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PREFACE 

Since the publication of the first edition of this book, the application 
of the theory of plates and shells in practice has widened considerably, 
and some new methods have been introduced into the theory. To take 
these facts into consideration, we have had to make many changes and 
additions. The principal additions are (1) an article on deflection of 
plates due to transverse shear, (2) an article on stress concentrations 
around a circular hole in a bent plate, (3) a chapter on bending of plates 
resting on an elastic foundation, (4) a chapter on bending of anisotropic 
plates, and (5) a chapter reviewing certain special and approximate 
methods used in plate analysis. We have also expanded the chapter on 
large deflections of plates, adding several new cases of plates of variable 
thickness and some numerical tables facilitating plate analysis. 

In the part of the book dealing with the theory of shells, we limited 
ourselves to the addition of the stress-function method in the membrane 
theory of shells and some minor additions in the flexural theory of shells. 

The theory of shells has been developing rapidly in recent years, and 
several new books have appeared in this field. Since it was not feasible 
for us to discuss these new developments in detail, we have merely referred 
to the new bibliography, in which persons specially interested in this field 
will find the necessary information. 

S. Timoshenko 
S. Woinowsk~p Krieger 
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NOTATION 

Rectangular coordinates 
Polnr coordinates 
Radii of curvature of the middle surface of a plate in 22 and 2/z planes, 
respwtivcly 
Thickness of n plate or a sllell 
Intensit,y of a cant inuously distributed load 
Pi-CSSUi-C 
Sin& load 
Weightj per unit volume 
Korrnal components of stress parallel to z, y, and z axes 
Normal component of stress parallel to I% direction 
Radial stress in polar coordinates 
Tangrlntial stress in polar coordinates 
Shtnrilq stress 
Shearing stress romponcnts in rwtangular coordinates 
Components of displacements 
Unit elongation 
Unit elongations in z, u, and z dirwiions 
Radial Itnit elongation in polar coordinates 
Tangrntinl unit, elongation in polar coordinates 
Unit rlorqq~tions of a shell in mcridionnl direction and in the direction 
of pnrallrl c&kc-lc, respectively 
Shwring sir:tin components in rect,nngular coordinates 
Shearing strain in polar coordinnt,cs 
~Io~l~d~~s of elasticity in trrision and compression 
%lodrrlus of elasticity in shear 

Y . Poisson’s ratio 
Strain energy 
Flesural rigidity of a plate or &cl1 
Bending moments per unit length of sections of a plate perpendicular 
to z and ~1 axes, respcctiwl~ 
Twisting moment per unit length of section of a plate perpendicular 
to x axis 
Bending and twisting moments per unit lengt~h of a section of a plate 
perpendicular to 1~ direction 
Shearing forces pnrnllcl to z axis per unit length of s&ions of a plate 
perpcndiculnr to x and 7, axes, respectively 
Shearing force parallel to z axis per unit length of s&ion of a plate 
perpendicular to 1~ direction 
Normal forces per unit length of sections of a plate perpendicular to 
x and ?/ directions, respectively 

. 
xm 



xiv NOTATION 

NW Shearing force in direction of y axis per unit length of section of a plate 
perpendicular to 1: axis 

LM,, Mi, 111,~ Radial, tangential, and twisting moments when using polar coordinates 
Qr, QI Radial and tangential shearing forces 

N,, Nt Normal forces per unit length in radial and tangential directions 
rr, ‘r2 Radii of curvature of a shell in the form of a surface of revolution in 

meridional plane and in the normal plane perpendicular to meridian, 
respectively 

x+,, x0 Changes of curvature of a shell in meridional plane and in the plane 
perpendicular to meridian, respectively 

X, I’rOi 
Twist of a shell 
Components of the intensity of the external load on a shell, parallel to 
z, y, and z axes, respectively 

1% 
lo&o, Log 

Membrane forces per unit length of principal normal sections of a shell 
Bending moments in a shell per unit length of meridional section and a 
sect,ion perpendicular to meridian, respectively 
Changes of curvature of a cylindrical shell in axial plant and in a plane 
perpendicular to the axis, respectively 
Membrane forces per unit length of axial section and a section perpen- 
dicular to the axis of a cylindrical shell 
Bending moments per unit length of axial section and a section perpen- 
dicular to the axis of a cylindrical shell, respectively 
Twisting moment per unit length of an axial section of a cylindrical 
shell 
Shearing forces parallel to z axis per unit length of an axial section and 
a section perpendicular to the axis of a cylindrical shell, respectively 
Natural logarithm 
Common logarithm 



INTRODUCTION 

The bending properties of a plate depend greatly on its thickness as 
compared with its other dimensions. In the following discussion, we 
shall distinguish between three kinds of plates: (1) thin plates with small 
deflections, (2) thin plates with large deflections, (3) thick plates. 

Thin Plates with Small DeJection. If deflections w of a plate are small 
in comparison with its thickness h, a very satisfactory approximate theory 
of bending of the plate by lateral loads can be developed by making the 
following assumptions: 

1. There is no deformation in the middle plane of the plate. This 
plane remains neutral during bending. 

2. Points of the plate lying initially on a normal-to-the-middle plane 
of the plate remain on the normal-to-the-middle surface of the plate after 
bending. 

3. The normal stresses in the direction transverse to the plate can be 
disregarded. 

Using these assumptions, all stress components can be expressed by 
deflection w of the plate, which is a function of the two coordinates in 
the plane of the plate. This function has to satisfy a linear partial 
differential equation, which, together with the boundary conditions, com- 
pletely defines w. Thus the solution of this equation gives all necessary 
information for calculating stresses at any point of the plate. 

The second assumption is equivalent to the disregard of the effect of 
shear forces on the deflection of plates. This assumption is usually satis- 
factory, but in some cases (for example, in the case of holes in a plate) 
the effect of shear becomes important and some corrections in the theory 
of thin plates should be introduced (see Art. 39). 

If, in addition to lateral loads, there are external forces acting in the 
middle plane of the plate, the first assumption does not hold any more, 
and it is necessary to take into consideration the effect on bending of the 
plate of the stresses acting in the middle plane of the plate. This can be 
done by int.roducing some additional terms into the above-mentioned 
differential equation of plates (see Art. 90). 
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Thin Plates with Large Dejlection. The first assumption is completely 
satisfied only if a plate is bent into a developable surface. In other cases 
bending of a plate is accompanied by strain in the middle plane, but 
calculations show that the corresponding stresses in the middle plane are 
negligible if the deflections of the plate are small in comparison with its 
thickness. If the deflections are not small, these supplementary stresses 
must bc t,aken into consideration in deriving the differential equation of 
plates. In this way we obtain nonlinear equations and the solution of the 
problem becomes much more complicated (see Art. 96). In the case of 
large deflections we have also to distinguish between immovable edges 
and edges free to move in the plane of the plate, which may have a con- 
siderable bearing upon the magnitude of deflections and stresses of t,he 
plate (see Arts. 99, 100). Owing to the curvature of the deformed middle 
plane of the plate, the supplcmcntary tensile stresses, which predominatcJ 
act in opposition to the given lateral load; thus, the given load is nolv 
transmitted partly by the flexural rigidity and partly by a membrane 
action of the plate. Consequently, very thin plates with negligible 
resistance to bending behave as membranes, except perhaps for a narrow 
edge zone where bending may occur because of t,he boundary conditions 
imposed on the plate. 

The case of a plate bent into a developable, in particular into a cylindri- 
cal, surface should be considered as an exception. The deflections of 
such a plate may be of the order of its thickness without necessarily pro- 
ducing membrane stresses and without affecting the linear character of 
the theory of bending. Membrane stresses would, however, arise in such 
a plate if its edges are immovable in its plane and the deflections are 
sufficiemly large (see Art. 2). Therefore, in “plates with small deflcc- 
tion” membrane forces caused by edges immovable in the plane of the 
plate can be pract,ically disregarded. 

Thick Plates. The approximate theories of thin plates, discussed 
above, become unreliable in the case of plates of considerable thickness, 
especially in the case of highly concentrated loads. In such a case the 
thick-plate theory should be applied. This theory considers the prob- 
lem of plates as a three-dimensional problem of elasticity. The stress 
analysis becomes, consequently, more involved and, up to now, the prob- 
lem is completely solved only for a few particular cases. Using this 
analysis, the necessary corrections to the thin-plate theory at the points of 
application of concentrated loads can be introduced. 

The main suppositions of the theory of thin plates also form the basis 
for the usual theory of thin shells. There exists, however, a substantial 
difference in the behavior of plates and shells under the action of external 
loading. The static equilibrium of a plate element under a lateral load 
is only possible by action of bending and twisting moments, usually 
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accompanied by shearing forces, while a shell, in general, is able to trans- 
mit the surface load by “membrane” stresses which act parallel to the 
tangential plane at a given point of the middle surface and are distributed 
uniformly over the thickness of the shell. This property of shells makes 
them, as a rule, a much more rigid and a more economical structure than 
a plate would be under the same conditions. 

In principle, the membrane forces are independent of bending and are 
wholly defined by the conditions of static equilibrium. The methods of 
determination of these forces represent the so-called “membrane theory 
of shells.” However, the reactive forces and deformation obtained by 
the use of the membrane theory at the shell’s boundary usually become 
incompatible with the actual boundary conditions. To remove this dis- 
crepancy the bending of the shell in the edge zone has to be considered, 
which may affect slightly the magnitude of initially calculated membrane 
forces. This bending, however, usually has a very localized1 character 
and may be calculated on the basis of the same assumptions which were 
used in the case of small deflections of thin plates. But there are prob- 
lems, cspccially those concerning the elastic stability of shells, in which 
the assumption of small deflections should be discontinued and the “large- 
deflection theory” should be used. 

If the thickness of a shell is comparable to the radii of curvature, or 
if we consider stresses near the concentrated forces, a more rigorous 
theory, similar to the thick-plate theory, should be applied. 

1 There are some kinds of shells, especially those with a negative Gaussian curvy- 
ture, which provide us with a lot of exceptions. In the case of developable surfaces 
such as cylinders or cones, large deflection without strain of the middle surface is 
possible, and, in some cases, membrane stresses can be neglected and consideration 
of the bending stresses alone may be sufficient. 



CHAPTER 1 

BENDING OF LONG RECTANGULAR PLATES TO A 

CYLINDRICAL SURFACE 

1. Differential Equation for Cylindrical Bending of Plates. We shall 
begin the theory of bending of plates with the simple problem of the 
bending of a long rectangular plate that is subjected to a transverse load 
that does not vary along the length of the plate. The deflected surface 
of a portion of such a plate at a considerable distance from the ends’ 
can be assumed cylindrical, with the axis of the cylinder parallel to the 
length of the plate. We can therefore restrict ourselves to the investi- 
gation of the bending of an elemental strip cut from the plate by two 
planes perpendicular to the length of the plate and a unit distance (say 
1 in.) apart. The deflection of this strip is given by a differential equa- 

tion which is similar to the deflection 
------L ----+I 

& 

-x equation of a bent beam. 

-.L--/;K To obtain the equation for the de- 
--j--7- election, we con.sider a plate of uni- 

---f-F form thickness, equal to h, and take 

Y ‘W z 
the xy plane as the middle plane of 

FIG. 1 
the plate before loading, i.e., as the 
plane midway between the faces of 

t)he plate. Let the y axis coincide with one of the longitudinal edges 
of the plate and let the positive direction of the z axis be downward, 
as shown in Fig. 1. Then if the width of the plate is denoted by 1, the 
elemental strip may be considered as a bar of rectangular cross section 
which has a length of I and a depth of h. In calculating the bending 
stresses in such a bar we assume, as in the ordinary theory of beams, 
that cross sections of the bar remain plane during bending, so that they 
undergo only a rotation with respect to their neutral axes. If no normal 
forces are applied to the end sections of the bar, the neutral surface of 
the bar coincides with the middle surface of the plate, and the unit 
elongation of a fiber parallel to the z axis is proportional to its distance x 

1 The relation between the length and the width of a plate in order that the maxi- 
mum stress may approximate that in an infinitely long plate is discussed later; see 
pp. 118 and 125. 

4 
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from the middle surface. The curvature of the deflection curve can be 
taken equal to -d2w/dx2, where w, the deflection of the bar in the z 
direct,ion, is assumed to be small compared with the length of the bar 1. 
The unit elongation E= of a fiber at a distance z from the middle surface 
(Fig. 2) is then --x d2w/dx2. 

Making use of Hooke’s law, the unit elonga- 
tions E, and E, in terms of the normal stresses h 
gZ and ul/ acting on the element shown shaded 2 
in Fig. 2a are 

UY Cd uz E x=-- VU11 - 
E E 

E,, = 5 - yaz = 0 
(1) 

a 

ax 

E E 

where E is the modulus of elasticity of the (t-3 

material and v is Poisson’s ratio. The lateral 
FIG. 2 

strain in the ‘J direction must be zero in order to maintain continuity 

in the plate during bending, from which it follows by the second of the 
equations (1) that uI/ = vuZ. Substituting this value in the first of the 
equat’ions (13, we obtain 

If the plate is submitted to the action of tensile or compressive forces 
acting in the x direction and uniformly distributed along the longitudinal 
sides of the plate, the corresponding direct stress must be added to the 
stress (2) due to bending. 

Having the expression for bending stress u =, we obtain by integrat,ion 
the bending moment in the elemental strip: 

s h/2 ik?= uzz dz = - s h/2 &2 ,-JZW 
-____ & = li,‘hR d”w 

-h/2 -h/2 1 - v2 dx* 12(1 - v”) dx* 

Introducing the notation 
Eh3 

iz(l - 9) = D 

we represent the equation for the deflection curve of the elemental strip 
in the following form: 

in which t,he quantity D, taking the place of the quantity EI in the Case 
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of beams, is called the jkcural rigidity of the plate. It is seen that the 
calculation of deflections of the plate reduces t>o the integration of Eq. (4), 
which has the same form as the differential equat’ion for deflection of 
beams. If there is only a lateral load acting on. the plate and the edges 
are free to approach each other as deflection occurs, the expression for 
the bending moment M can be readily derived, and the deflection curve 
is then obtained by integrating Eq. (4). In practice the problem is more 
complicated, since the plate is usually attached to the boundary and its 
edges are not free to move. Such a method of support, set’s up tensile 
reactions along the edges as soon as deflection takes place. These reac-. 
tions depend on the magnitude of the deflection and affect the magnitude 
of the bending moment M entering in Eq. (4). The problem reduces to 
the investigation of bending of an elemental strip submitted to the action 
of a lateral load and also an axial force which depends on the deflection 
of the strip.l In the following we consider this problem for the particular 
case of uniform load acting on a plate and for various conditions along 
the edges. 

2. Cylindrical Bending of Uniformly Loaded Rectangular Plates with 

Simply Supported Edges. Let us consider a uniformly loaded long rec- 
tangular plate with longitudinal edges which are free to rotate but can- 
not move toward each other during bending. A2n elemental strip cut out 

x 

i 
FIG. 3 

from this plate, as shoIvn in Fig. 1, is in the condition of a uniformly 
loaded bar submitted to the action of an axial force S (Fig. 3). The 
magnitude of X is such as to prevent the ends of the bar from moving 
along the x axis. Denoting by p the intensity of the uniform load, the 
bending moment at any cross section of the strip is 

1 In such a form the problem was first discussed by I. G. Boobnov; see the English 
translation of his work in Trans. Inst. Nawd Architects, vol. 44, p. 15, 1902, and his 
“Theory of Structure of Ships,” vol. 2, p. 545, St. Petersburg, 1914. See also the 
paper by Stewart. Way presented at the National Meeting of Applied Mechanics, 
SSME, New Haven, Conn., June, 1932; from this paper are taken the curves used in 
Arts. 2 and 3, 
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Substituting in Eq. (4), we obtain 

d2w SW _ - -.- = 
dx2 D 

Introducing the notation 
s 12 --==2 
04 (5) 

the general solution of Eq. (a) can be written in the following form: 

w = Cl sinh 7 + C2 co& ?!fF + #$!Y!! - 
$d2X2 _ ql” 

8u2D 16u4D (b) 

The constants of integration Cl and C2 will be determined from the 
conditions at the ends. Since the deflections of the strip at the ends are 
zero, we have 

w=o for 5 = 0 and 5 = 1 (cl 

Substituting for w its expression (O), we obtain from these two conditions 

Cl = L ___--. 1 - cash 2~ 
16u4D sinh 2~ 

c2 = yl” 
16u”D 

and the expression (b) for the deflection w becomes 

w _ q14 1 - cash 211 sinh ?f!! + co& Z!fF _ 1 qPx q12x2 
16u4D -sinh-- 

+ ~ - ~ 
8u2D 8u2D 

Substituting 

cash 2~ = cosh2 u + sinh2 u sinh 2u = 2 sinh IL cash u 
cosh3 u = 1 + sinh2 u 

we can represent t.his expression in a simpler form: 

2ux 
sinh ?c sinh _ + cash u cash & 

1 1 
cash u - 1 

Thus, deflections of the elemental strip depend upon the quantity u, 
which, as we see from Eq. (5), is a function of the axial force S. This 
force can be determined from the condition that the ends of the strip 
(Fig. 3) do not move along the x axis. Hence the extension of the strip 
produced by the forces S is equal to the difference between the length of 
the arc along the deflection curve and the chord length 1. This diflerence 
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for small deflections can be represented by the formula’ 

(7) 

In calculating the extension of the strip produced by the forces S, we 
assume that the lateral strain of the strip in the y direction is prevented 
and use Eq. (2). Then 

x = S(1 - v2)1 = 1 
hE 5 

Substituting expression (6) for w and performing the integration, 
okknin the following equation for calculating S: 

rS(1 - v2)Z qV 

hi3 = F 256 ( 
J. tanh21 + kj !F!$” - zr~i16 + r8&* 

IL? > 
or substituting S = 4u2D/Z2, from Eq. (5), and the expression for 
from Eq. (3), we finally obtain the equation 

we 

D, 

E2h8 
(1- v2)2*2p3 = 16 U9 

135 tanh u I TZ tanlil u 
(8) 

For a given material, a given ratio h/Z, and a given load y the left-hand 
side of this equation can be readily calculated, and the value of u satis- 
fying the equation can be found by a trial-and-error method. To simplify 
this solution, the curves shown in Fig. 4 can be used. The abscissas of 
these curves represent the values of u and the ordinates represent the 
quantities log,, (lo4 l/U,), h w ere UO denotes the numerical value of the 
right-hand side of Eq. (8). l/u, is used because it is more easily calcu- 
lated from the plate constants and the load; and the factor lo4 is intro- 
duced to make the logarithms positive. In each particular case we begin 
by calculating the square root of the left-hand side of Eq. (8), equal to 
Eh4/(1 - v2)q14, which gives JU,,. The quantity log10 (lo4 d/u”) then 
gives the ordinate which must be used in Fig. 4, and the corresponding 
value of u can be readily obtained from the curve. Having U, we obtain 
the value of the axial force X from Eq. (5). 

