 203
symmetrical bending of, 51
theory of bending, corrections to, 70,
72
of variable thickness, 298, 304



576

Clamped edges, boundary conditions for,
83, 171
expressed in finite differences, 361
circular plates with, 55, 68, 290
rectangular plates with, 197
Columns, equidistant, plates supported
hy rows of, 245
Combined action of lateral load and
forces in middle plane of plate, 378
circular plates under, 391
rectangular plates under, 380, 387
strain energy in case of, 383
Complex variable method applied in
bending, of anisotropic plates, 377
of isotropic plates, 340
Concentrated load, cantilever plate
under, 210, 327, 336
centrally applied, circular plate under,
67
cylindrical shell under, 505
cccentrically applied, circular plate
under, 290
footing slab under, 221, 307
loeal stresses under, 69
on plate on elastic foundation, 263, 267,
275, 280
rectangular plate under, with clamped
cdges, 203
of infinite length, 144
with simply supported edges, 111,
141
Conical dome, wind pressure on, 451
Conical shells, bending of, 562
membrane stresses in, 439, 451
Conoidal shell, 465
Constant strength, shells of, 442
Jontinuous rectangular plates, 229
approximate design of, 236
supported by rows of columns, 245
with two edges simply supported, 229
Corrugated eircular plate, 404
Corrugated pipes under axial compres-
sion, 566
Corrugated plates, flexural rigidity of,
367
Critieal load, for circular plate, 392
for rectangular plate with supported
edges, 389
Curvature, average, 35
initial, bending of plates having, 27,393
measured with reflected light, 363
principal, 36
of slightly bent plates, 33
Curved plates, initially, bending of, 27,
393
Curvilinear boundary, conditions for, 87
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Cylindrical aeolotropy in plates, 377
Cylindrical bending, of bottom plates in
hull of ship, 21
of plates, 4
with built-in edges, 13
differential equation for, 4
on elastic foundation, 30
with clastically built-in edges, 17
with simply supported edges, 6
Cylindrical roof shells, 460, 519, 524
boundary conditions for, 518, 527
Cylindrical shells, bending of, approxi-
mate investigation of, 519
bent by forces distributed along edges,
478
deflection of, general equation for, 514
deflection of uniformly loaded portion
of, 516
deformation of, inextensional, 501
under hydrostatic pressure, supported
at ends, 514
reinforced by rings, 479
stress and strain function in investiga-
tion of, 522
symmetrically loaded, 466
theory of, general, 466
membrane, 457
thermal stresses in, 497
under uniform internal pressure, 475
Cylindrical tanks, with nonuniform wall
thickness, 488
with uniform wall thickness, 485

Deflection, of eircular plates, 51, 285
of elliptical plates, 310, 312
of Iaterally loaded plates, 79
differential equation for, 82
large (see Large deflections)
limitations regarding, 47, 72
small, 79
of plates under combined lateral load-
ing and forces in middle plane, 378
of portion of cylindrical shell, 516
of rectangular plates with simply sup-
ported edges, 105
under concentrated load, 111, 141
due to temperature gradient, 162
under hydrostatic load, 124
of infinite length, 4, 149
partially loaded, 135
under sinusoidal load, 105
under triangular load, 130
uniformly loaded, 109, 113
of variable thickness, 173
with various edge conditions, 180
(See also Rectangular plates)
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Deflection, strain energy method in cal-
culating, 342, 400, 412
of triangular plates simply supported,
bent by moments uniformly dis-
tributed along boundary, 94
under concentrated load, 314, 316
due to temaperature gradient, 96
uniformly loaded, 313, 317
Deformation of shells without hending,
129
Developable surface, bending of plate to,
47, 418
Diaphragms under uniform pressure,
conieal, 562
spherical, 544
Differential equation, for bending of
plates, anisotropic, 365
under combined lateral loads and
loading in middle plane of plate,
379
to eylindrical surface, 4
with large deflections, 398, 417, 418
under lateral loads, 82
for bending of spherical shells, 540
for deflection of membranes, 419
for symmetrical bending of eylindrical
shells, 468
Discontinuity stresses, in ellipsoidal
hoiler ends, 484
in pressure vesscls, 483
Displacements in symmetrically loaded
shells, 445
Dome, conical, 451
spherical (see Spherical dome)