In calculating stresses we observe that the total stress at any cross 
section of the strip consists of a bending stress proportional to the bend- 
ing moment and a t#ensile stress of magnitude X/h which is constant along 
t,he length of the strip. The maximum stress occurs at the middle of the 
strip, where the bending moment is a maximum. From the differential 
equation (4) the maximum bending moment is 

M max 

1 See Timoshenko, “Strength of Materials,” part I, 3d ed., p. 178, 1955. 



Substituting expression (6) for w, we obtain 

where 
1 - sech u 

$0 = u2 (e) 

The values of $0 are given by curves in Fig. 5. It is seen that these 
values diminish rapidly with increase of U, and for large u the maximum 
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10 
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bending moment is several times smaller than the moment qZ2/8 which 
would be obtained if there were no tensile reactions at the ends of the 
strip. 

The direct tensile stress g1 and the maximum bending stress CJ* are now 
readily expressed in terms of U, q, and the plate constants as follows: 

(1% 

(11) 

‘l’he maximum stress in the p&e is then 

~max = Cl + u2 

To show how the curves in Figs. 4 and 5 can be used in calculating 
maximum stresses, let us take a numerical example and assume that, a 
long rectangular steel plate 50 in. wide and 4 in. thick carries a uniformly - 
distributed load q = 20 psi. We start with a computation of z/U01 

,i’(;” = ii Lq ‘1 
0 

‘I = 30’ 106 L 
(1 - 0.32)20 108 o.01648 

Then, from tables, 
- 

loglo (lo4 z/U,) = 2.217 

From the curve A in Vig. 4 we find u = 3.795, and from Fig. 5 we obtain 
&I = 0.1329. 

Now, computing stresses by using Eqs. (10) and (11)) me find 

30 . 106 . :~.7952 1 
U, = -j-o-I ti;j32) 1o4 - 15,830 psi 

u2 = 2 20 . lo4 0.1329 = 19,930 psi 
U”,,,, = ul + u2 = 35,760 psi 

In calculnting the maximum deflection we substit,ut’e .T = Z/2 in Eq. (6) 
of the deflection curve. In this manner WC obtain 

where 
sech u - 1 + c 

Jo(u) = 
2 

5U4 

24 

To simplify calculations, values of fo(u) arc given by the curve in Fig. 5. 
If there were no tensile reactions at the ends of the strip, the maximum 
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deflection would be 5$4/384D. The effect of the tensile reactions is given 
by the factor fo(u), which diminishes rapidly with increasing u. 

Using Fig. 5 in the numerical example previously discussed, we find 
that for u = 3.795 the value of fo(u) is 0.145. Substituting this value in 
Eq. (12), we obtain 

WDlSX = 4.74 . 0.145 = 0.688 in. 

It is seen from Eq. (8) that the tensile parameter u depends, for a 
given material of the plate, upon the intensity of the load 4 and the 

20 
Lood in lb per sq in. 

FIG. 6 

ratio Z/h of width to t,hickness of the plate. From Eqs. (10) and (11) 
we see that the stresses (~1 and ~2 are also functions of u, Q, and l/h. 
Therefore, the maximum stress in the plate depends only on the load q 
and the ratio Z/h. This means that we can plot a set of curves giving 
maximum stress in terms of q, each curve in the set corresponding to a 
particular value of Z/h. Such curves are given in Fig. 6. It is seen that 
because of the presence of tensile forces 8, which increase with the load, 
the maximum stress is not proportional to the load q; and for large values 
of Q t,his stress does not vary much with the thickness of the plate. By 
taking the curve marked l/h = 100 and assuming Q = 20 psi, we obtain 
from the curve the value gmar calculated before in the numerical example. 
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3. Cylindrical Bending of Uniformly Loaded Rectangular Plates with 
Built-in Edges. We assume that the longitudinal edges of the plate are 
fixed in such a manner that they cannot rotate. Taking an elemental 
strip of unit width in the same manner as before (Fig. 1) and denoting by 
M. the bending moment per unit length acting on the longitudinal edges 
of the plate, the forces acting on the strip will be as shown in Fig. 7. 
The bending moment at any cross section of the strip is 

Substituting this expression in Eq. (4), we obtain 

d2W s _-- 
dx2 D 

w=-9k+9pg? 

The general solution of this equation, usin g notation (5), will be repre- 
sented in the following form: 

qPx qw d4 IJJ = C1 sinh 7 + Cz cash 7 + 8~2~ - __ - __- 
8U2 D 16u4D + 4u2D 

il/lol” (b) 

Observing that the deflection curve is symmetrical with respect to the 
middle of the strip, we determine the const,ants of integration CL, C2, and 

i 

FIG. ‘i 

the moment MO from the following three conditions: 

cw = 0 
dx 

for .r = 0 and x = k 

w=o for x = 0 
(cl 

Substituting expression (b) for w, we obtain from these conditions 

where 

Cl = - & Cz = aD coth u 

MO = f$ - i$ coth u = - ‘A GI(u) 

J/l(U) = 
3(u - tanh U) 

u2 tanh u 

(13) 
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The deflection w is therefore given by the expression 

d4 ‘Lux q14 -__ 10 = - 16u3L) sinh __ + ___ 
1 1G1s3 n 

coth u cash 22 
1 

+ ql”J qi”.f -_ yl” 
8u2D gu D 

-~~ coth II 
lGuBD 

This can be further simplified and finally put) in t’he following form: 

For calculating the parameter II we proceed as in the previous article 
and use Eq. (d) of that article. Substit,ut’ing in it expression (14) for w 
and performing the integration, we obtain 

Substituting S from Eq. (5) and exprestiiorl (3) for II, the equation for 
calculating II finally becomes 

E2hX 81 -=- 
(1 - ,2)2y”l” l(iu7 tanh II (15) 

To simplify the solution of this equation we use the curve in Fig. 8, in 
which the parameter u is taken as abscissa and t’he ordinates are equal 
to log10 (10” 2/1/I) ,where U1 denotes the right-hand side of Eq. (15). 
For any given plate we begin by calculating the square root of the lcft- 
hand side of Eq. (15), equal to Eh4/[(1 - 9)pZ4], which gives us z/U,. 
The quantity log,, (lo4 2/U,) then gives the ordinate of the curve in 
Fig. 8, and the corresponding abscissa gives the required value of u. 

Having IL, we can begin calculating the maximum stresses in the plate. 
The total stress at any point of a cross section of the strip consists of the 
con&ant tensile stress g1 and the bending stress. The maximum bending 
stress 02 will act at the built-in edges where the bending moment, is t,hc 
largest. Using Eq. (10) t)o calculat,e CT 1 and Eq. (13) t,o calculate the 
bending moment MO, we obtain 

(16) 

(17) 

fl,n,,x = Ul + c2 

To simplify t,he calculation of the stress (TV, t,he values of the function 
9,(u) are given by a curve in Fig. 5. 

The maximum deflect,ion is at the middle of t,he strip and is obtained by 
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.O 
I 2 

6 I: 
II 8 

FIG. 8 

substituting z = //2 in Eq. (14), from which 

where 

(W 

The fmdion fl(zs) is also given by a curve in Fig. 5. 
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The use of the curves in Figs. 5 and 8 will now be illustrated by a 
numerical example. A long rectangular steel plate has the dimensions 
1 = 50 in., h = + in., and q = 10 psi. In such a case we have 

4 30 . 106 = = (1 _ 0.32)10 0.032966 . 104 
- 

\ log,, lo4 X//U, = 2.5181 

From Fig. 8 we now find u = 1.894; and from Fig. 5, $1 = 0.8212. Sub- 
stituting these values in Eqs. (16) and (17), we find 

30 . 106 * 1.8942 
01 = 3c1 _ o.321104 = 3,940 Psi 

u2 = 4. 10. 104. 0.8212 = 41,060 psi 
u,,,, = u1 + uz = 45,000 psi 

Comparing these st,ress values with the maximum stresses obtained for 
a plate of the same size, but with twice the load, on the assumption of 

60,000 

50,000 

.r' 
4qooo 

:: 
kl 
Z30,OOO 
.c 
2 
P 
cn 20,000 

10,000 

0 
0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Load in lb per sq in. 
FIG. 9 

simply supported edges (see page ll), it can be concluded that, owing to 
clamping of the edges, the direct tensile stress decreases considerably, 
whereas the maximum bending stress increases several times, so that 
finally the maximum total stress in the case of clamped edges becomes 
larger than in the case of simply supported edges. 
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Proceeding as in the previous article it can be shown that the maxi- 
mum stress in a plate depends only on the load q and the ratio l/h, and 
me can plot a set of curves giving maximum stress in terms of q, each 
curve in the set corresponding to a particular value of l/h. Such curves 
are given in Fig. 9. It is seen that for small values of the intensity of 
the load q, when the effect of the axial force on the deflections of the 
strip is small, the maximum stress increases approximately in the same 
ratio as q increases. But for larger values of q the relation between the 
load and t’he maximum stress becomes nonlinear. 

In conclusion, we give in Table 1 the numerical values of all the func- 
tions plotted in Figs. 4, 5, and 8. This table can be used instead of the 
curves in calculating maximum stresses and maximum deflections of long, 
uniformly loaded rectangular plates. 

4. Cylindrical Bending of Uniformly Loaded Rectangular Plates with 
Elastically Built-in Edges. TA us assume that when bending occurs, 
the longitudinal edges of the plate rot’ate through an angle proportional 
to t)he bending moment at t#he edges. In such a case the forces acting on 
an elemental strip will again be of the type shown in Fig. 7, and we shall 
obtain expression (b) of the previous article for the deflections w. How- 
ever, the conditions at the edges, from which the constauts of integration 
and t,he moment, MO are dctcrmined, are different; zjiz., the slope of the 
deflection curve at the ends of the strip is no longer zero but is propor- 
tional to the magnitude of the moment Mo, and we have 

= --PM, (a) 

where p is a factor depending on the rigidity of restraint along t,hc edges. 
If this restraint is very flexible, the quantity /3 is large, and the conditions 
at the edges approach those of simply supported edges. If the restraint, 
is very rigid, the quantity @ becomes small, and the edge condit,ions 
approach those of absolutely built-in edges. The remaining two end 
conditjions are the same as in the previous article. Thus we have 

= -PM, 

(W),=” = 0 

(0) 

Using these conditions, we find both the constants of integration and the 
magnitude of MO in expression (b) of the previous art,icle. Owing to 
flexibility of the boundary, the end moments M. will be smaller than 
those given by Eq. (13) for absolutely built-in edges, and tjhe final result, 
can be put in the form 

MO = -r@&(u) 12 (19) 
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TABLE 1 
- 

11 og10 lo4 z/u, , og10 104 JT L 11 0610 lo4 4% f”(U) IfI h(u) 

00 

3.889 3.217 
406 331 

3 ,483 2.886 
310 223 

3 173 2.663 
262 182 

2.911 2.481 
227 161 

2.5 

3.0 

3.5 

4.0 

4.5 

2.684 2.320 
198 146 

2 ,486 2.174 
175 134 

2.311 2.040 
156 124 

2.155 1.916 
141 115 

2.014 1.801 
128 107 

co 1 .000'1.000 1.000 

3.801 0.9080.976 0.905 
425 1 

3 .3i6 336 IO.711 0.909 0.704 

3 .040 
292 

'0.380~0.715 1 

I 0.5320.817 0.511 

2.748 0.367 
257 j 

2.491 iO.281,0.617 0.268 
228 ' 

2.263 jO.213:0.529 0.200 

2.061 

1.881 

1.718 j0.107j0.33510.097 

5.0 

5.5 

6.0 

6.5 

7.0 

1.886 
118 

1.768 
108 

1.660 
100 

1 ,560 
93 

1 467 
87 

1.694 
100 

1.594 
93 

1.501 
88 

1.413 
82 

1.331 
78 

1481 / 
1.570 0.088~0.291 0.079 

I 
I 

/ 

7.5 

8.0 

8.5 

9.0 

9.5 

1 .380 I ‘25’3 I < 
82 74 

1 298 I ,179 
77 70 

1.221 1 .I09 
73 67 

1.148 1.042 
69 63 

1.079 0.979 
65 61 

10.0 1 ,014 

IO.5 I 
63 

0.951 
59 

11 .o 0.892 
57 

11.5 0.835 
55 

12 .o 0.780 

0.918 
58 

0.860 
55 

0.805 
54 

0.751 
51 

0.700 

0.568 

0.496 
69 

0.427 
65 

0.362 
63 

0.299 

$1(u) 
1 .ooc 

0.984 

0.93: 

0.87( 

0.80t 

0.73E 

0.67: 

0.614 
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0.51r 

0.48C 

0.44e 

0.417 
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0.328 

0.311 

0 ‘296 

0.283 

0.270 

0.259 

0.248 

0.238 

0.229 

- 

I 

L 

) 
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L 

I 

I 

1 

,I 

/ 

II 

II 

1 

1 
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where y is a numerical factor smaller than unity and given by the formula 

tanh u 
-I = 2p 

G Du + tanh u 

It, is seen that the magnitude of t,he moments M0 at the edges depends 
upon the magnitude of the coefficient /3 defining the rigidity of the 
restraint. When 0 is very small, the coefficient y approaches unity, 
and the moment MD approaches the value (13) calculated for absolutely 
built-in edges. When ,8 is very large, the coefficient y and the moment 
MO become small, and the edge conditions approach those of simply 
*supported edges. 

The d&&ion curve in the case under consideration can he rcpre- 
sented in the following form: 

For y = 1 this expression reduces to expression (14) for deflections of a 
plate with absolutely built-in edges. For y = 0 we obtain expression (6) 
for a plate with simply supported edges. 

In calculating the tensile parameter u we proceed as in the previous 
cases and determine the tensile force S from the condition that t,he exten- 
sion of the elemental strip is equal to the difference between the length of 
the arc along the deflection curve and the chord length 1. Hence 

Substituting expression (20) in this equation and performing the ink- 
grat,ion, we obtain 

IC2h8 
; = (1 - r)ll,, + rlJ, - ~(1 - y)U2 

(1 - v2)2q?h (21) 

where Co and (‘, denote t,he righ-baud sides of I’Lqs. (5) and (l-s), respec- 
tively, and 

u 
2 

= 27 (71 - tanh 7~)” 
16 uy tanh? ZL 

(U tanh2 u - u + tanh zc) 

- 
The values of loglo (lo4 d\/Li?) are given in Table 1. By using this table, 
Eq. (21) can be readily solved by the trial-and-error method. For any 
particular plate we first calculate the left-hand side of the equation and, 
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by using the curves in Figs. 4 and 8, determine the values of the parame- 
tcr u (1) for simply supported edges and (2) for absolutely built-in edges. 
Naturally u for elastically built-in edges must have a value intermediate 
between t,hese two. Assuming one such value for U, we calculate UO, U1, 
and Uz by using Table 1 and determine the value of the right-hand side 
of Eq. (21). Generally this value will be dif’ferent from the value of the 
left-hand side calculated previously, and a new trial calculation wiOh a 
new assumed value for u must be made. Two such trial calculat,ions 
will usually be sufficient to determine by interpolation the value of u 
satisfying Eq. (21). As soon as the parameter u is determined, the bend- 
ing moments MO at the ends may be calculated from Eq. (19). We can 
also calculate the moment at the middle of the strip and find the maxi- 
mum stress. This stress will occur at the ends or at the middle, depend- 
ing on the degree of rigidity of the constraints at the edges. 

5. The Effect on Stresses and Deflections of Small Displacements of 
Longitudinal Edges in the Plane of the Plate. It was assumed in t’he 
previous discussion that, during bending, the longitudinal edges of the 
plate have no displacement in the plane of the plate. On the basis of this 
assumption the tensile force S was calculated in each particular case. 
Let us assume now that the edges of the plate undergo a displacement 
toward each other specified by A. Owing to this displacement the 
extension of the elemental strip will be diminished by the same amount, 
and the equation for calculating the tensile force S becomes 

SZ(1 - 9) 1 i dw 2 __- .-~ = ._ 
hE i’( > 2.0 

dx dx-A 

At the same time Eqs. (6), (14), and (20) for the deflection curve hold 
true regardless of the magnitude of the tensile force S. They may be 
differentiated and substituted under the integral sign in Eq. (a). After 
evaluating this integral and substituting S = 4u2D/12, we obtain for 
simply supported edges 

and for built-in edges 

E2h” 
(23) 

If A is made zero, Eqs. (22) and (23) reduce to Eqs. (8) and (15), obtained 
previously for immovable edges. 

The simplest case is obtained by placing compression bars between the 
longitudinal sides of the boundary to prevent free motion of one edge of 
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the plate toward the other during bending. Tensile forces X in the plate 
produce contraction of these bars, which results in a displacement A pro- 
portional to X.* If k is the factor of proportionality depending on the 
elasticity and cross-sectional area of the bars, we obtain 

8 = kA 

or, substituting S = 4u2D/12, we obtain 

and 

Thus the second factor on the left-hand side of Eqs. (22) and (23) is a 
constant that can be readily calculated if the dimensions and the elastic 
properties of the structure are known. Raving the magnitude of this 
factor, the solution of Eqs. (22) and (23) can be accomplished in exactly 
t,he same manner as used for immovable edges. 

FIG. 10 

In the general case the second factor on the left-hand side of Eqs. (22) 

and (23) may depend on the magnitude of the load acting on the struc- 
ture, and the determination of the parameter u can bc accomplished only 
by the trial-and-error method. This procedure mill now be illustrated 
by an example that is encountered in analyzing stresses in the hull of a 
ship when it meets a wave. The bottom plates in the hull of a ship are 
subjected to a uniformly distributed water pressure and also to forces in 
the plane of the plates due to bending of the hull as a beam. Let b be 
the width of the ship at a cross section mn (Fig. 10) and I be the frame 
spacing at the bottom. When the hollow of a wave is amidships (Fig. 
IlO), the buoyancy is decreased there and increased at the ends. The 
effect of this change on the structure is that a sagging bending moment 
is produced and the normal distance 1 between the Srames at the bottom 
is increased by a certain amount. To calculate this displacement accu- 
rately we must consider not only the action of the bending moment M 
on the hull but also the effect on this bending of a certain change in 

* The edge support is assumed to be such that ?, is uniform along the edges. 
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_ --------__-_ 
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---- -------__ 
Sagging 

(b) 

FIG. 11 

tensile forces X distributed along the edges mn and mlnl of the bottom 
plate mnmInl (Fig. lo), which will be considered as a long rectangular 
plate uniformly loaded by water pressure. Owing to the fact that the 

plates between the consecutive 
frames are equally loaded, there 
will be no rotation at the longitu- 
dinal edges of the plates, and they 
ma,y be considered as absolutely 
built in along these edges. 

To determine the value of A, 
which denotes, as before, the dis- 
placement of the edge mn toward 
the edge mlnl in Fig. 10 and which 
is produced by the hull bending 
moment iI1 and the tensile reactions 
S per unit length along the edges 
mn and mlnl of the bottom plate, let 
us imagine that the plate mnmlnl is 
removed and replaced by uniformly 
distributed forces S so that the to- 
tal force along mn and mlnl is Sb 
(Fig. 12~~). We can then say that 
the displacement A of one frame 
relative t,o another is due to the 
bending moment M and to the 

eccentric load Sb applied to the hull without bottom plating. 
If A, I, and c are the cross-sectional area, the cent,roidal moment of 

inertia, and the distance from the bottom plate to the neutral axis of the 
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complete hull section, and if A Ir II, and cl are the corresponding quanti- 
ties for bhe hull section without bottom plates, the latter set of quantities 
can be derived from the former by the relations 

A1 = A - bh 
AC 

Cl = - 
Al 

11 = I - bhc2 - Al(cl - c)~ 

(b) 

The relative displacement AI produced by the eccentrically applied forces 
Sb is 

in which the factor 1 - v2 must be int)roduced if one neglects the lateral 
strain. The displacement due to the bending moment M is 

Hence the total displacement is 

Substituting in this expression 

s = +W = -_ Ru2h3 
l2 3P(l - v2) 

we finally obtain 

This quantity must be substituted in Eq. (23) for determining the tensile 
parameter u. 

Let us apply this theory to a numerical example. Assume b = 54 ft, 
I = 1,668 ft4, A = 13.5 ft2, c = 12.87 ft, h = 0.75 in. = 0.0625 ft, 
I = 45 in. = 3.75 ft, 4 = 10 psi, M = 123,500 ft-tons. From Eqs. (b) 
we obtain 

A1 = 13.5 - 0.0625 . 54 = 10.125 ft” 
13.5 . 12.87 

~ = 17.16 ft Cl = -10.125 

I1 = 1,668 - 559.0 - 10.125(17.16 - 12.87)” = 922.7 ft” 

Substituting these values in expression (d), we calculate A and finally 
obtain 

F = 1410~2 
h2 ’ 

- 11.48 
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Equation (23) then becomes 

Ol- 

E2h8 ,212 + 1.41ou2 - 11.48 
qy1 - v‘J)V u2 

u 
1 

1.552Eh4 
q(l - Y3)/4 tl 

ic2 - 4.763 
u2 = d/v, 

Substituting numerical values and taking logarithms of 
we obtain 

both sides, 

3.597 + log,, 
u2 - 4.763 

u2 
- log,, (10” 2/Ii,) 

Using the curve in Fig. 8, this equation can be readily solved by the 
trial-and-error method, and we obtain IL = 2.187 and, from Fig. 5, 
&(u) = 0.780. The maximum stress is now calculated by using Eqs. 
(16) and (17), from which 

30 * lo6 * 4.783 
UI = -t3 .o,gl .602 = 14,600 psi 

u2 = 6 . 10 . 602 . 0.780 = 14,040 psi 
~lrm, = u1 + u2 = 28,640 psi 

If the bending stress in the plate due to water pressure were neglected 
and if the bot,tom plate stress were calculated from the formula u = MC/I, 
we would arrive at a figure of only 13,240 psi. 

6. An Approximate Method of Calculating the Parameter ZL. In calcu- 
lating the parameter u for plates in which the longitudinal edges do not 
move in the plane of the plate, we used the equation 

which states that the extension of an elemental strip produced by the 
forces X is equal to the difference betmecn the length of the arc along the 
deflection curve of the strip and the chord length 1. In the particular 
cases considered in the previous articles, exact expressions for the deflec- 
tions w were derived, and numerical tables and curves for the right-hand 
side of Eq. (a) were given. Wh en such tables are not at hand, the solu- 
tion of the equation becomes complicated, and to simplify the problem 
recourse should bc had to an approximate method. From the discussion 
of bending of beams it is known’ that, in the case of simply supported 
ends with all lateral loads acting in the same direction, the deflection 
curve of an elemental strip produced by a combination of a lateral load 
and an axial tensile force S (Fig. 3) can be represented with sufficient 

1 See Timoshenko, “Strength of rvlaterials,” part II, 3d ed., p. 52, 1956. 
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accuracy by the equation 

3l-X 
w = +a sin 7 

in which loo denotes the deflection at the middle of the strip produced by 
the lateral load alone, and the quantity LY is given by the equation 

Thus, O( represents the ratio of the axial force S to the Euler critical load 
for the elemental strip. 

Substituting expression (b) in Eq. (a) and integrating, we obtain 

SZ(l - 3) T”W’4, 

hl< 41(1 + CL,)” 

Now, using notnt,ion (c) and substituting for D its expression (3), we 
finally obtain 

(24) 

From this equation the quantity CY can be calculated in each particular 
case, and the parameter u is now determined from the equat,ion 

To show the application of the approximate Eq. (24) let us take a 
numerical example. :Y long rectangular steel plate with simply sup- 
ported edges and of dimensions 1 = 50 in. and h = 4 in. is loaded with a 
uniformly distributed load Q = 20 psi. In such a case 

and, after substituting numerical values, Eq. (24) becomes 

41 + a) 2 = 269.56 

The solution of the equation can be simplified by letting 

1+oc=z (e) 
Then x3 - x2 = 269.56 

i.e., the quantity x is such that the difference between its cube and its 
square has a known value. Thus 2 can be readily determined from a 
slide rule or a suitable table, and we find in our case 

x = 6.8109 and a = 5.8109 
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Then, from Eq. (d) 
u = 3.7865 

and from the formula (e) (see page 9) 

fi,, = 0.13316 

h’or calculating direct stress and maximum bending stress we use Eqs. 
(10) and (11). In this way we find 

ul = 15,759 psi 
u2 = 19,974 psi 

~m,x = u1 + u2 = 35,733 psi 

The calculations made in Art. 2 (page 11) give, for hhis example, 

~Ilmx = 35,760 psi 

Thus the accuracy of the approximate Eq. (24) is in this case very high. 
In general, this accuracy depends on the magnitude of ZL. The error 
increases with increase of u. Calculations shorn that for u = 1.44 the 
error in t’he maximum stress is only 0.065 of 1 per cent and that for 
u = 12.29, which corresponds to very flexible plates, it is about 0.30 of 
1 per cent. These values of u will cover the range ordinarily encountered 
in practice, and we conclude that Eq. (24) can be used with sufficient 
accuracy in all pract,ical cases of uniformly loaded plates with simply 
supported edges. 

It can also be used when the load is not uniformly distributed, as in 
the case of a hydrostatic pressure nonuniformly distributed along the 
elemental strip. If the longitudinal force is found by using the approxi- 
mate Eq. (24), the deflections may be obtained from Eq. (b), and the 
bending moment at any cross section may be found as the algebraic sum 
of the moment produced by the lateral load and the moment due to the 
longitudinal force. 1 

In the case of built’-in edges &he approximate expression for the deflec- 
tion curve of an elemental strip can be taken in the form 

1 
W=~woa/42 

( 
1 - cos ?z 

1 > 

in which w. is the deflection of the built-in beam under the lateral load 
acting alone and (Y has the same meaning as before. Substituting this 
expression in Eq. (a) and integrating, we obtain for determining CY the 
equation 

’ PIlore accurate values for the deflections and for the bending moments can be 
obtained by substituting the approximate value of the longitudinal force in Eq. (4) 
and integrating this equation, which gives Eqs. (12) and (9). 
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(25) 

which can be solved in each particular case by the method suggested for 
solving Eq. (24). 

When a! is found, the parameter u is det<ermined from 1Cq. (d); the 
maximum stress can be calculated by using Eqs. (16) and (17) ; and the 
maximum deflection, by using Eq. (18). 

If, during bending, one edge moves toward the other by an amount A, 

the equation 
a(1 - v”) 

hb’ --I-( > 

1 z dw 2 dz _ A 
20 ZG (Y) 

must be used instead of Eq. (a). Substituting expression (b) in this 
equation, we obtain for determining O( in the case of simply supported 
edges the equation 

cx + 12 3;: 

41 + a)’ 
3Wi 

* h2 (26) 

In the CLLSC of built-in edges we USC expression (f). Then for determin- 
ing 01 we obtain 

(27) 

If the dimensions of the plate and the load Q are given, and the displace- 
ment A is known, Eqs. (2G) and (27) can both be readily solved in the 
same manner as before. If the displacement A is proportional to the 
tensile force X, the second factor on the left-hand sides of Eqs. (26) and 
(27) is a constant and can be determined as explained in the previous 
article (see page 21). Thus again the equations can be readily solved. 

7. Long Uniformly Loaded Rectangular Plates Having a Small Initial 
Cylindrical Curvature. It is seen from the discussions in Arts. 2 and 3 
that the tensile forces S contribute to the strength of the plates by 
counteracting the bending produced by lateral load. This action 
increases with an increase in deflection. A further reduction of maxi- 
mum stress can be accomplished by giving a suitable initial curvature 
to a plate. The effect on stresses and deflections of such an initial curva- 
ture can be investigated’ by using the approximate method developed in 
the previous article. 

Let us consider the case of a long rect)angular plate with simply sup- 
ported edges (Fig. 13), the initial curvature of which is given by the 
equation 

1 See S. Timoshenko’s paper in “Festschrift zum siebzigsten Geburtstage August, 
F(ippls,” p. 74, Berlin, 1923. 
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If tensile forces S are applied to the edges of the plate, the initial 
deflections (a) will be reduced in the ratio l/(1 + (Y), where (Y has the 
same meaning as in the previous article1 (page 25). The lateral load in 
combination with the forces X will produce deflections that can be 
expressed approximately by Eq. (b) of the previous art,icle. Thus the 
total deflection of the plate, indicated in Fig. 13 by the dashed line, is 

6 . ax WlJ TX 6 + wo 3rX 
w = 1-T; xm G + ip+m-, sin G = =+ sin G @) 

Assuming that the longitudinal edges of the plate do not move in the 
plane of the plate, the tensile force S is found from the condition that 
the extension of the elemental strip produced by the forces S is equal to 

FIG. 13 

the difference between the length of the arc along the deflection curve 
of the elemental strip and the initial length of the strip. This difference, 
in the case of small deflections, is given by the equation 

Substituting expressions (a) and (b) for w and w1 and integrating, we 
obtain 

A = ?c[(~)z - 6’1 

Putting X equal to the extension of the strip &(l - ~“)/hfi, we finally 
obtain 

3(6 + wo)2 
a(1 + cY)Z = -h2 - 

86yl + cx)Z 
~~ h2 (28) 

If we take 6 = 0, this equation reduces to Eq. (24) for a plate without 
initial curvature. 

To show the effect of the initial curvature on the maximum stress in a 
plate, let us apply Eq. (28) to a numerical example. Assume that a 
steel plate having I = 45 in. and h = $ in. is submitted to the action of 

1 See Timoshenko, “Strength of hlaterials,” part IT, 3d ed., p. 52,1956. 
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a uniformly distributed load CJ = 10 psi. If there is no initial deflection, 
6 = 0 and Eq. (28) becomes 

Ly(1 + CX)” = 290 
from which 

a = 5.97 and u = ; \/a = 3.83 

From Eq. (10) we then obtain 

ul = 11,300 psi 
and from Eq. (11) 

u2 = 14,200 psi 

The maximum stress in the plate is 

flrn,LX = (~1 + u2 = 25,500 psi 

Let us now assume that there is an initial deflection in the plate such that 
6 = h = # in. In such a case Eq. (28) gives 

CY(1 + a)” = 351.6 - 3(1 + (Y)2 
Letting 

1+(Y=2 
we obtain 

x3 + 2x2 = 351.6 
from which 

x = 6.45 a! = 5.45 u = ; z/z = 3.67 

The tensile stress, from Eq. (lo), is 

u1 = 10,200 psi 

In calculating the bending stress we must consider only the change in 
deflections 

ul-w,=l~n a6 
sin 7 - 1 + N sin ?!I!! I 

The maximum bending stress, corresponding to the first term on the 
right-hand side of Eq. (d), is the same as for a flat plate with u = 3.67. 
From Table 1 we find $0 = 0.142 and from Eq. (11) 

CT’ - z- 15,300 psi 

The bending moment corresponding to the second term in Eq. (d) is 

a6 . TX a~? 6D . TX 
= - Cl-qT sm G 
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This moment has a negative sign, and a corresponding maximum stress of 

must be subtracted from the bending stress V; calculated above. Hence 
the maximum stress for the plate with the initial deflection is 

~max = 10,200 + 15,300 - 9,500 = 16,000 psi 

Comparison of this result with that, obtained for the plane plate shows 
that the effect of the initial curvature is to reduce the maximum stress 
from 25,500 to 16,000 psi. This result is obtained assuming the initial 
deflection equal to the thickness of the plate. Ey increasing the initial 
deflection, the maximum stress can be reduced still further. 

8. Cylindrical Bending of a Plate on an Elastic Foundation. Let us consider the 
problem of bendiug of a long uniformly loaded rectangular plate supported over the 
entire surface by an elastic foundation and rigidly supported along the edges (Fig. 14). 

FIG. 14 

Cutting out from t’he plate an elemental strip, as before, we may consider it as a beam 
on an elastic foundation. Assuming that the reaction of the foundation at any point 
is proportional to the dcflcction w at that point, and using Eq. (4), we obtain by double 
differentiation of that equation’ 

where ~1 is the intensity of the load acting on the plate and k is the reaction of the 
foundation per unit area for a deflection equal to unity. Introducing the notation 

(30) 

the general solution of Eq. (29) can bc written as follows: 

2px 213.c 2p:I: 2px 2P.e %3x ‘w = T + CI sin - smh - + Cz sin - cash - + C3 cos T smh - 
k 1 1 1 1 1 

+ Ca cos ‘F cash ‘$ (a) 

The four constants of integration must now be determined from the conditions at the 
ends of the strip. In the case under consideration the deflection is symmetrical with 
respect to the middle of the strip. Thus, taking the coordinate axes as shown in Fig. 

1 Ibid., p. 21. 
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14, we conclude’ that CZ = CS = 0. The constants Ci and Cd are found from the 
conditions that the deflection and the bending moment of the strip are zero at the end 
(5 = l/2). Hence 

(WI 0 2.-l/2 = 

Substituting expression (a) for w and observing that CZ = Ca = 0, we obtain 

;+c I sin ,!J sinh p + C4 cos 0 cash p = 0 
Cc) 

from which we find 
Ci cos fl cash p - Cd sin p sinh p = 0 

C,=-“. sin @ sinh fl q 2 sin /3 sinh /3 

k sin2 13 sinh2 p + co9 p cosh2 fi = - ,k cos 2p + cash 2p 

ca= -z, cos /3 cash /3 q 2 cos 0 cash 6 
Ic sin2 fl sinh2 p + cos2 p cosh2 p = - k cos 2p + cash 2p 

Substituting these values of the constants in expression (a) and using Eq. (30), we 
finally represent the deflection of the strip by the equation 

2 sin p sinh p %3x 333 
cos 2p + cod1 2p 

sin -- smh - 
1 1 

2 cos p cash 6 
- cos 20 + cash 2~ 

cos !f!? cash 2fi 
1 1 > G-0 

The deflection at the middle is obtained by substituting z = 0, which gives 

where e(P) = $* 1 - 2 cos fl cash @ 

cos 28 + cash 2~ > 

(31) 

To obtain the angles of rotation of the edges of the plate, WC differentiate expression 
(d) with respect to z and put z = -l/2. In this way we obtain 

where 
Ypl(P) 3 sinh = - ~ 26 - sin 2p 

4p3 cash 2p + cos 2p 

The bending moment at any cross section of the strip is obtained from the equation 

Substituting expression (d) for w, we find for the middle of the strip 

W)z-0 = $43) 

w(P) = ” 
sinh p sin fl 

P* cash 2~ + cos 2~ 

(32) 

(33) 

1 It is seen that the terms with coefficients CZ and C’s change sign when z is replaced 
by -x. 
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To simplify the calculation of deflections and stresses, numerical values of functions 
‘p, cpi, and vpz are given in Table 2. For small values of p, that is, for a yielding founda- 
tion, the functions (o and cpz do not differ greatly from unity. Thus the maximum 
deflection and bending stresses are close to those for a simply supported strip without 
an elastic foundation. With an in crease in p, the effect of the foundation becomes 
more and more important. 

,p I 
Z 

I. 
P 

__- ___------ __--- ____ __^ 
2 2 7, r G >,. -:-e . . ------ ,----- 

,+ 'w 
--+ 

FIG. 15 

Conditions similar to those represented in Fig. 14 arc obtained if a long rectangular 
plate of width I is pressed into an elastic foundation by loads uniformly distributed 
along the edges and of the amount P per unit length (Fig. 15). The plate will be 

T.4RI.E 2 

P (0 P P a1 

0.1 1.000 1.000 1.000 1.6 0.186 0.200 
0.2 0.999 0.999 0.999 1.7 0.151 0.16G 
0.3 0.996 0.095 0.995 1.8 0.124 0.138 
0.4 0.984 0. 983 0.983 1.9 0.102 0.116 
0.5 0.961 0.961 0.050 2.0 0.084 0.099 

0.6 0.921 0 O”3 < -< 0.919 2.2 0.058 0.072 
0.7 0.8G3 0.866 0.850 2.4 0.042 0.053 
0.8 0.787 0.791 0.781 2.6 0.029 0 OX{ 
0.9 0.698 0.702 0.680 2.8 0.022 0.034 
1.0 0 60‘3 O.GOY 0.501 3.0 0.016 0.028 

1.1 0.508 0.517 0.494 3.2 0.012 0.023 
1.2 0.421 0.431 0.405 3.4 0.010 0.019 
1.3 0.345 0.357 0.327 3.6 0.007 0.016 
1.4 0.281 0.204 0.262 3.8 0.006 0.014 
1.5 0.228 0.242 0.208 4.0 0.005 0.012 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

-!- 

0.164 
0.129 
0.101 
0.0’79 
0.062 

pressed into the elastic foundation and bent, as shown by the dashed line. If 6 denotes 
the deflection at the edges of the plate, the reaction of the foundation at any point is 

k(6 - w) = k6 - kw 

where w is given by Eq. (d) with q = k6. The magnitude of 6 is then obtained from 
the condition that the load is balanced by the reaction of the foundation. Hence 

s 

l/2 
w dx 

0 

Plates on elastic foundation with other conditions at the longitudinal edges can 
also be discussed in a similar manner. 



CHAPTER 2 

PURE BENDING OF PLATES 

9. Slope and Curvature of Slightly Bent Plates. In discussing small 
deflections of a plate we take the middle plane of the plate, before bend- 
ing occurs, as the xy plane. During bending, the particles that were in 
the xy plane undergo small displacements w perpendicular to the zy plane 
and form the middle surface of the plate. These displacements of the 
middle surface are called deflections of a plate in our further discussion. 
Taking a normal section of the plate parallel 
to the xx plane (Fig. lGa), we find that the 
slope of the middle surface in the z direction 
is i, = awlax. In the same manner the slope 
in the y direction is i, = aw/dy. Taking 
nom any direction an in the xy plane (Fig. 0 
16b) making an angle cy with the x axis, we find 
that the difference in the deflections of the two 
adjacent points a and al in the an direction is rn 

dw = ~d,.~dy 

and that the corresponding slope is FIG. lti 

aw aw . 
dn = cos (Y + - sin (Y 

a?4 (a) 

To find the direction (~1 for which the slope is a maximum we equate to 
zero the derivative with respect to a! of expression (a). In this way we 
obtain 

aw aw 
tan a1 = - 

ai4 / 
as (b) 

Substituting the corresponding values of sin (~1 and cos (Y~ in (a), we obtain 
for the maximum slope the expression 

(cl 

By setting expression (a) equal to zero we obtain the direction for which 
33 
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the slope of the surface is zero. The corresponding angle cyz is deter- 
mined from the equation 

a~ aw 
tan a2 = - dz 

/ 
ay 

From Eqs. (6) and (d) we conclude that 

tan cyl tan 012 = -1 

which shows that the directions of zero slope and of maximum slope are 
perpendicular to each other. 