Elastic inclusion, 323

Elastic properties of plywood, 367

Elastic solid, scmi-infinite, plate resting
on, 278

Fllipsoidal ends of boiler, 484

Ellipsoidal shells, 440

Elliptic functions, use in theory of plates,

341
Flliptic paraboloid, shell in form of,
462

Elliptic plates, uniformly loaded, with
clamped edges, 310
with simply supported edges, 312
Elongations due to bending of plates, 38,
384
Energy method, applied in bending, of
cylindrical shells, 505
of plates, 342, 347
in caleulating large deflections, 412, 419
Exact theory of plates, 98
Experimental methods, 362
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IMnite-difference equation, for defleetion
of rectangular plates, 351
for large deflections, 398, 419
operators used in formulating, 360
for skewed plates, 357
Flat slabs, 245
circular, 202
rectangular, 245
in form of strip, 255
over many panels, 245
over ninc panels, 253
reversed, 276
rigid connection with column, effect
of, 257
Flexural rigidity, of plates, 5
of anisotropic material, 365
corrugated, 367
of shells, 432
Free edge, boundary conditions for, 83,
171
expressed in finite differences, 361

Green’s function in bending of plates,
112, 328, 334
Gridwork system, bending of, 369

Helicoidal shells, 562

Hole (sce Circular hole)

Hull of ships, bending of bottom plates
of, 21

Hyperbolic paraboloid, shell in form of,
464

Images, method of, 156, 225, 314
Inclusion, elastice, 323
rigid, in plate, 323
Inextensional deformation, of cylindrical
shells, 501
of plates with large deflections, 418
Infinite length, plate of, 4, 119
Influence surfaces in bending of plates,
328
example of use, for circular plates,
329
for continuous plaics, 332
for rectangular plates, 329
Initial curvature, bending of plates with,

27, 393

Large deflections, 396
approximate formulus for, 400, 410, 416
calculation of, strain-energy method in,
400, 412
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Large deflections, of circular plates, 396
under concentrated load, 412
under edge moments, 396
uniformly loaded, 400, 404, 408
differential equations for, 398, 417, 418
of rectangular plates, uniformly loaded,
421, 425
clamped, 421
simply supported, 425
Lateral vibration of plates, 334
Limitations on application of customary
theory, 47, 72, 165
Local stresses under concentrated load, 69
Long rectangular plates, 4, 149
bending of, to cylindrical surface, 4
with built-in edges, 13
under concentrated load, 144
on elastic foundation, 30
with clastically built-in edges, 17
with simply supported edges, 6
small initial cylindrical curvature in, 27

Membrane cquation, application in bend-
ing of plates, 92, 351
Membrane forces in shells, 433
expressed in terms of displacements,
523, 534
use of stress function in caleulating, 461
Membrane theory of shells, 429
evlindrical, 457
in form of surface of revolution, 433
Membranes, circular, deflection of, 403
differential equation for defleetion of,
119
square, deflection of, 420
Methods, approximate, in bending of
plates, 325
Middle planc of plate, 33
Middle surface, of plate, 33
of shell, 129
Mohr’s circle for determination, of curva-
tures, 36
of moments, 40, 359
Moments, hending and twisting, of shells,
430
expressed in terms of displacements,
523, 535
determined by Mohr’s cirele, 40, 359
of plates, relation with curvature, 81,
283
twisting, 39, 41, 81

Navier solution, for portion of cylindrical
shell, 516
for simply supported plates, 108, 111
Neutral surfaee, 38
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Nonlinear problems in bending of plates,
308
Nonsymmetrically loaded shells, 447

Orthotropic plates, 364

Photoelasticity in bending of plates,
application of, 362
“Photostress”” method, 362
Plane-stress analogy with bending of
plates, 363
Plates (see specific types of plates)
Plywood, elastic properties of, 367
Poisson’s ratio, effeet on stresses in plates,
97
numerical value of, 97
Polar coordinates, in bending of plates,
282
bending and twisting moments ex-
pressed in, 283
differential equation for deflection in,
53, 54, 283
for large deflections in, 418
strain enecrgy expressed in, 345, 346
Polygonal plates, 93, 341
Pressure vessels, 481
discontinuity stresses in, 483
Principal eurvature, 33, 36
planes of, 36
Pure bending of plates, anticlastic surface
in, 44
limitation of deflection in, 47
particular cases of, 42
relation between bending moments and
curvature in, 39
slope and curvature in, 33
strain enecrgy of, 46