In determining the curvature of the middle surface of the plate we 
observe that the deflections of the plate are very small. In such a case 
the slope of the surface in any direction can be taken equal to the angle 
that the tangent to the surface in that direction makes with the sy plane, 
and the square of the slope may be neglected compared to unity. The 
curvature of the surface in a plane parallel to the zz plane (Fig. 16) is 
then numerically equal to 

1 a aw 

(-1 

PW ..-.= -- 
r, a.~ a~ = - a22 (e> 

We consider a curvature positive if it is convex downward. The minus 
sign is taken in Eq. (e), since for the deflect,ion convex downward, as 
shown in the figure, the second derivative azsw/&r2 is negative. 

In the same manner we obtain for the curvature in a plane parallel to 
the yz plane 

1 a aw 
( > 

d2W -= -- - 
ru au au = - dy2 (J-1 

These expressions are similar to those used in discussing the curvature 
of a bent beam. 

In considering the curvature of the middle surface in any direction an 
(Fig. 16) we obtain 

1 a aw -=-- 
f-n an 2% ( > 

Substituting expression (a) for dw/& and observing that 

a a a. -- 
Si - as cos a + - sin cr 

aY 
we find 

1 

( 

a a. aw aw . -=- 
rn xi cos a! + - Sill 01 

ay )C 
- cos a + - Sill (Y ax ay > 

( 
a% a2w . a2W . =- _ ax2 cos2 ff f 2 ~- axay sm (Y cos Q + _ sm2 or 

w ) 
1 1 1 = - cos2 c-2 - Tz, 
r-7 

sin 2a + K sin2 a: (8) 
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It is seen that the curvature in any direction n at a point of the middle 
surface can be calculat’ed if we know at that point the curvatures 

1 a2w 1 a54 -zz-- 
rz ax2 r, = ay2 

and the quantity 
1 d2W -=- 

r?i/ ax ay (h) 

which is called the twist of the &ace with respect to the .2: and y axes. 
If instead of the direction an (Fig. 1Gb) we take the direction at per- 

pendicular to an, the curvature in this new direction will be obtained from 
expression (g) by substituting s/2 + (Y for CL Thus we obtain 

1 1 . 1 1 -zx- 
rt rz 

sin2 a + - sin 2~y + - co9 G 
rzy rll 

Adding expressions (g) and (i), we find 

,;+A=;+; 
?a 

(34) 

which shows that at any point of the middle surface the sum of the 
curvatures in two perpendicular directions such as n and t is independent 
of the angle o(. 1s sum is usually called the average curvature of the 
surface at LL pomi? )I, . 

The twist of the surface at a with respect to the an and at directions is 

In calculating the derivative with respect to t, we observe that the 
direction at is perpendicular to an. Thus we obtain the required deriva- 
tive by substituting a/2 + a! for 01 in Eq. (a). In this manner we find 

1 a a aw . i!lW -= 
( ax 

cos ff + - sin 
dY 

a 
rnt >( 

- - Sill a + - cos a 
dX aY > 

’ sin 2a =- 
2 ( 

?!?!+!y; + 
> 

a22u 
COB 2cY ~ 

ax ay 

’ sin 2~r ’ ’ =- 
( > 

--- 
2 rz 

r, + cos 2a$ 

In our further discussion we shall be interested in finding in terms of CY 
the directions in which the curvature of the surface is a maximum or a 
minimum and in finding the corresponding values of the curvature. We 
obtain the necessary equation for determining LY by equating the deriva- 
tive of expression (g) with respect to cy to zero, which gives 

1 
- sin 2ff + cU cos 20~ - t sin 2a = 0 
rz 

(k) 
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whence 
2 - 

tan 2a = - * (35) 
--- 
rz r, 

From this equation we find two values of CY, differing by a/2. Substitut- 
ing these in Eq. (g) we find two values of l/r,, one representing the 
maximum and the other t’he minimum curvature at a point a of the sur- 
face. These two curvatures are called the principal curvatures of the 
surface; and the corresponding planes naz and lax, the principal planes o.f 
curvature. 

Observing that the left-hand side of Eq. (Ic) is equal to the doubled 
value of expression (j), we conclude that, if the directions an and at (Fig. 
16) are in the principal planes, the corresponding twist l/rnt is equal to 
zero. 

We can use a circle, similar to Mohr’s circle representing combined 
stresses, to show how the curvature and the twist of a surface vary with 
the angle (Y.* To simplify the discussion we assume that the coordinate 
planes zx and y/z are t’aken parallel to the principal planes of curvature 

at the point a. Then 

1 0 -= 
f”w 

0 1. 
‘n and we obtain from Eqs. (g) and (j) 

for any angle (Y 

FIG. 17 

1 1 1 - = -- cos2 (Y + -. sin2 ff 
r, rz rv 
1 11 1 (36) 

-=- 
rst (- - -3 2 rz r, sin 2ff 

Taking t,he curvatures as abscissas and the twists as ordinates and con- 
structing a circle on the diameter l/r, - l/r!/, as shown in Fig. 17, we see 
that the point A defined by the angle 2or has the abscissa 

- -  
(]B = f)(: + (,‘B zz i _1. + -! + 1 -! -  1  cos ‘& 

-  2 (r. f-3 2 (r. r!) 
1 1 

Y= r; cos2 (y + - sin2 (y 
i ry 

:\nd the ordinate 

Comparing these results with formulas (36)) we conclude that the coordi- 
* See S. Timoshenko, “Strength of Materials,” part I, 3d ed., p. 40, 1955. 
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nates of the point A define the curvature and the twist of the surface for 
any value of the angle LY. It is seen that the maximum twist, represented 
by the radius of the circle, takes place when cy = 7r/4, i.e., when we take 
two perpendicular directions bisecting the angles between the principal 
planes. 

In our example the curvature in any direction is positive; hence the 
surface is bent convex downward. If the curvatures l/r, and l/r, are 
both negative, the curvature in any direction is also negative, and we have 
a bending of the plate convex upward. Surfaces in which the curvatures 
in all planes have like signs are called synckzstic. Sometimes we shall 
deal with surfaces in which the two principal curvatures have opposite 
signs. A saddle is a good example. Such surfaces are called anticlastic. 
The circle in Icig. 18 represents a particular case of such surfaces when 

I 
57 

1 
‘nt 

yf-p 

X 

MX 

z 

FIG. 18 FIG. 19 

l/r, = -l/r,. It is seen that in this case the curvature becomes zero 
for CY = a/4 and for (Y = 3rr/4, and the twist becomes equal to + l/rz. 

10. Relations between Bending Moments and Curvature in Pure 
Bending of Plates. In the case of pure bending of prismatic bars a 
rigorous solution for stress distribution is obtained by assuming that 
cross sections of the bar remain plane during bending and rotate only 
with respect to their neutral axes so as to be always normal to the deflec- 
tion curve. Combination of such bending in two perpendicular directions 
brings us to pure bending of plates. Let us begin with pure bending of a 
rectangular plate by moments that are uniformly distributed along the 
edges of the plate, as shown in Fig. 19. We take the zy plane to coincide 
with the middle plane of the plnt,e before deflection and the z and y axes 
along the edges of the plate as shown. The z axis, which is then per- 
pendicular to the middle plane, is taken positive downward. We denote 
by M, the bending moment per unit length acting on the edges parallel 
to the y axis and by M, the moment per unit length acting on the edges 
parallel to the 2 axis. These moments we consider positive when they 
are directed as shown in the figure, i.e., when they produce compression 
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iu the upper surface of the plate and tension in the lower. The thickness 
of the plate we denote, as before, by h and consider it small in comparison 
with other dimensions. 

Let us consider an element cut out of the plate by two pairs of planes 
parallel to the XX and yz planes, as shown iu li’ig. 20. Since the case shown 
in Fig. 19 represents the combination of two uniform bcndings, the stress 
conditions are identical in all elements, as shown in Fig. 20, and we have 

a uniform bending of the plate. Assuming 

dY 
/-----dx ---;;;” that during bending of the plate the lateral 

&,/ 
i sides of the clement remain plane and rotate 

4 
about the neutral axes nn so as to remain nor- 
ma1 to the deflected middle surface of the 

4-J 
z 

6 plate, it can be concluded that the middle 

T-- 
1 

I 
plant of the plate does not undergo any ex- 
tension during this bending, and the middle 

FIG. 20 surface is therefore the neutral surface.1 Let 
l/r, and l/r, denote, as before, the curva- 

tures of this neutral surface in sections parallel to the 52 and yz planes, 
respectively. Then the unit elongations in the x and 7~ directions of an 
elemental Iamina abed (Fig. 20), at a distance z from the neutral surface, 
are found, as in the case of a beam, and are equal to 

Using now Hooke’s law [IQ. (l), page 51, the corresponding stresses in Using now Hooke’s law [IQ. (l), page 51, the corresponding stresses in 
the lamina abed are the lamina abed are 

Uz = $&+ v;) Uz = $&+ v;) 
(b) 

u u 

These stresses are proportional to the distance z of the lamina abed from 
the neutral surface and depend on the magnitude of the curvatures of the 
bent plate. 

The normal stresses distributed over the lateral sides of the element in 
Fig. 20 can be reduced to couples, the magnitudes of which per unit 
length evidently must be equal to the external rnoments M, and M,. In 
this way we obtain the equations 

h/2 J - -h,3 uzz dy dx = M, dy 

J 
h/2 

-h/Z 
crux dx dx = M,, dx 

(cl 

1 It will be shown in Art,. 13 that this conclusion is accurate enough if the deflections 
of t,he plate are small in comparison with the thickness h. 
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Substituting expressions (b) for uz and uU, we obtain 

M,= D(;+v;)= -D@+v%) 

M, = D($+ A)= -D(g+ g) 

(37) 

(38) 

where D is the flexural rigidity of the plate defined by Eq. (3), and w 
denotes small deflections of the plate in the z direction. 

Let us now consider the stresses acting on a section of the lamina 
abed parallel to the z axis and inclined to the LI: and y axes. If acd (Fig. 21) 
represents a portion of the lamina cut by such a section, the stress acting 
on the side UC can bc found by means of the equations of statics. Resolv- 
ing this stress into a normal component G-, and a shearing component Tag, 

r x 

n 

C 

(b) 
FIG. 21 

the magnitudes of these components are obtained by projecting the forces 
acting on the element acd on the n and t directions respectively, which 
gives the known equations 

fin = uz cos2 a + ui, sin2 cy 
T,,~ = &(u, - uz) sin 2a (4 

in which (Y is the angle between the normal n and the L axis or between 
the direction t and the y axis (Fig. 21~). The angle is considered positive 
if measured in a clockwise direction. 

Considering all laminas, such as ucd in Fig. 21b, over the thickness of 
the plate, the normal stresses nn give the bending moment acting on the 
section UC of the plate, the magnitude of which per unit length along UC 

is 

Mn = J r:;, 
unx dz = M, co9 a + M,, sin2 cy (39) 

The shearing stresses rnt give the twisting moment, act,@ on the section 
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ac of the plate, the magnitude of which per unit length of ac is 

M,t = - 
s 

“2, T,~X dz = 4 sin 2a(Mz - AI,) (40) 

The signs of M, and ilI,t are chosen in such a manner that, the positive 
values of these moments are represented by vectors in t,he positive direc- 
tions of n and t (Fig. 21~) if the rule of the right-hand screw is used. 
When CY is zero or ?r, Eq. (30) gives M, = M,. For 01 = 7r/2 or 3a/2, we 

Wl 

FIG. 22 

Equations (t3!I) and (40) are similar to Eqs. 
(36), and by using them the bending and 
twisting moments can be readily calculated 
for any value of (Y. We can also use the 
graphical method for the same purpose and 
find the values of M, and Mmt from Mohr’s 

circle, which can be constructed as shown in the previous article by tak- 
ing IIf, as abscissa and Mnt as ordinate. The diameter of the circle will 
be equal to Ilr, - AI,, as shown in Fig. 22. Then the coordinates m and 
AR of a point A, defined by the angle 2a, give the moments AT, and Mnt 
respectively. 

Let us now represent M, and Mnt as functions of the curvatures and 

twist of the middle surface of the plate. Substituting in Eq. (39) for 
AI, and I{, their expressions (37) and (38), we find 

obtain A4, = M,. The moments I?{,~ become 
zero for these values of cx Thus we obtain 
the conditions shown in Fig. 19. 

M, = D i cos2 LY + F’, sin2 a 
1 1 
- sin2 a + - cos2 ~1 

rz r, 

ITsing the first of the equations (36) of the previous article, we conclude 
that the expressions in parentheses represent the curvatures of the middle 
surface in the n and t directions respectively. Hence 

M,=D($+.)=-D($$+vg) (41) 

To obtain the corresponding expression for the twisting moment M,,, 
let us consider the distortion of a thin lamina abed with the sides ab and 
ad parallel to the n and t directions and at a distance x from the middle 
plane (Fig. 23). During bending of the plate the points a, b, c, and d 
undergo small displacements. The components of the displacement of 
the point a in the n and t directions we denote by IL and v respectively. 
Then the displacement of the adjacent point d in the n direction is 
u + (&A/&) dt, and the displacement of the point b in the t direction is 
v + (a~/&) dn. Owing to these displacements, we obtain for the shear- 
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ing strain 
au av 

Yn1 = Tg + G 

‘l’hc corresponding shearing stress is 

41 

(e) 

Tnt =G(g+n> (f) 

From Fig. 236, representing the section of the middle surface made by 
the normal plane through the TZ axis, it may be seen that the angle of 
rotation in the counterclockwise direction of an element pq, which 
initially was perpendicular to the zy plane, about an axis perpendicular 
to the nz plane is equal to - aw/&z. Owing to this rotation a point of the 

(ai '1 
FIG. 23 

element at, a distance z from the neutral surface has a displacement in the 
n direction equal to 

aw 
u= -"Z 

Considering the normal section through the t axis, it can be shown that 
the same point has a displacement in the t direction equal to 

aw 
v=-xdt 

Substituting these values of the displacements TL and v in expression (f), 
we find 

(42) 

and expression (40) for the twisting moment becomes 

s 

h/2 

lQ!7Lt = - 
Gh3 Pw 

rntz dx = %~- an = D(1 - V)& (43) 
-h/2 
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It is seen that the twisting moment for the given perpendicular directions 
n and t is proportional to the twist of the middle surface corresponding to 
those directions. M%en the n and t directions coincide with t.he x and 
y axes, there are only bending moments M, and M, acting on the sections 
perpendicular to those axes (Fig. 19). Hence the corresponding twist is 
zero, and the curvatures l/rZ and l/r, are the principal curvatures of the 
middle surface of the plate. They can readily be calculated from 
Eqs. (37) and (38) if the bending moments M, and M,, are given. The 
curvature in any other direction, defined by an angle cy, can then be 
calculated by using the first of the equations (36), or it can be taken from 
Fig. 17. 

Regarding the stresses in a plate undergoing pure bending, it can be 
concluded from the first of the equations (d) that the maximum normal 
stress acts on those sections parallel to the XX or yx planes. The magni- 
tudes of these stresses are obtained from Eqs. (b) by substituting z = h/2 
and by using Eqs. (37) and (38). In this way WC find 

(44) 

If these stresses are of opposit’c sign, the maximum shearing stress acts in 
the plane bisecting the angle bet,ween the zz and :yz planes and is equal to 

1 3(&T, - N,) 
Tmar = G (a, - u,) = -- h2 (45) Y 

If the stresses (44) are of the same sign, the maximum shear acts in the 
plane bisecting the angle between the sy and zz planes or in that bisecting 
the angle between the xy and yz planes and is equal to +(a,),,, or &(a,),,,, 
dcpcnding on which of the two principal stresses (gU)maX or (uJmal is 
greater. 

11. Particular Cases of Pure Bending. In the discussion of the previ- 
ous article we started with the case of a rectangular plate with uniformly 
distributed bending moments acting along the edges. To obtain a gen- 
eral case of pure bending of a plate, let us imagine that a portion of any 
shape is cut out from the plate considered above (Fig. 19) by a cylindrical 
or prismatic surface perpendicular to the plate. The conditions of bend- 
ing of this portion will remain unchanged provided that bending and 
twisting moments that satisfy Eqs. (39) and (40) are distributed along the 
boundary of the isolated portion of the plate. Thus we arrive at the 
case of pure bending of a plate of any shape, and we conclude that puro 
bending is always produced if along the edges of the plate bending 
moments M, and twisting moments M nt are distributed in the manner 
given by Eqs. (39) and (40). 

Let us take, as a first example, the particular case in which 

M, = M, = M 
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It can be concluded, from Eqs. (39) and (40), that in this case, for a plate 
of any shape, the bending moments are uniformly distributed along the 
entire boundary and the twisting moments vanish. From Eqs. (37) and 
(38) we conclude that 

1 1 114 -=-z.r _____ 
rz TV w + v) 

i.e., the plate in this case is bent to a spherical surface the curvature of 
which is given by Eq. (46). 

In the general case, when M, is different from M!,, WC put, 

‘If, = M, and M,, = 114 y 

Then, from Eqs. (37) and (38), we find 

and in addition 

a2w A41 - VMz -=--- 
a.22 D(1 - v”) 

a% M, - VA41 -zx-------- 
w D(1 - 3) 

a220 ~ = 
a~ ay 

0 

Integrating these equations, we find 

M, - Vllf2 
w = - 2D(l - 9) x2 - 

Mz - vM, 
2D(l - v”) ’ 2 + ClX + c2y + c3 (c) 

where C1, CZ, and Cs are constants of integration. These constants 
define the plane from which the deflections w are measured. If this 
plane is taken tangent to the middle surface of the plate at the origin, 
the constants of integration must be equal to zero, and the deflection 
surface is given by the equation 

fl41 - VA42 
w = - 2D(l - v2) 

22 A42 - vJf1 
2D(1 - v”) ” 

In the particular case where Ml = M2 = M, we get from Eq. (d) 

M(z2 + g2) 
w=-21)(1+v) 

(4 

i.e., a paraboloid of revolution instead of the spherical surface given by 
Eq. (46). The inconsistency of these results arises merely from the use 
of the approximate expressions a2w/ax2 and a2w/ay2 for the curvatures 
l/r, and l/r, in deriving Eq. (e). These second derivatives of the 
deflections, rather than the exact expressions for the curvatures, will be 
used also in all further considerations, in accordance with the assump- 
tions made in Art. 9. This procedure greatly simplifies the fundamental 
equations of the theory of plates. 
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Returning now to Eq. (d), let us put M, = -Ml. In this case the 
principal curvatures, from Eqs. (a), are 

1 1 d %u M * -=--zz 
rz 1 u a.?,2 = 1)(1 - v) 

and we obtain an anticlast,ic surface t,he equation of which is 

.-?!L- (n:” - y’) w = - 2Lql - v) 

(.fj 

Straight lines parallel to the .2: axis become, after bending! parabolic 
curves convex downward (Fig. 24), whereas straight lines in the y direc- 
tion become parabolas convex upward. Along the lines bisecting the 
angles between the n: and y axes we have x = y, or x = -y; thus deflec- 
tions along these lines, as seen from Eq. (g), are zero. All lines parallel 
to these bisecting lines before bendin, 0‘ remain straight during bending, 
rotating only by some angle. A rectangle abed bounded by such lines 

will be twisted as shown in Fig. 24. 
Imagine normal sections of the plate 

x along lines ab, bc, cd, and ad. From 
Eqs. (39) and (40) we conclude that 
bending moments along these sections 

a 
y z are zero and that twisting moments 

FIG. 24 
along sections ad and bc are equal to 
Ml and along sections a6 and cd art: 

equal to -Ml. Thus the portion abed of the plate is in the condition of 
a plate undergoing pure bending produced by twisting moments uni- 
formly distributed along the edges (Fig. 25a). These twisting moments 
are formed by the horizontal shearing stresses continuously distributed 
over the edge [Eq. (4O)j. This horizontal stress distribut,ion can be 
replaced by vertical shearing forces which produce the same effect as 
the actual distribution of stresses. To show this, let the edge ab be 
divided into infinitely narrow rectangles, such as mnpq in Fig. 25b. If 
A is the small width of the rectangle, the corresponding twist,ing couple 
is MIA and can be formed by two vertical forces equal to M1 acting along 
the vertical sides of the rectangle. This rcplacemcnt of the distribut)ed 
horizontal forces by a statically equivalent system of two vertical forces 
cannot cause any sensible disturbance in the plate, except within a distance 
comparable with the thickness of the plate,’ which is assumed small. 
Proceeding in the same manner with all the rectangles, we find that all 
forces .M1 acting along the verticnl sides of the rectangles balance one 
another and only two forces M1 at the corners a and d are left. Making 

1 This follows from Saint Venant’s principle; see S. Timoshenko and .J. N. Goodier, 
“Theory of Elasticity,” 2d ed., p. 33, 1951. 
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the same transformaG.m along the other edges of the plate, we conclude 
that bending of the plate to the anticlastic surface shown in Fig. 25~ can 
be produced by forces concentrated at the corners’ (Fig. 25~). Such an 
experiment is comparatively simple to perform, and was used for the 
experiment,al verification of the theory of bending of plates discussed 
above.” In these erperimcnts the deflections of the plate along the line bod 
(Fig. 24) were measured and were found to be in very satisfactory agree- 
ment with the theoretical results obtained frorn Eq. (g). Some dis- 
crepancies were found only near the edges, and they were more pro- 

FIG. 25 

nounced in the case of comparatjively thick plates, as would be expected 
from the foregoing discussion of the transformation of twisting couples 
along the edges. 

&is a last example let us consider the bending of a plate (Fig. 19) to a 
cylindrical surface having its generating line parallel to the y axis. In 
such a case a2w/ay2 = 0, and we find, from Eqs. (37) and (38), 

It is seen that to produce bending of the plate to a cylindrical surface 
we must apply not only the moments M, but also the moments JI,. 
Without these latter moments the plate will be bent to an anticlnstic 
surfnce.3 The first of equations (h) has already been used in Chap. 1 in 
discussing the bending of long rectjangular plates t.o a cylindrical surface. 
Although in that discussion we had a bending of plates by lateral loads 
and there wer’c not only bending stresses but also vertical shearing stresses 

1 This transformation of the force system acting along the edges was first suggested 
by Lord Kelvin and 1’. G. Tait; see “Treatise on Natural Philosophy,” vol. 1, part 2, 
p. 20’3, 1883. 

* Such experiments were made by A. Xadai, k’orschungsarb., ~01s. 170, 171, Berlin, 
1915; see also his book “Elastischc Plattcn,” p. 42, Berlin, 1925. 

3 \Ve always assume very small deflections or else bending to a developable surface. 
‘The cast of bending to a nondevelopable surface when the deflections are not small 
will hc diwussrd lakr; see p. 47. 



46 THEORY OF PLATES AND SHELLS 

acting on sections perpendicular to the x axis, it can be concluded from a 
comparison with the usual beam theory that the effect of the shearing 
forces is negligible in the case of thin plates, and the equations developed 
for the case of pure bending can be used with sufficient accuracy for 
lateral loading. 

12. Strain Energy in Pure Bending of Plates. If a plate is bent by 
uniformly distributed bending moments M, and M, (Fig. 19) so that the 
zz and yx planes are the principal planes of the deflection surface of the 
plate, the strain energy stored in an element, such as shown in Fig. 20, 
is obtained by calculating the work done by the moments M, dy and M, dz 
on the element during bending of the plate. Since the sides of the eie- 
m&t remain plane, the work done by the moments M, dy is obtained by 
taking half the product of the moment and the angle between the corre- 
sponding sides of the element after bending. Since - @w/dx2 represents 
the curvature of the plate in the xz plane, the angle corresponding to the 
moments M, dy is - (d2w/&3) d.c, and the work done by these moments is 

An analogous expression is also obtained for the work produced by the 
moments M, dx. Then the total work, equal to the strain energy of the 
element 1 is 

dV= -; M,$.,,,$ 
> 

dxdy 

Substituting for the moments their expressions (37) and (38), the strain 
energy of the elements is represented in the following form: 

Since in the case of pure bending the curvature is constant over the 
entire surface of the plate, the total strain energy of the plate will be 
obtained if we substitute the area A of the plate for the elementary area 
dx dy in expression (a). Then 

(47) 

If the directions x and y do not coincide with the principal planes of 
curvature, there will act on the sides of the element (Fig. 20) not only 
the bending moments M, dy and M, dx but also the twisting moments 
M,, dy and M,, dx. The strain energy due to bending moments is reprc- 
sented by expression (a). In deriving the expression for the strain energy 
due to twisting moments M,, dy we observe that the corresponding angle 
of twist is equal to the rate of change of the slope ~?w/d?~, as .x varies, 
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multiplied with dx; hence the strain energy due to M,, dy is 

dx dy 

which, applying Eq. (43), becomes 

The same amount of energy will also be produced by the couples M,, dx, 
so that the strain energy due to both twisting couples is 

’ dx dy 

Since the twist does not affect the work produced by the bending 
moments, the total strain energy of an element of the plate is obtained by 
adding tog&her the energy of bending (CL) and the energy of twist (b). 
Thus we obtain 

+ D(l - v) sy 
(. ) 

‘dxdy 

or 

(48) 

The strain energy of the entire plate is now obtained by substituting 
the area A of the plate for the elemental area dx dy. Expression (48) 
will be used later in more complicated ca’ses of bending of plates. 

13. Limitations on the Application of the Derived Formulas. In dis- 
cussing stress distribution in the case of pure bending (Art. 10) it was 
assumed that the middle surface is the neutral surface of the plate. This 
condition can be rigorously satisfied only if the middle surface of the bent 
plate is a developable surface. Considering, for instance, pure bending of 
a plate to a cylindrical surface, the only limitation on the application of 
the theory will be the requirement that the thickness of the plate be 
small in comparison with the radius of curvature. In the problems of 
bending of plates to a cylindrical surface by lateral loading, discussed in 
the previous chapter, it is required that deflections be small in compari- 
son with the width of the plate, since only under this condition will the 
approximate expression used for the curvature be accurate enough. 

If a plate is bent to a nondevelopable surface, the middle surface 
undergoes some stretching during bending, and the theory of pure bend- 
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ing developed previously will be accurate enough only if the stresses 
corresponding to this stretching of the middle surface are small in com- 
parison with the maximum bending stresses given by Eqs. (44) or, what 
is equivalent, if the strain in the middle surface is small in comparison 
with the maximum bending strain h/2r,i,. This requirement puts an 
additional limitation on deflections of a plate, viz., that the deflections w 
of the plate must be small in comparison with its thickness h. 

To show this, let us consider the bending of a circular plate by bend- 
ing couples M uniformly distributed along the edge. The deflection sur- 
face, for small deflections, is spherical with radius r as defined by Eq. (46). 
Let AOB (Fig. 26) represent a diametral section of the bent circular plate, 
a its outer radius before bending, and 6 the deflection at the middle. We 
assume at first that there is no stretching of the middle surface of the 
plate in the radial direction. In such a case the arc OR must be equal to 
the initial outer radius a of the plate. The angle ‘p and the radius b of 
the plate after bending are then given by the following equations: 

p=f b = T sin cp 

It is seen that the assumed bending of the plate implies a compressive 
strain of the middle surface in the circumferential direction. The magni- 

tude of this strain at the edge of the plate is 

a-b rp - r sin cp e=-=- 
a rep (a> 

For small deflections we can take 

a 

which, substituted in Eq. (a), gives 
2 

FIG. 26 C=% 

To represent this strain as a function of the maximum deflection 6, we 
observe that 

rpz 
6 = ?-(1 - cos cp) = -, 

Hence 2-E 
‘-r 

Substituting in Eq. (b), we obtain 

6 
‘=% 

(40) 
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This represents an upper limit for the circumferential strain at the edge 
of the plate. It was obtained by assuming that the radial strain is zero. 
Under actual conditions there is some radial strain, and the circumfer- 
ential compression is somewhat smaller’ than that given by Eq. (49). 

From this discussion it follows that the equations obtained in Art. 10, 
on the assumption that the middle surface of the bent plate is its neutral 
surface, are accurate provided the strain given by expression (49) is small 
in comparison with the maximum bending strain h/2r, or, what is equiva- 
lent, if the deflection 6 is small in comparison with the thickness h of the 
plate. A similar conclusion can also be obtained in the more general 
case of pure bending of a plate when the two principal curvatures are 
not equal.2 Generalizing these conclusions we can state that the equa- 
tions of Art. 10 can always be applied with sufficient accuracy if the 
deflections of a plate from its initial plane or from a true developable 
surface are small in comparison with the thickness of the plate. 

14. Thermal Stresses in Plates with Clamped Edges. Equation (46) 
for the bending of a plate to a spherical surface can be used in calculating 
thermal stresses in a plate for certain cases of nonuniform heating. 
Assume that the variation of the temperature through the thickness of 
the plate follows a linear law and that the temperature does not vary in 
planes parallel to the surfaces of the plate. In such a case, by measuring 
the temperature with respect to that of the middle surface, it can be 
concluded that temperature expansions and contractions are proportional 
to the distance from the middle surface. Thus we have exactly the same 
condition as in the pure bending of a plate to a spherical surface. If the 
edges of the nonuniformly heated plate are entirely free, the plate will 
bend to a spherical surface.3 Let CY be the coefficient of linear expansion 
of the material of the plate, and let t denote the difference in temperature 
of the upper and lower faces of the plate. The difference between the 
maximum thermal expansion and the expansion at the middle surface is 
d/2, and the curvature resulting from the nonuniform heating can be 
found from the equation 

at h -=- 
2 2r (4 

from which 
1 at -=- 
T h (50) 

This bending of the plate does not produce any stresses, provided the 

1 This question is discussed later; see Art. 96. 
2 See Kelvin and Tait, op. cit., vol. 1, part 2, p. 172. 
3 It is assumed that deflections are small in comparison with the thickness of the 

plate. 
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edges are free and deflections are small in comparison with the thickness 
of the plate. 

Assume now that the middle plane of the plate is free to expand but 
that the edges are clamped so that t)hey cannot rotate. In such a case 
the nonuniform heating will produce bending moments uniformly dis- 
tributed along the edges of t.he plate. The magnitude of these moments 
is such as to eliminate the curvature produced by the nonuniform heat- 
ing [Eq. (SO)], since only in this way can the condition at the clamped 
edge be satisfied. Using Eq. (46) for the curvature produced by the 
bending moments, we find for determining the magnitude M of the 
moment per unit length of the boundary the equation’ 

from which 

M at 
D(1 + v) = h 

The corresponding maximum stress can be found from Eqs. (44) and is 
equal to 

6M AatD(1 + V) flmar = -- = ~.~~.~-. -~..- 
h2 h,3 

Substituting for D its expression (3), we finally obtain 

(51) 

It is seen that the stress is proportional to the coefficient of thermal 
expansion LY, to the temperature difference t bctwccn the two faces of 
the plate, and to the modulus of elasticity 13. The thickness h of the 
plate does not enter into formula (51); but since the difference t of tem- 
peratures usually increases in proportion to the thickness of the plate, it 
can be concluded that greater thermal stresses are to be expected in thick 
plates than in thin ones. 

1 The effect of pure bending upon the curvature of the entire plate thus is equivalent 
but opposite in sign to the effect of the temperature gradient. Now-, if the plate 
remains, in the end, perfectly plane, the conditions of a built-in cdgr are evidently 
satisfied along any given boundary. Also, since in our case the bending moments are 
equal everywhere and in any direction, the clamping moments along that given 
boundary are always expressed by t,he same Eq. (b). 



CHAPTER 3 

SYMMETRICAL BENDING OF CIRCULAR PLATES 

16. Differential Equation for Symmetrical Bending of Laterally Loaded 
Circular Plates. l If the load actSing on a circular plate is symmetrically 
distributed about the axis perpendicular to the plate through its center, 
t!he deflection surface to Tvhich the middle plane of the plate is bent will 
also be symmetrical. In all points equally distant from the center of 
the plate the deflections will be the same, and it is sufficient to consider 
deflections in one diametrnl section through the axis of symmetry (Fig. 
27). Let us take the origin of coordinates 
0 at the center of the undeflected plate and B 

denote by r the radial distances of point,s 
in the middle plane of the plate and by uj 
their deflections in the downward direction. 
The mnximum slope of the deflection sur- 
face at any point A is then equal to - dw/dr, 
and the curvature of the middle surface of 
the plate in the diametral section rz for r 

small deflections is 

1 d”w dcp -= -- =- 
r7l dr2 dr 

where cp is the small angle between the normal to t,he deflection surface 
at A and t,he axis of symmetry OB. From symmetry we conclude that 
l/r,, is one of the principal curvatures of the deflection surface at A. 
The second principal curvature will be in the section through the normal 
AR and pcrpcndicular to the rz plane. Observing that the normals, such 
as AB, for all points of the middle surface with radial distance r form a 
conical surface with apex B, we conclude that the length AR is the radius 
of the second principal curvature which we denote by rt. Then, from 
the figure, we obtain 

1 ldw p -=----- 
rt rdr r (b) 

1 The solution of t)hesc problems of bending of circular plates was given by Poisson; 
see “Jlemoirx of the .4cademy,” vol. 8, Paris, 1829. 

31 
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Having expressions (a) and (b) for the principal curvatures, we can obtain 
the corresponding values of the bending moments assuming that relations 
(37) and (38), d erived for pure bending, also hold between these moments 
and the curvatures.’ Using these relations, we obtain 

(52) 

where, as before, M, and fld, denote bending moments per unit length. 
The moment AI, acts along circumferential sections of the plate, such as 
the section made by the conical surface with the apex at B, and Mt acts 
along the diametral section rz of the plate. 

Equations (.52) and (53) contain only one variable, w or cp, which can 
be determined by considering the equilibrium of an element of the plate 

such as element abed in Fig. 28 cut out 

dMr 
dQ 

Mr+;;r;dr A QtdT dr from the plate by two cylindrical sec- 

ff r 1 f 
1 L .v 

A yr t/k 0 

tions ab and cd and by two diametral 
sections ad and bc. The couple acting 

Y 
I 40 

on the side cd of the element is 

The corresponding couple on the side w abis@r 1 d~‘dr)(r+&)dfj (d) 
FIG. 28 

The couples on the sides ad and bc of the element are each iIlL dr, and they 
give a resultant couple in the plane rOx equal to 

From symmetry it can be concluded that the shearing forces that may 
act on the element must vanish on diametral sections of the plate but 
that they are usually present on cylindrical sect.ions such as sides cd and 
ab of the element. Denoting by Q the shearing force per unit length of 

1 The effect on deflections of shearing stresses acting on normal sections of the plate 
perpendicular to meridians, such as the section cut by the conical surface with the 
apex at B, is neglected here. Their effect is slight in the case of plates in which the 
thickness is small in comparison with the diameter. Further discussion of this subject 
will be given in Art. 20. The stresses perpendicular to the surface of the plate are 
also neglected, which is justifiable in all cases when the load is not highly concentrated 
(see p. 69). 
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the cylindrical section of radius r, the total shearing force acting on the 
side cd of the element is Qr de, and the corresponding force on the side ab is 

[Q+($++dr)de 

Neglecting the small difference between the shearing forces on the two 
opposite sides of the element, we can state that these forces give a couple 
in the TZ plane equal to 

Qr db’ dr (f) 

Summing up the moments (c), (d), (e), and (f) with proper signs and 
neglecting the moment due to the external load on the element as a 
small quantity of higher order, we obtain the following equation of 
equilibrium of the element abed: 

( 
M, + $ dr 

> 
(r + dr) d0 - M,r de - Mt dr de + Qr d0 dr = 0 

from which we find, by neglecting a small quantity of higher order, 

M+Tr-Mf+Qr=O 

Substituting expressions (52) and (53) for M, and Mt, Eq. (g) becomes 

(54) 

or, in another form, 

(55) 

In any particular case of a symmetrically loaded circular plate the 
shearing force Q can easily be calculated by dividing the load distributed 
within the circle of radius r by 2m; then Eq. (54) or (55) can be used to 
determine the slope cp and the deflection w of the plate. The integration 
of these equations is simplified if we observe that they can be put in the 
following forms : 

(57) 

If Q is represented by a function of r, these equations can be integrated 
without any difficulty in each particular case. 

Sometimes it is advantageous to represent the right-hand side of Eq. 
(57) as a function of the intensity q of the load distributed over the plate. 
For this purpose we multiply both sides of the equation by 2nr. Then, 
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observing that 
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Q2ar = (,’ q2,r dr 
/ 

Differentiating both sides 
hy r, we finally obtain 

Id 
r dr 

)f this equation wit,h respect to r and di\*idillg 

(58) 

This equation can easily be integrated if the intensity of the load q is 
given as a function of T. 

16. Uniformly Loaded Circular Plates. If a circular plate of radius a 
carries a load of intensity q uniformly distributed over the cntirc surface 
of the plate, the magnitude of t’he shearing force Q at a distance T from 
the center of the plate is determined from the equation 

from which 

Substituting in Eq. (57), we obtain 

By one integration we find 

Id -- 
r dr 

where Cl is a constant of integration to be found later from the conditions 
at the center and at the edge of the plate. Multiplying both sides of 
Eq. (c) by r, and making the second integration, we find 

The new integration then gives 

w = & + y + c, log $ + (‘:+ 

Let us now calculate the constants of integration for various particular 
cases. 
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Circular Plate with Clamped Edges. In this case the slope of the deflec- 
tion surface in the radial direction must be zero for r = 0 and r = a. 
Hcncc. from Eq. (59), 

From the first of these equations 1~1: conc~lutle that CZ = 0. Substituting 
this in the second equation, we obt’ain 

c = - @ ,1 8 1) 

With these valuts of thr constants, IQ. (59) gives the following cxpres- 
sion for the slope: 

dW 
p = - dr = 2& (a2 _ ~2) 

Equation (60) gives 

At the edge of the plate the clcflection is zero. Hcncc, 

qa,’ 
- - g;, $- Pa = 0 64D 

and we obtain 

Substituting in Eq. (d), we find 

‘u! = -9 (0’ - 32 
640 

(61) 

(4 

The maximum deflection is at the center of t’he plate and, from Eq. ((i’L), 
is equal to 

This deflection is equal to three-eighths of the deflection of a uniformly 
loaded strip with built-in ends having a flexural rigidity equal to D, a 
width of unity, and a length equal to the diameter of the plate. 