Reactions at boundary of plates, relation
with deflection, 84
of simply supported rectangular plates,
under hydrostatic load, 128, 132
under triangular load, 134
under uniform load, 120
Reectangular plates, anisotropie, 371
with clamped edges, 197
under concentrated load, 111, 141, [44,
203
continuous, 229, 236, 245
deflection caleulation, by encrgy
method, 342, 347
by finite difference method, 351
by method of reversion, 349
(See also Deflection)
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Rectangular plates, under hydrostatic
pressure, 124
of infinite length, 4, 149
long (see Long rectangular plates)
partially loaded, 135
semi-infinite, 221, 225
simply supported, 105
under uniform load, 109, 113
under sinusoidal load, 105
under triangular load, 130
under uniform load, 109, 113, 240
of variable thickness, 173
with various edge conditions, 180
all edges built-in, 197, 245
all edges elastically supported or free
and resting on corner points, 218
all edges simply supported, 105, 240
three edges built-in, one edge free,
211
one edge simply supported, 205,
244
three edges simply supported, one
edge built-in, 192, 241
two adjacent edges simply sup-
ported, other edges built-in, 207,
243 .
two opposite edges simply supported,
one edge free, fourth edge built-
in or simply supported, 208
two others built-in, 185, 242
two others free or supported elas-
tically, 214
Reflected light, measuring of curvatures
with, 363
Relaxation method, 362
Reversion method, 349
Rigid inclusion in plate, 323
Rigidity, flexural, of plates, 5
anisotropie, 365
of shells, 432
Rigorous theory of plates, 98
Ring, reinforcing, of spherical dome, 555
Ring-shaped plates, 58, 303
Roof shells, cylindrical, 460, 519, 524

Sector, plates in form of, 295
Semicircular plate, clamped, 298
simply supported, 295
Semi-infinite rectangular plates, 221
under concentrated load, 225
under uniform load, 221
Shallow spherical shells, 558
Shear (see Transverse shear)
Shearing forces, of cylindrical shells ex-
pressed in terms of displacements,
523
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Shearing forces, of plates, relation with
deflection, 82, 284
Shearing strain in plate, 41
Shearing stress in plate, 41
Shells, conical, 439, 451, 562
conoidal, 465
of constant strength, 442
eylindrical (see Cylindrical shells)
deflections of, strain energy method of
calculating, 505
deformation of, without bending, 429
ellipsoidal, 440
flexural rigidity of, 432
in form, of clliptic paraboloid, 462
of hyperbolic paraboloid, 464
of surface of revolution (see Surface
of revolution)
of torus, 441, 566
nonsymmetrically loaded, 447
spherical, 436
wind pressure on, 449
symmetrically loaded (see Symmetri-
cally loaded shells)
Simply supported edges, boundary condi-
tions for, 83, 171
circular plates with, 56, 68
rectangular plates with, 105
Singularities in bending of plates, 325
Skewed plates, 318, 357
Spherical dome, under action of its
weight, 436
bending of, approximate analysis,
547
bending stress calculation for, example,
554
with edge ring, 555
membrane forces in, 436
shallow, 558
supported at isolated points, 453
under wind pressure, 449
Strain energy in bending, of anisotropic
plates, 377
of isotropic plates, 88
expressed in polar coordinates, 345,
346
for large deflections, 100, 412
in pure bending, 47
Strain encrgy method in calculating de-
flections, of plates, large, 400, 412
small, 342
of shells, 505
Stress function, in calculating membrane
forces of shells, 461
in general theory of eylindrical shells,
522
in resolving equations for large deflec-
tions, 413, 417
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Stresses in plate, normal, 42
Poisson’s ratio effect on, 97
shearing, 41, 42
(See also Thermal stresses)
Successive approximation in calculating
bending stresses in shells, 552
Surface of revolution, shells having form
of, 433, 533
bending stresses in, 566
symmetrically loaded, 433, 533
displacements in, 445
equations for determining mem-
brane forces in, 434
particular cases of, 436
Symmetrically loaded shells, 433, 533
spherical, 436, 540, 547
Syneclastic surface, 37

Taunks, of constant strength, 443
eylindrical, with nonuniform wall
thickness, 488
with uniform wall thickness, 485
spherical, 437
Thermal stresses, in eylindrical shells, 4197
in plates with clamped edges, 49
in simply supported rectangular plates,
162
in spherical shells, 546
in triangular plates, 95
Thick plates, 69, 72, 98
"Toroidal shells, 411, 566
Transforms, use in theory of plates, 336
Transverse shear, effect of, on deflections
of plates, 72, 165
on stresses around hole, 322
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Triangular load, rectangular plates under,
130
Triangular plates, clamped in all or two
sides, 315
equilateral, simply supported, 313
bending, by concentrated load, 314
by cdge moments, 94
by uniform load, 313
thermal stresses in, 95
in form of isosceles right triangle, 316
Twist of surface, 35
Twisting moment, 39
in terms of deflection, 41, 81

Uniforn load, plates under, circular, 54
rectangular, clamped, 197
continuous, 229, 236
simply supported, 109, 113
portion of cylindricat shell under, 516
on spherical shell, 544

Variable thickness, plates of, circular,
208, 305
rectangular, 173
ring-shaped, 303
Vibration, lateral, of plates, 334
Virtual displacements, application of
principle in bending, of plates, 342,
387
of shells, 505

Wedge-shaped plates, 337
Wind pressure on dome, conical, 451
spherical, 419
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