Having expression (61) for the slope, we obtain now the bending 
lnoments d1, and Mt by using expressions (32) and (.X3), from which 
we find 

M, = 6 [a”(1 + V) - r2(3 + v)] (63) 

Mt = & [a’(1 + V) - r2(1 + 3v)J (64) 
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Substituting r = a in these expressions, we find for the bending moments 
at the boundary of the plate 

(M,).=, = - Jg (M,).=, = - F 

At the center of the plate where r = 0, 

From expressions (65) and (66) it is seen that the maximum stress is at 
the boundary of the plate where 

The variation of stresses ur and bt at the lower face of the plate along the 
radius of the plate is shown in Fig. 29. 

0,; 9 

FIG. 29 

Circular Plate with Supported Edges. In calculating deflections for this 
case we apply the method of superposition. It was shown that in the 
case of clamped edges there are negative bending moments M, = -qa2/8 
acting along the edge (Fig. 30a). If this case is combined with that of 
pure bending shown in Fig. 30b, the bending moments Mr at the edge 
mill be eliminated, and we obtain the bending of a plate supported at the 
edge. The deflection surface in the case of pure bending by the moments 
qa2/8, from Eq. (46) or Eq. (e) on page 43, is 

Adding this to the deflections (62) of the clamped plate, we find for the 
plate with a simply supported edge 
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q(a2 - r2) 5 + v 
w=~~--- 1+va2-r2 

( > 
(67) 

Substituting r = 0 in this expression we obtain the deflection of the plate 
at the center: 

(5 + v)qa4 w,,, = ->-- 
h4(1 + V)D 

(08) 

For Y = 0.3 this deflection is about four times ns grent ns that for the 
plate with clamped edge. 

b) 
FIG. XI 

In calculating bending moments in this case me must add the constzmt 
bending moment qa”/8 to the moments (G-S) and (64) found shove for the 
case of clamped edges. Hence in the case of supported edges 

M, = 6 (3 + v)(d - r2) (09) 

Af, = + [nyx + v) - r?(l + SV)] (70) 

The maximum bending moment is at the cenkr of the plate where 

The corresponding maximum stress is 

To get the maximum stress at any distxnce T from the center we must 
add to the stress calculated for the plate with clamped edges the con- 
ststnt value 

6 qa2 
h2 8 
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corresponding to the pure bending shown in Fig. 30b. The same strw is 
obtained also from Fig. 20 by measuring the ordinates from the horizont:ll 
axis through 01. It may bc seen that by clamping the edge a rnorc 
favorable stress distribution in the plate is obtained. 

1’7. Circular Plate with a Circular Hole at the Center. Let us begin 
with a discussion of the bending of a plate by the moments Ml and -II, 

uniformly distributed along the inner and outer boundaries, resp&,idy 

(Fig. 31). The shearing force Q vanishes in such a case, and Eq. (57) 

becomes 

Ry integrating this equation twice we obt’ain 

Integrating :again, we find the deflection 

(b) 

The constants of intcgrnt,ion are now to be determined from the condi- 
tions at the edges. Substituting expression (u) into Eq. (52), we find 

This moment must be equal to M1 for r = b and equal to Al? for r = n. 
Hence equations for determining constants C1 and Cz are 

from which 

c = ,2(a2M2 - b”llfl) a2b2(JP2 - XI) 
1 ~- 

(1 + v)D(az - b*) c2 = (1 - v)D(a2 - Cj 

To determine the constant C’s in Eq. (0). the deflections at, 

((1) 

the edges 
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of the plate must he considered. Assume, for example, that the plate in 
Ipig. 31 is supported along t’he outer edge. Then w = 0 for r = a, and 
we find, from (O), 

:uld expressions (~7) and (0) for the slope and t,he deflection become 

As a second example we consider t)he case of bending of a plate by 
shearing forces Q, uniformly distributed along the inner edge (Fig. 32). 
The shearing force per unit length of a 
circumference of radius T is 

where P = ‘L&Q0 denotes the total load 
so I 

applied to the inner boundary of the 
FIG. 32 

plate. Substituting this in Eq. (57) and integrating, we obtain 

The constants of integration will now be calculat,ed from the boundnry 
conditions. Assuming that t,he plate is simply supported along the outer 
edge, we have 

(WL, = 0 -n !!!+!c!; 
( > 

=o 
1=-l, 

For the inner edge of the plate we have 

(h) 
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Substituting expressions (e) and (f) in ICys. (g) and (h), we find 

(9 

With these values of the constants substituted in expressions (e) and (.f), 
we find the slope and the deflection at, any point of the plate shown in 
Fig. 32. For the slope at the inner edge, which will be needed in the 
further discussion, we obtain 

In the limiting case where b is infinitely small, b2 log (6/u) approaches 
zero, and the constants of integration become 

c =?-v p 1 1+ v 4aD 
c2=o c,+$ Ifll--v 

7r ( 21+V 1 
Substituting these values in expression (f), we obtain 

This coincides wit,h t#he deflection of a plate without a hole and loaded at 
the cenkr [see Eq. (89), page 681. Thus a very small hole at the center 

. . .._ a ..-- does not affect the deflection of the plate. 
Combining the loadings shown in Figs. 31 

and 32, we can obtain the solution for the 
case of a plate built in along the inner edge 
and uniformly loaded along the out,er edge 

FIG. 33 
(Fig. 33). Since the slope at the built-in 
edge is zero in this case, using expressions 

(72) and (.j), me obt,ain the following equat’ion for determining the bending 
moment 1111 at t,he built-in edge: 

a2b2M1 

D(1 - v)(a% - ZP) ( 
!+~;)=~[210g~-1 
b 

l-v u2 1+ v -- 
1-l-v+ $&log; 1+)2r 

( V )I 
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from which 

M, = 
P 

4a (1 + Y) $ + I - lJ 
[ 

--+1 - v)(g - 1) +2(1+ Y);;log;] 

(74) 

Having this expression for the moment Ml, we obtain the deflections of 
the plate by superposing expression (73) and expression (f), in which the 
constants of integration are given by expressions (i). 

By using the same method of superposition we can obtain also t,he 
solution for the case shown in Fig. 34, in which the plate is supported 
along the outer edge and carries a uniformly distributed load. In this 
case we use the solution obtained in the previous article for the plate 
without a hole at the center. Considering the section of this plate cut by 
the cylindrical surface of radius b and perpendicular to the plate, we find 
that along this section there act a shearing force Q = aybz/2A = $/2 
and a bending moment of the inten- 
sity [see Eq. (69)l 

Q M, = - (3 + v)(a” - 02) 
16 

Hence to obtain the stresses and de- FIG. 34 
flections for the case shown in Fig. 34, 
we have to superpose on the stresses and deflections obtained for the plate 
without a hole the stresses and deflections produced by the bending 
moments and shearing forces shown in Fig. 35. These latter quantities 
are obtained from expressions (72), (73), (e), and (f), with due attention 
being given to the sign of the applied shears and moments. 

Several cases of practical importance 
are represented in Fig. 36. III all tzhesc 
cases the maximum stress is give11 by a 
formula of the type 

depending on whether the applied load is uniformly distributed over the 
surface or concentrated along the edge. The numerical values of the 
factor k, calculated’ for several values of the ratio a/b and for Poisson’s 
ratio Y = 0.3, are given in Table 3. 

1 The calculations for cases 1 to 8 inclusive were made by A. M. Wahl and G. Lobo, 
Z’rans. ASME, vol. 52, 1930. Further data concerning symmetrically loaded circular 
plates with and without a hole may be found in IX. Beyer, “Die Statik im Stahlbe- 
tonbau,” 2d cd., p. 652, Berlin, 1948. 



62 THEOltP OF PLATES AND SHELLS 

Case2 

Case3 

Cose 4 

Case5 t 

Case 7 

Case 8 

Case 9 

Case 10 

FIG. 36 

TABLE 3. COEFFICIENTS k AND lil IS Eus. (75) AND (76) FOR THE TEN 
CASES SHOWN IN FIG. 36 

I 
0 //I = 1.2.5 ' 1.5 3 4 5 

I 1.10 0.341 

/ ,<k ,k, ,k 

I 16 

.A- ,BI ,I ;, 

0 519 1 48 1 S8 0 734 3 17 0 7242 -I---- 3.k 0.7O.i 
2 O.6F 0.202 ~I.19 0.491 2.04 0.902 3.34 1.2204.30 1.300~5.10 '1.310 
3 0.135'0.002::10.410 0.0183 1.04 0.09382.15 0.293 2.99 0.4483.69 0.56-I 
-l 0.1220.00343O.336 0.03130.74 0.12501.21 0.2911.45 0.417 1.59 0.492 
5 0.0900.000770.273 0.00620.71 0.03291.54 0.1102.23 0.1792.80 0.234 

6 0.1150.001290.220 0.00640.4050.02370.7030.0620.9330.0921.13 0.114 
7 0.5920.184 0.976 0.414 1.4400.664 1.8800.8242.08 0.8302.19 0.813 
8 0.2270.005100.428 0.02490.75'30.087'71.2050.2091.5140.2931.7450.350 
9 0.1940.005040.320 0.02420.4540.08100.6730.1721.0210.2171.30<50.23t; 

lo ,0.105,0.001&259 0.0139O.4800.0575O.6570.1300.7100.1620.730i0.17.5 
-- 
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The maximum deflections in the same cases are given by formulas of 
the type 

The coefficients /iI are also given in Table 3. 
When the ratio a/b approaches unity, the values of the coefficients k and 

/cl in Eqs. (75) and (76) can be obtained with sufficient accuracy by con- 
sidering a radial strip as a beam with end 
conditions and loading as in the actual plate. 
The effect of the moments Mt on bending is 
then entirely neglected. 

18. Circular Plate Concentrically Loaded. 

t+ 

We begin with the case of a simply supported 
plate in which the load is uniformly distrib- 

i 

uted along a circle of radius b (Fig. 37~). 

I$ j kY) 1 

Dividing the plate into two parts as shown 
I lM,O 

in Fig. 37b and c, it may be seen that the y’ 3 k) 
inner portion of the plate is in the condition Frc:. 37 
of pure bending produced by the uniformly 
distributed moments MI and that the outer part is bent by the moment:: 
MI and the shearing forces Q1. Denoting by P the total load applied, 
we find that 

The magnitude of the moment MI is found from the condition of con- 
tinuity along the circle r = b, from which it follows that both portions 
of the plate have, at that circle, the same slope. Using Eqs. (72) and 
(j) of the preceding article, we find the slope for the inner boundary of 
the outer portion of the plate equal to 

1-vb ____- 
lf va2 > 
b -1-g 
a 

V 

The inner portion of the plate is bent to a spherical surface, the curvature 
of which is given by expression (46). Therefore the corresponding slope 
at the boundary is 

dw c-3 Mlb 
tlr r=b = - D(I + v) Cc) 
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Equating expressions (b) and (c), we obtain 

(4 

Substituting this expression for Ml in Eq. (73), we obtain deflections of 
the outer part of the plate due to the moments Ml. The deflections due 
to the forces Q1 are obtained from Eq. (f) of the preceding article. Rdd- 
ing together both these deflections, we obtain for the outer part of the 
plate 

w=~[ita’-r?)(1+~~~~)+(b2+TZ)log~] (77) 

Substituting r = b in this expression, we obtain the following deflection 
under the load: 

(WLTJ = ~~(~2-l,~)(l+2:,t~)+2hZlog~] (e) 

To find the deflect,ions of the inner portion of the plate, we add to the 
deflection (e) the deflections due to pure bending of that portion of the 
plate. In this manner we obtain 

0” _ ,.2 
+ 21>(1 + v) I--- 

(1 - v)P(a3 - b2) (1 + V)P log ; 

%a” 1 
og 4 + r2 - O2 + (a” - 

a 
r2) (3 + t&2 - (1 - v)6” 

-2(lf v)u2 1 - 

= F;D [ (02 + r’) log 4 + ((g - [,2) c3 + gz; &- v)T2 1 (78) 

1 If the outer edge of the plat,e is built 
4 ______--. a ..-. 
L.-b . 7 

J- pi 

in, the deflections of the plate are ob- 
tained by superposing on the deflec- 

2 

FIG. 38 

f42 
tions (77) and (78) the deflections 
produced by the bending moments 
MS uniformly distributed along the 
outer edge of the plate (Fig. 38) and 

of such a magnitude that the slope of the deflection surface at that edge 
is equal to zero. From expression (77) the slope at the edge of a simply 
supported plate is 

dW (-> P 1 a2 - b2 
dr v.=c, =-4?rD1 a (f> 
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The slope produced by the moments Mz is 

Llf,u 
= D(1 + V) 

Equating the sum of expressions (f) and (g) to zero, we obtain 

np 
2 

= c a2 - 0’ 
4ir a2 

Deflections produced by this moment are 

65 

Adding these deflections to the deflections (77) and (78) we obtain for the 
outer portion of a plate with a built-in edge 

w = 8& [(a2 - rz) “‘L,$ + (b2 + 9) log i] 

and for the inner portion, 

Having the deflections for the case of a load uniformly distributed 
along a concentric circle, any case of bending of a circular plate sym- 
metrically loaded with respect to the center can be solved by using the 
method of superposition. Let us consider, for example, the cast in vvhich 
the load is uniformly distributed over the inner portion of the plate 

+j$ db 
a 

FIG. 30 

bounded by a circle of radius c (Fig. 39). Expression (77) is used to 
obtain the deflection at any point of the unloaded portion of the plate 
(a > T > c). The deflection produced by an elementary loading dis- 
tributed over a ring surface of radius b and width dD (see Fig. 39) is 
obtained by substituting P = 2abq db in t’hat expression, where q is the 
intensity of the uniform load. Integrating the expression thus obtained 
with respect to b, we obtain the deflection 
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3$-v 
w = ifI? - T-2) 

2(1 + v) 
+ I.2 log f 

or, denoting the total load &r/ by P, 

Expression (78) is used to obtain the deflection at the center. Substi- 
tuting r = 0 and P = 2rbq db in this expression and integrating, xv-e find 

(w) 

where P = 7rc2q. 
The maximum bending moment is at the cent’er and is found by using 

expression (d). Substituting 2abq db for I’ in this expression and inte- 
grating, we find 

(K3) 

where, as before, I’ denotes the total load n-?q.* 
Expression (81) is used to obtain t’he bending moments M, and M, at 

any point of the unloaded outer portion of the plate. Substituting this 
expression in the general formulas (52) and (53), WC find 

i,l,, = (1 + VII-’ 
4a (84) 

(l+v)log~+l-v (85) 

* This expression applies only when c is at least several times the thickness h. The 
case of a very small c is disCussed in Art. 19. 
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The maximum values of these moments are obtained at the circle T = c, 
where 

(1 + VIP (1 - 
A{,. 7.z .--q~-- log ; + -- 

v)Z’(cs - c”) 
lG7Ml2 

[ I 

(1 - v)P(d + 3) 
M, = g (1 + v) log ; + 1 - v - I ha2 (87) 

The snme method of calculating deflections and moments can be used also 
for any kind of symmetrical loading of a circular plate. 

The deflection at the center of the plate ca,n easily be calculated also for 
any kind of unsymmetrical loading by using the following consideration. 

Owing to the complete symmetry of the plate and of its boundary con- 
ditions, the deflection produced at its ccntcr by an isolated load P depends 
only on the magnitude of the load and on its radial distance from the 
ccntjer. This deflection remains unchanged if the load P is moved to 
another position provided the radial distance of the load from the center 
remains the same. The deflection remains unchanged also if the load I’ 
is replaced by several loads the sum of which is equal to P and the radial 
distances of which are the same as that of the load P. From t,his it 
follows that in calculating the deflection of the plate at the center we can 
replace an isolated load I’ by a load P uniformly distributed along a circle 
the radius of which is equal to the radial distance of the isolat,ed load. 
For the load uniformly distributed along a circle of radius b the deflection 
at the center of a plate supported at the edges is given by Kq. (78) and is 

This formula gives the deflection at the center of the plate produced by 
an isolated load P at a distance b from the center of the plate. Having 
this formula the deflection at the center for any other kind of loading 
can be obtJnined by using the method of superposition.1 It should be 
not,ed that the deflections and stresses in a circular plate with or without 
:L hole can be efficicnt,ly reduced by reinforcing the plate with either con- 
centric2 or radial ribs. In the latter case, however, the stress distribution 
is no longer symmetrical with respect to the center of the plate. 

19. Circular Plate Loaded at the Center. The solution for a concen- 
trated load acting at the center of the plate can be obtained from the 

’ This method of calculating deflections at the center of the plate was indicated by 
Saint Vcnant in his translation of the “Theorie de 1’6lasticit6 dcs corps solides,” by 
Clcbsch, p. 33, Paris, 1883. The result (i) can also be obtained by applying Max- 
well’s rwiprocal theorem to the circular plate. 

2 This case is discussed by 11’. A. Nash, J. Appl. Ab~chanics, vol. 15, p. 25, 1948. 
See also C. B. niezeno and 11. Grammel, “Technische 1)ynamik.” 2d ed.. vol. 1, p. 497, 
1953. 
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discussion of the preceding article by assuming that the radius c of the 
circle within which the load is distributed becomes infinitely small, 
whereas the total load P remains finite. Using this assumption, we find 
that the maximum deflection at the center of a simply supported plate, 
by Eq. (82), is 

WlL%X 
(3 + lJ)Pd 

= lGr(1 + Y)D 038) 

The deflection at any point of the plate at a distance r from the center, 
by Eq. (Sl), is 

P 
w = iii 1+ v [ 

3+v 
~-- (a” - 7-2) + 2r2 log g 

I 

The bending moment for points with r > c may be found by omitting 
the terms in Eqs. (84) and (85) which contain c2. This gives 

To obt,ain formulas for a circular plate with clamped edges we differ- 
entiate IXq. (89) and find for the slope at the boundary of a simply sup- 

The bending moments MS uniformly dis- 
z 

FIG. 40 
tributed along the clamped edge (Fig. 40) 
produce a bending of the plate to a spher- 

ical surface the radius of which is given by Eq. (46), and the correspond- 
ing slope at the boundary is 

M2a - ._~~- 
(1 + v)D 

(b) 

Using (a) and (b), the condition that the built-in edge does not rotate 
gives 

(M,),=, = M2 = - ; Cc) 

Deflections produced by moments A42 by Eq. (h) of the preceding article 
are 

P(r2 - a2 1 
87rD(l + v) 

Superposing these deflections on the deflections of a simply supported 
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plate in Eq. (89)) we obtain the following expression for the deflections 
of a clamped plate loaded at, the center: 

(92) 

Adding Eq. (I:) to Eqs. (90) and (91) for a simply supported plate, we 
obtain the following equations for the bending moment at any point not 
very close to the load: 

M, = E (1 + V) log ” - 1 
[ 1 

Mt = $ (1 + v) log ” - v 
F I 

When r approaches zero, expressions (go), (91), (93), and (94) approach 
infinity and hence are not suitable for calculating the bending moments. 
Moreover, the assumptions that serve as the basis for the elementary 
theory of bending of circular plates do not hold near the point of appli- 
cation of a concentrated load. As the radius c of the circle over which 
P is distributed decreases, the intensity P/m2 of the pressure increases 
till it can no longer be neglected in comparison with the bending stresses 
as is done in the elementary theory. Shearing stresses which are also 
disregarded in the simple theory likewise increase without limit as c 
approaches zero, since the cylindrical surface 27rch over which the total 
shear force P is distributed approaches zero. 

Discarding the assumptions on which the elementary theory is based, we may obtain 
the stress distribution near the point of application of the load by considering that 
portion of the plate as a body all three dimensions of which are of the same order of 
magnitude. To do this imagine the central 
loaded portion separated from the rest of the 
plate by a cylindrical surface whose radius b is 
several times as large as the thickness h of the * 
plate, as shown in Fig. 41. It may be assumed 
t,hat the elementary theory of bending is accur- 

A 
: 

ate enough at a distance b from the point of L 
application of the load P and that the corre- b --&--.-. b 

sponding stresses may be calculated hy means FIG. 41 
of Eq. (90). The problem of stress distrihu- 
tion near the center of the plate is thus reduced to t,hc problem of a symmetrical 
stress distribution in a circular cylinder of height h, and radius h acted upon by a 
load P distributed over a sma.11 circle of radius c and by reactions along the lateral 
b0undary.l The solution of this problem shows that the maximum compressive 

1 Several examples of symmetrical stress distribution are discussed in S. Timo- 
shcnko and J. N. Goodier, “Theory of Elasticity,” 2d cd., p. 384, 1951. The case 
shown in Fig. 41 was studied by A. N:idai (SW his book “Elastischc Plattrn,” p. 308) 
and also by S. Woinowsky-Krieger (see his paper in Ingr.-Arch., vol. 4, p. 305, 1933). 
The results given here are from the latter paper. 
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stress at the ccrrtcr A of t.he upper fact of the plate can be expressed by the follow- 
ing npproximat,e form~~ln:’ 

(95) 

in which g, is the value of the compressive bending stress2 obtained from the approxi- 
mate theory, say, by using Eq. (83) for the case of a simply supported plate, and n is a 
numerical factor depending on 2c/h, the ratio of the diamrter of the londcd area to the 

0 0.5 1.0 1.5 2.0 2.5 3.0 
-m--f 2c 

IT 
FIG. 42 

thickness of the plate. Srveral values of this fact,or arc givtn in Table 4. Its varia- 
Con with the ratio 2c/h is shown also in Fig. 42. JVhen c approaches zero, the stress 
calculated by Eq. (95) approaches infinity. 

TABLE 4. VALUER 01" FACTOR a IS F:Q. (9.5) 

2c/h = 0.10 I 0.2.5 0.50 0.75 1.00 1.50 2 00 2.50 I 
-- -__ 

cY= 0.0106 0.04X 0.1234 / 0.200 0.263 0.348 0.386 0.398 

The maximum tensile stress occurs at H, the center of the lower surfacr of the plate 
(Fig. 41). When c is very small, i.~., for a strong load conccnt,ration, this tensile 
stress is practically indrpendent, of the ratio 2c/h and for a simply supported plate is 
given by the follo\ving approximate formula:3 

OIOHY = - ; (I -Jr v) 
L ( 

0.485 log ; + 0.52 + 0.48 > 1 
in which a is the outer radius. 

To obtain the compressive stresses (T,. and vt at t,he center of the upper surface of a 
clamped plate, me must decrease the value of the compressive stress m1 in Eq. (95) 
by an amount equal to 

EG 3 P ---.- 
47 h,2 2 rh2 

(4 

1 When c is very small, the compressive stress I’/& becomes larger than the vnlur 
of (T,,, given by Eq. (95) (see Fig. 43). 

2 This quantity should be taken with negative sign in Eq. (95). 
3 See Woinowsky-Krieger, op. ei/. 
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on account of the action of the moments Mz = -P/4=. The maximum tensile 
stress at the center of the lower surface of a clamped plate for a strong concentration 
of the load (c = 0) is found by subtracting Eq. (d) from Eq. (96). This stress is 

ITmax = ; (1 + u‘i 
( 

0.455 log ; + 0.52 
> 

The stress distribution across a thick circular plate (h/a. = 0.4) with huilt-in edges 
is shown in Fig. 43. These stresses arc calculated for c = 0.1~ and I’ = 0.3. For this 
case the maximum compressive stress (TV normal to the surface of the plate is larger than 
the maximum comprcssivc stress in bending given by Eq. (95). The maximum 

r=O 

-100 -92.3 -28.1 A 

i 
FIN. 43 

tensile stress is smaller than the t,cnsilc stress given by the rlemrntary theory of hend- 
ing. The value! of the latter across the thickness of the plate is shown in t,he figure 
by the dashed line It was calculated from the equation for bending moment 

Lx=~ (l+V)log;--- 
[ 

(1 - Y)C? 
4n” I 

(981 

obtained by adding the mo~nrnt Jr, = -/‘/HIT to Eq. (83). 
In drtcrmining the safe dimcnsiorrs of a circlilnr plate loaded at the center, we can 

usually limit our investi galions to the cnl~~iilntion of the maximum tcnsilc bending 
stresses at the bottom of the p!nte by means of Eqs. (96) and (97). Although the 
compressive strrsscs at the top of the plctr may be many times as large as the tensile 
strcs.;cs at the bottom in the case of a strong concentration of the load, they do not 
represent a direct danger because of their highly localized character. The local 
yielding in the case of a ductile mntcrial will not affect the dcforination of the plate in 
general if the tensile stresses at the bottom of the plate remain within safe limits. 
The compressive siren&h of a brit,tlc ma.trrial is usually many times greater than its 
tensile strength, so that a plate of such a mntcrial will also be safe if the tensile stress 
at the bottom is within the limit of safety. 

The local disturbanec produced by a concentrated load in the vicinity of its point of 
application must also be considcrcd if we want an exact description of the deflection 
of the plate. This disturbance is mainly confined to a cylindrical region of radius 
several times h, and thus its effect on the total deflection becomes of practical impor- 
tance when t,he thickness of the plate is not very small compared with its radius. As 
o,n illustrat,ion there are shown in Fig. 44 the deflrctions of circular plates with built-in 
edges and a central concentrated load for which the ratio of thickness to radius h,‘cz 
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is 0.2, 0.4, and 0.6.l The deflection given by the elementary theory [Eq. (92)] is 
shown by the dashed line. It may be seen that the discrepancy between the elementary 
theory and the exact solution diminishes rapidly as the ratio h/a diminishes. In the 
next article we shall show that this discrepancy is due principally to the effect of shear- 
ing forces which are entirely neglected in the elementary theory. 

20. Corrections to the Elementary Theory of Symmetrical Bending of 
Circular Plates. The relations (37) and (38) between bending moments 
and curvatures, which were derived for the case of pure bending, have 
been used as the basis for the solution of the various problems of sym- 
metrical bending of circular plates which have been discussed. The effect 
that shearing stresses and normal pressures on planes parallel to the sur- 
face of the plate have on bending has not been taken into account. Hence 

r 
Zi- 

2.49 

FIG. 44 

only the solution for a plate bent to a spherical surface and the solution 
for the annular plate loaded with moments uniformly distributed along 
the inner and outer boundaries (Fig. 31) are rigorous. In all other cases 
discussed, the formulas obtained are approximate, and their accuracy 
depends on the ratio of the thickness of the plate to its outer radius. 
More accurate formulas may be obtained by considering in an approxi- 
mate manner2 the effect of shearing stresses and lateral pressures on 
deflections. 

Let us consider first a circular plate without a hole supported along its 
edge and uniformly loaded. The shearing force & per unit length of arc 

1 The curves in Fig. 44 are the results of the exact solution of Woinowsky-Krieger, 
lot. cit. 

2 A rigorous theory of plates was originated by Saint Venant in his translation of 
Clrbsch’s “Thkoric de 1’6lasticit6 des corps solides,” p. 337. A valuable criticism of 
this work is given in “History of the Theory of Elasticity,” by I. Todhunter and 
K. Pearson, vol. 2, part, 1, p. 217. Further development of the theory is due to J. H. 
Michell, Proc. London Math. Sot., vol. 3 I, p. 100, 1900, and to A. E. H. Love, “ Mathe- 
matical Theory of Elasticit,y,” 4th cd., p. 465. A list of references on this subject is 
given by Woinowsky-Krieger, op. cit., p. 203. Some examples of rigorous theory are 
given in .4rt. 26 (see p. 98). 
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along a circle of radius r is 
Q = 8qr 

73 

From the exact solution for plates whose thickness is not assumed to be 
small,” it is known that the shearing stresses TV, vary across the thickness 
of the plate according to the parabolic law in the same way as in beams of 
narrow rectangular cross section. Hence the maximum shearing stress is 
at the middle surface of the plate, and its magnitude is 

The corresponding shearing strain is 

dWl 3 Pr -= - 
dr 2 2Gh (b) 

where w1 is the additional deflection of the middle surface of the plate 
due to the shearing stress. By integration the deflections produced by 
the shearing stresses are found to be 

3 q WI = Fj Zh (a 2 - r”) 

and at the center of the plate, 

(4 

The lateral pressure acting on the plate produces a positive curvature, 
convex downward, similar to that which occurs in a uniformly loaded 
beam.2 The pressure q per unit area produces a radial elongation of 
vq/E at the upper surface of the plate. At the middle surface of the 
plate this elongation is vq/2E, and at the bottom of the plate it is zero. 
Assuming a straight-line relation to hold, an approximate value of the 
radius of curvature R can be found from the equation 

h ;; = 2R 

from which 
1 

%? - 2:E 
-~ 

and the negative deflection is 

(e> 

1 Timoshenko and Goodier, op. cit., p. 351. 

*See ibid., p. 43. 
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Adding Eqs. (c) and (e) to Eq. (67), a more exact expression for deflec- 
tion is fomld to be 

,(fl = -!L_ (a’ - ).2) 5 + v qh2 3fv ~.._ 
64D 

r+y a2 - r2 ’ 80 6(1 - v") 
(a2 - 9) 

At the cent,er of the plat,e this becomes 

(S? 

The second term in Eq. (f) represents the correct’ion for shearing stresses 
and lateral pressure. This correction is seen to be small when the ratio 
of the thickness of the plate to its radius is small. The value of this 
correction given by the exact solution is* 

qa4 2 8 + v + v2 h” 
64lI 5 1 - vz iz2 (9) 

For v = 0.3 the exact value is about 20 per cent less than that given by 
Eq. (j). 

In a uniformly loaded circular plate with clamped edges the negative 
deflection w2 due to pressure cannot occur, and hence only the deflection 
w1 due to shear need be considered. Adding this deflection to Eq. (62), 
we obtain as a more accurate value of the deflection 

iJJ = gD 
[ 

(($2 - 7-72 + f!& (a2 - r2)] 

It is interestming to note that this coincides with the exact solution.2 
Consider next the deflections produced by shearing stresses in the 

annular plate loaded with shearing forces uniformly distributed along 
the inner edgc: of the plate as shown in Fig. 32. The maximum shearing 
stress at a distance r from the wntcr is 

where P denotes tjhe t,otnl shear load. The corresponding shear strain is3 

dw 3 I’ ~ = - - .-~ 
d,r 2 2arhG (ii 

Integrating, we obtain for the deflection produced hy shear 

Li) 

1 see Love, op. cit., p. 481. 
‘2 see ihid., p. 485. 
3 If the plate has no hole, the right-hand side of Eq. (i) should be multiplied by a 

factor (1 - y)/(l + v), in accordance with the result (t) given below. 
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This deflection must be added to Eq. (k) on page 60 to get a more 
accurate value of the deflection of the plate shown in Fig. 32. When 
the radius 0 of the hole is very small, the expression for the total deflec- 
tion becomes 

(k) 

The deflecCon at the edge of the hole is 

The second term in this expression represents the correction due to shear. 
It increases indefinitely as b approaches zero, as a consequence of our 
assumption that the load P is always finite. Thus when 0 approaches 
zero, the corresponding shearing stress and shearing strain become 
infinitely large. 

The term in Eq. (1) which represents the correction for shear cannot bc applied to a 
plate without a hole. The correction for a plate without a hole may be expected to bc 
somewhat smaller because of the wedging effect produced by the concentrated load P 
applied at the center of the upper surface of the plate. Imagine that the central 
portion of the plate is removed by means of a cylindrical section of small radius b and 
that its action on the remainder of the plate is replaced by vertical shearing forces 
equivalent to P and by radial forces 23 representing the wedging effect of the load and 

FIN. 46 

distributed along the upper edge of the hole as shown in Fig. 45. It is evident that the 
latter forces produce stretching of the middle surface of the plate together with some 
deflection of the plate in the upward direction. This indicates that we must decrease 
the correction term in expression (k) to make it apply to a plate without a hole. To 
get an idea of the magnitude of the radial forces S, let us consider the plate under the 
two loading conditions shown in Fig. 46. In the first cast the plate is compressed by 
two equal and opposite forces P acting along the axis of symmetry z. In the second 
case the plate is subjected to uniform compression in its plane by a pressure p uni- 
formly distributed over the cylindrical surface bounding the plate As a result of 
lateral expansion these pressures produce an increase of the thickness of thr plate 1~~ 
the amount 
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We can now obtain from this expression the increase Ar in the radius r of the plate due 
to the action of the forces P (Fig. 46~) by applying the reciprocal theorem to the two 
conditions of loading shown in Fig. 46. This gives 

P Ah = 2arhp Ar 

from which 

PAh 2v P 
Ar = ~ - 

2nrhp = i? 27~ (ml 

Let us compare this radial expansion with the radial expansion produced in a thick- 
walled cylinder by an internal pressure pi. If the inner radius b of the cylinder is very 
small compared with the outer radius T, the increase in the outer radius by Lame’s 
formula,’ is 

1 + Y pilJ2 &- =-- 
E T 

(n, 

Comparing expressions (m) and (n), we conclude that t,he radial expansion which the 
forces I’ in Fig. 46a produce in the plate has the same magnitude as the radial expansion 
produced in a plate with a small cylindrical hole at the center (Fig. 45) by internal 
pressure pi whose magnitude is given by the equation 

From this we obtain 

2vr 1 + Y p;b2 -= -- 
E27r7 E r 

VP 
pi = (1 + .)7rz9 (0) 

Returning to the case of one concentrated force at the center of the upper surface of 
the plate, the action of which is illustrated by Fig. 45, we conclude that the force S per 
unit length of the circumference of the hole must be equal to the pressure pih/2. 
Using the value of pi from Eq. (o), we obtain 

vPh s=-- 
2(1 + v)?rb2 

These forces applied in the upper plane of the plate produce upward deflections w,, 
t,hc magnitude of which is found by suhstitriting 

in Eq. (73) and ncglerting ?I* in comparison with u2. In this manner we obtain 

vPh2 u2 - 7.2 vPh2 

w1 = - S?r(l + V)2D 
- - 

u2 
log E 

4(1 - +I) T (P) 

Adding this to expression (li), we obtain the following more accurate formula for the 
deflect,ion of a plate without a hole and carrying a load P concentrated at the center 
of the upper surface of the plate: 

1 See S. Timoshenko, “Strength of Materials,” part II, 3d cd., p. 210, 1956. 
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r Ph2 
(a2 - r2) + T-2 log - + 

a 1 %r(l + v)D 
log ; 

vPh2 - a2 ((J 
S?r(l + v)~D a2 

This equation can be used to calculate the dcflcction of all points of the plate that 
are not very close to the point of application of the load. When T is of the same order 
of magnitude as the thickness of the plate, Eq. (q) is no longer applicable; and to 
obtain a satisfactory solution the central portion of the plate must be considered, as 
explained in the preceding article. We can get an approximate value of the dcflcction 
of this central portion considered as a plate of small radius b by adding the deflection 
due to local disturbance in stress distribution near the point of application of the load 
to the deflection given by the elementary theory.’ The deflection due to local dis- 
turbance near the center is affected very little by the conditions at the edge of the 
plate and hence can be evaluated approximately by means of the curves in Fig. 44. 
The dashed-line curve in this figure is obtained by using Eq. (92). The additional 
deflections due to local stress disturbance are equal to the differences between the 
ordinates of the full lines and those of the dashed line. 

As an example, consider a plate the radius of the inner portion of which is 21 = 5h. 
The deflection of the inner portion calculated from Eq. (92) and taken as unity in 
Fig. 44 is 

Using the curve h/a = 0.2 in Fig. 44, the additional deflection due to local stress 
disturbance is 

82 = 0.2161 = 0.21 & (5h)’ 

If we consider a plate for which b = 2.5h and use the curve for h/a = 0.4 in Fig. 44, 
we obtain 

62 = 0.81 gS (2.5h)2 
7r 

which differs only slightly from that given in expression (r) for b = 5h. It will be 
unsatisfactory to take b smaller than 2.5h, since for smaller radii the edge condition 
of the thick plate becomes of import,ance a.nd the curves in Fig. 44, calculated for a 
built-in edge, may not be accurate enough for our case. 

Finally, to obtain the deflection of the plate under the load we calculate the deflec- 
tion by means of Eq. (y), pubting r = 0 in the first term and r = b = 2.511, in both 
other terms. To this d&&ion we add the deflection of the central portion of the 
plate due to the shear forces as given by expression (s). 

In the particular case of Y = 0.3 the deflections of simply support,cd circular plntcs 
may also be obtained by a simple superposition of the curves plotted in Fig. 44,* with 
the deflection 

Pla= - 9‘) 

8?rD(l + Y) 

1 In the case under consideration t,his deflection can be calculated by using the first 
term in expression (q) and substituting b for a. 

* Figure 44 was calculated for Y = 0.3. 



78 THEORY OF PLATJG ANU SHELLS 

due to the pure bending by radial moments P/4, applied along the boundary of the 
plate. 

It, should be noted also that, for small values of the ratio r/n, the effect of the 
shearing force P/2w upon the deflection is represented mainly by the second term 
on the right-hand side of Eq. (y). To this term corresponds a slope 

tlw, 31-v P 
(jy = - 2 1 + Y 2arhG 

(II 

Comparing t.his result with the expression (i), we conclude that the factor 

3 1 - Y 

“=21+- 
(10 v 

if introduced into Eq. (i) instead of X- = Q, would give a more accurate value of the 
deformation due to shear in the casr of a plat*e without a hole. 

All preceding considerations arc applicable only to circular plates bent to a surface 
of revolution. A more genrral theory of bending taking into account the effect of the 
shear forces on the deformation of the plat,e will ho given in Arts. 26 and 39. 



CHAPTER 4 

SMALL DEFLECTIONS OF LATERALLY LOADED PLATES 

21. The Differential Equation of the Deflection Surface. We assume 
that the load acting on a plate is normal to its surface and that, t’he 
deflections are small in comparison with the thickness of the plate (see 
Art. 13). At the boundary we assume that the edges of the plate art: 
free to move in the plane of the plate; thus the reactive forces at the 
edges are normal to the plate. With these assumptions we can neglect, 
any strain in the middle plane of the plate during bending. Taking, as 

FIG. 47 

before (see Art. lo), the coordinate axes .C and v in the middle plane of 
the plat’e rind the z axis perpendicular to t,hat plane, let us consider an 
element cut out of the plate by two pairs of planes parallel t,o the zx and 
gz planes! as shown in Fig. 47. In addition to t’he bending moments 41, 
and X, and the twisting moments M,, which were considered in the pure 
bending of a plate (see Art. lo), there are vert,ical shearing forces’ acting 
on the sides of the element. The magnitudes of t,hwe &caring forces 
per unit length parallel to the y and .r axes we denot,c by Qz tl.nd Q!,, 
respect ivcly, so that 

Since the moments and the shearing forces are functions of the coordi- 
nates x and y, we must, in discussing the conditions of equilibrium of the 
element, take into consideration the sma,ll changes of these quantities 
when the coordinates x and y change by the small quantit,ies dx and dy. 

1 There will be no horizontxl shearing forces and no forces normal to the sides of thr 
element, since the strain of the middle plane of the plate is assumed negligitrlr. 

79 
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The middle plane of the element is represented in Fig. 48~ and b, and the 
directions in which the moments and forces are taken as positive are 
indicated. 

We must also consider the load distributed over the upper surface of 
the plate. The intensity of this load we denote by g, so that the load 
acting on the element1 is p dz CEy. 

FIG. 48 

Projecting all the forces acting on the element onto the z axis we obtain 
the following equation of equilibrium : 

from which 

a,Q$ dx &y + $$I dy dx + p dx dy = 0 

Taking moments of all the forces acting on the element with respect to 
the x axis, we obtain the equation of equilibrium 

l3M 
-e,“y dx dy - 

tJM 
2 dy dx + Q, dx dy = 0 
ay 

(b) 

1 Since the stress component cr is neglected, we actually are not able to apply the 
load on the upper or on the lower surface of the plate. Thus, every transverse single 
load considered in the thin-plate theory is merely a discontinuity in the magnitude of 
the shearing forces, which vary according to the parabolic law through the thickness 
of the plate. Likewise, the weight of the plate can be included in the load p without 
affecting the accuracy of the result. If the effect of the surface load becomes of 
special interest, thick-plate theory has to be used (see Art. 19). 
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The moment of the load CJ and the moment due to change in the force Q, 
are neglected in this equation, since they are small quantities of a higher 
order than those retained. After simplification, Eq. (6) becomes 

In the same manner, by taking moments with respect to the 2~ axis, me 
obtain 

(4 

Since there are no forces in the x and 1/ directions and no moments 
with respect to the x axis, the three equations (9(i)), (c), and (d) com- 
pletely define the equilibrium of the element. Let us eliminate the 
shearing forces QZ and Q, from these equations by determining them from 
Eqs. (c) and (d) and substituting into Eq. (99). In this manner we obtain 

Observing that df,, = -Xz3,, by virtue of 7=!, = 71/z) we finally represent 
the equation of equilibrium (e) in the following form: 

To represent this equation in terms of the deflections w OC t]hc plate, 
we make the assumption here that expressions (al) and (X3), devclopcd 
for the cnsc of pure bending, can be used also in the case of laterally 
loaded plates. This assumption is cyuivnlcnt to neglecting the eilfect on 
bending of the shearing forces Q, and Q, and the compressive stress c3 
produced by the load Q. We have already used such an nsslunption in 
the previous chapter and have seen that the errnrs in deflections obtained 
in this way are small provided the thickness of the plate is small in com- 
parison with the dimensions of the plate in its plane. An approximate 
theory of bending of thin elastic plates, taking into account the effect of 
shearing forces on the deformation, will be given in Art. 39, and severn! 
examples of exact solutions of bending problems of plates will be dis- 
cussed in Art. 26. 

Using z and y directions instead of n and t, which were used in Eqs. 
(41) and (X3), w obtain 

M,= -II ( ;-;+v$y M,= --II a220 ak -+vy ag ax- ) 
(101) 

M,, = --My, = D(1 - v) & 
. I (102) 
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Substituting these expressions in Eq. (loo), we obtain1 

(103) 

This latter equation can also be written in the symbolic form 

where 

It is seen that the problem of bending of plates by a lateral load q 
reduces to the integration of Eq. (103). If, for a particular case, a solu- 
tion of this equation is found that satisfies the conditions at the bounda- 
ries of the plate, the bending and twisting moments can be calculated 
from Eqs. (101) and (102). The corresponding normal and shearing 
stresses are found from Eq. (44) and the expression 

Equations (c) and (d) are used to determine the shearing forces QZ and 
Q,, from which 

or, using the symbolic form, 

a = -D& (Aw) ‘& = - n $ (Aw) 

(IO(i) 

(107) 

The shearing stresses rzz and 71/z can now be determined by assuming 
that they are distributed across the thickness of the plate according to 
t)he parabolic 1aw.2 Then 

i This equation was obtained by Lagrange in 1811, when he mm examining the 
memoir presented to the French Academy of Science by Sophie Gerrnain. The 
history of the development of this equation is given in I. Todhunter and Ii. Pearson, 
“History of the Theory of Elasticity,” vol. 1, pp. 147, 247, 348, and vol. 2, part 1, p. 
263. See also the note by Saint Venant to Art. 73 on page 689 of the French transla- 
tion of “ThEorie de l’elasticite des corps solides,” by Clebsch, Paris, 1883. 

2 It will bc shown in Art. 26 that in certain cases this assumption is in agreement 
with the exact theory of bending of plates. 
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It is seen that the stresses in a plate can be calculated provided the 
deflection surface for a given load distribution and for given boundary 
conditions is determined by integration of Eq. (103). 

22. Boundary Conditions. We begin the discussion of boundary con- 
ditions with the case of a rectangular plate and assume that the x and 
11 axes are taken parallel to the sides of the plate. 

Built-in l3dge. If the edge of a plate is built in, the deflection along 
this edge is zero, and the tangent plane to the deflected middle surface 
along this edge coincides with the initial position of the middle plane of 
the plate. Assuming the built-in edge to be given by x = a, the bound- 
ary conditions are 

(.w)M, = 0 ( ) g z== - 0 (109) 

Simply Supported Edge. If the edge z = a of the plate is simply sup- 
ported, the deflection w along this edge must be zero. At the same time 
this edge can rotate freely with respect to the edge line; i.e., there are no 
bending moments M, along this edge. This 
kind of support is represented in Fig. 49. The 
analytical expressions for the boundary condi- 
tions in this case are 

(.lU) I;-<l = 0 
(. 

$+v$ 
> 

= 0 (110) 
2=a FIG. 49 

Observing that i12~/dy2 must vanish together with w along the rectilinear 
edge IC = a, we find that the second of the conditions (110) can be 
rewritten as @w/a:? = 0 or also Aw = 0. Equations (110) are there- 
fore equivalent to the equations 

(w),,, = 0 (Aw).,, = 0 (111) 

which do not involve Poisson’s ratio V. 
Free Edge. If an edge of a plate, say the edge x = a (Fig. SO), is 

entirely free, it is natural to assume that along this edge there are no 
bending and t.wisting moments and also no vertical shearing forces, i.e., 
that 

(31,),=, = 0 (Mq,),-, = 0 (oz,r-~,L = 0 

The boundary conditions for a free edge were expressed by Poisson’ in 
this form. But later on, Kirchhoff2 proved that three boundary con- 
ditions are too many and that two conditions are sufficient for the com- 
plete determination of the deflections w satisfying Eq. (103). He showed 

1 See the discussion of this subject in Todhunter and Pearson, op. cit., vol. 1, p. 250, 
and in Saint Vcnnnt, lot. hi. 

2 StT! ./. Crells, vol. .40, 1’. 51, 1850. 
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also that the two requirements of Poisson dealing lvith the twisting 
moment M,, and with the shearing force Qz must he replaced by one 
boundary condition. The physical significance of this reduction in the 
number of boundary conditions has been explained by Kelvin and T:rit.1 
These authors point out that the bending of a plate will not be changed 
if the horizontal forces giving the twisting couple M,, dy acting on an 
element of the length dy of the edge x = a are replaced by two vertical 
forces of magnitude M,, and dy apart, as shown in Fig. 50. Such a 
replacement does not change the magnitude of twisting moments and 
produces only local changes in the stress distribution at the edge of the 
plate, leaving the stress condition of 

-aMxy 
ay Oly 

Y 8!!?9!dy 
ay 

FIG. 50 

the rest of the plate unchanged. 
We have already discussed a par- 
ticular cast of such a trnnsformn- 
tion of the boundary force system 
in considering pure bending of a 
plate to an snticlnstic surface (see 
Art. 11). Proceeding with the 
foregoing-replacement of twisting 
couples along the edge of the plate 
and considering two adjacent ele- 
ments of the edge (Fig. 50), we 

moments M,, is statically equiva- find that the distribution of twisGng 
lent to a distribution of shearing forces of the intensity 

Hence the joint requirement regarding twisting moment M,, and shear- 
ing force QZ along the free edge -1: = a becomes 

V, = (QL - %)zEo = 0 (a) 

Substituting for Qz and X,, their expressions (106) and (102), WC finally 
obtain for a free cdgc .C = a: 

The condition that bending moments along the free edge arc zero requires 

1 See “Trmtise of N,zt,urd Philosophy,” vol. 1, part 2, p. 188, 1883. Independ- 

ently the same question was explained by Boussinrsq, J. Afuth., SW. 2, vol. 16, pp. 
125-274, 1871; ser. 3, vol. 5, pp. 329-344, Paris, 1879. 
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Equations (112) and (113) represent the two necessary boundary con- 
ditions along the free edge x = u of the plate. 

Transforming the twisting couples as explained in the foregoing dis- 
cussion and as shown in Fig. 50, we obtain not only shearing forces Qa dis- 
tributed along the edge x = a but 
also two concentrated forces at the 
ends of that edge, as indicated in 
Fig. 51. The magnitudes of these 
forces are equal to the magnitudes 
of the twisting couple’ MZz, at the 
corresponding corners of the plate. 
Making the analogous transforma- 

FIG. 51 

tion of twisting couples M,, along the edge y = 0, we shall find that in 
this case again, in addition to the distributed shearing forces I;):, there 
will be concentrated forces M,, at the corners. This indicates that a 
rectangular plate supported in some way along the edges and loaded 
laterally will usually produce not only reactions distributed along the 
boundary but also concentrated reactions at the corners. 

Regarding the directions of these concentrated reactions, a conclusion 
can be drawn if the general shape of the deflection surface is known. 
Take, for example, a uniformly loaded square plate simply supported 
along the edges. The general shape of the deflection surface is indicated 
in Fig. 52~ by dashed lines representing the section of the middle surface 

of the plate by planes parallel to the I%X 
and yz coordinate planes. Considering 
these lines, it may be seen that near the 
corner A the derivative awlax, repre- 
senting the slope of the deflection sur- 
face in the x direction, is negative and 
decreases numerically with increasing y. 
Hence d2w/ax ay is positive at the cor- 
ner A. From Eq. (102) we conclude 
that M,, is positive and M,, is negative 

FIG. 5% 
at that corner. From this and from 
the directions of M,, and ill,, in Fig. 

48~ it follows that both concentrated forces, indicated at the point z = a, 
y = b in Fig. 51, have a downward direction. From symmetry we conclude 
also that the forces have the same magnitude and direction at all corners 
of the plate. Hence the conditions are as indicated in Fig. 52b, in which 

1 The couple AI,, is ,z moment per unit length and has the dimension of a force. 
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It can be seen that, when a square plate is uniformly loaded, the 
corners in general have a tendency to rise, and this is prevented by the 
concentrated reactions at the corners, as indicated in the figure. 

r------ 
Elastically Supported and Elasti- ---._ a ..-- 

tally Built-in Edge. If the edge x = a 
-X of a recbnngular plate is rigidly joined 

to a supporting beam (Fig. 53), the 
deflection along this edge is not zero 

/ 
; ‘7. and is equal to the deflection of the 

FIG. 53 beam. Also, rotation of the edge is 
equal to the twisting of the beam. 

Let B be the flexural and C the torsional rigidity of the beam. The pres- 
sure in the x direction transmitted from the plate to the supportSing beam, 
from Eq. (a), is 

and the differential equation of the deflection curve of the beam is 

* * 

(  > ay4 z=a 

-I)& g+(a-,)?!! 

[ I 
dy” 2-a 

(114) 

This equation represents one of the two boundary conditions of the plate 
along the edge x = a. 

To obtain the second condition, the twisting of the beam should be 
considered. The angle of rotation1 of any cross section of the beam is 
- (awlax),=,, and the rate of change of this an- 
gle along the edge is X 

a2w - 

C-------J ax ay z-@. 

Hence the twisting moment in the beam is 
--c(ak~/aX a~/),,,. This moment varies along Y 
the edge, since the plate, rigidly connected with 
the beam, kansmits continuously distributed 
twisting moments to the beam. The magni- 
tude of these applied moments per unit length FIG. 54 
is equal and opposite to the bending moments 
M, in the plate. Hence, from a consideration of the rotational equilib- 
rium of an element of the beam, we obtain 

-ca 2% 
( ) ay axay z=Q = - (Mz>.-a 

1 The right-hand-screw rule is used for the sign of the angle. 
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or, substituting for M, its expression (lOl), 

87 

(115) 

This is the second boundary condition at the edge x = a of the plate. 
In the case of a plate with a curvilinear boundary (Fig. 54), we take 

at a point A of the edge the coordinate axes in the direction of the 
tangent t and the normal n as shown in the figure. The bending and 
twisting moments at that point are 

111, = 
I 

h/2 
-h/2 

zu, dx M,t = - 

Using for the stress components un and 7nt the known expressions1 

gn = ur co9 a + ul, sin2 o( + 2rzu sin LY cos a 
7nt = r,,(cos2 a - sin2 CY) + (fl, - 0,) sin a: cos (r 

we can represent expressions (b) in the following form: 

M, -= ill, co9 a + M, sin3 a: - 2M,, sin (Y cos OL 
Mnt = M,,(cos2 a - sin* CX) + (M, - M,) sin LY cos a (cl 

The shearing force Qn at point. A of the boundary will be found from the 
equation of equilibrium of an element of the plate shown in Fig. 54b, 
from which 

Qn ds = Qz dy - Q, dx 
or Q,, = QZ cos a + Q, sin (Y (4 

Having expressions (c) and (d), the boundary condition in each particular 
case can be written without difficulty. 

If the curvilinear edge of the plate is built in, we have for such an edge 

In the case of a simply supported edge we have 

w=o M, = 0 (f) 

Substituting for ill,‘ its expression from the first of equations (c) and . 
using liiqs. (101) and (102), we can represent the boundary conditions (f) 
in terms of w and its derivatives. 

If the edge of a plate is free, the boundary conditions are 

M, = 0 v, = Qn - ae$ = 0 

1 The z and 2/ directions are not the principal directions as in the case of pure bend- 
ing; hence the expressions for IIf, xnd M,t will be different from those given by Eqs. 
(30) and (40). 
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where the term -dM,t/ds is obtained in the manner shown in Fig. 50 
and represents the portion of the edge reaction which is due to the dis- 
tribution along the edge of the twisting moment Mnt. Substituting 
expressions (c) and (d) for M,, Mnt, and Qn and using Eys. (lOl), (102), 
(106), and (107), we can represent boundary conditions (g) in the follow- 
ing form: 

Y Aw + (1 - v) 

a 

where, as before, 

A,=$+$ 

Another method of derivation of these conditions xvi11 be shown in the 
next article. 

23. Alternative Method of Derivation of the Boundary Conditions. The differential 
equation (104) of the deflection surface of a plate and the boundary conditions can be 
obtained by using the principle of virtual displacements tog&her with the expression 
for the strain energy of a bent plate.’ Since the effect of shearing stress on the dcflec- 
tions was entirely neglected in the derivation of Eq. (l(M), the corresponding expres- 
sion for the strain energy will contain only terms depending on the action of bending 
and tGsting moments as in the case of pure bending discussed in Art. 12. 
Eq. (48) we obtain for the strain energy in an infinitesimal clement 

Using 

The tot,al strain energy of t.he plate is then obt,ained by integration as follows: 

where the integration is extended over the entire surface of the plate. 
Applying the principle of virtual displacements, we assume that an infinitely small 

variation 6w of the deflections w of the plate is produced. Then the corresponding 
change in the strain energy of the plate must be equal to the work done by the external 

’ forces during the assumed virtual displacement,. In calculating this work WC must 
consider not only tbc lateral load 4 distributed over the surface of the plate but also 
the bending moments M,, and transverse forces Qn - (aM,t/&) distributed along the 
boundary of the plate. Hence the general equation, given by the principle of virtual 
displacements, is 

1 This is the method by which the boundary conditions were satisfactorily estab- 
lished for the first time; see G. Kirchhoff in J. CreZZe, vol. 40, 1850, and also his 
Vorlesungen iiber Mathematische Physik, JF’achanik, p. 4.50, 1877. Lord Kelvin took 
an int,erest in Kirchhoff’s derivations and spoke with llelrnholtz about them; see the 
biography of Kelvin by Sylvanus Thompson, vol. 1, p. 432. 
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i# = q &w dx dy - M~~ds+/+?,a-~)‘~wds (b) 

The first integral on the right-hand side of this equation represents the work of the 
lateral load during the displacement 6w. The second, extended along the boundary 
of the plate, represents the work of the bending moments due to the rotation a(sw)/& 
of the edge of the plate. The minus sign follows from the directions chosen for M, and 
the normal 12 indicated in Fig. 54. The third integral represents the work of the 
transverse forces applied along the edge of the plate. 

In the calculation of the variation 6V of the strain energy of the plate we use certain 
transformations which will be shown in detail for the first term of expression (117). 
The small variation of this term is 

In the first two terms after the last equality sign in expression (c) the double integra- 
tion can be replaced by simple integrals if we remember that for any function F of z 
and 1~ the following formulas hold: 

sI‘$dxdy = /i’cosads 

//$dxdy = JPsinads 

In these expressions the simple integrals are extended along the boundary, and DI is the 
angle between the outer normal and the z axis, as shown in Fig. 54. Using the first 
of formulas (d), we can rcprcscnt expression (c) as follows: 

8/--(~)=dxdy=2//~6wdxdy+2/($~ -~+msad, (e) 

.!dvancing along the boundary in the direction shown in Fig. 54, we have 

With this transformation, expression (e) becomes 

8//(g)‘dxdy = 2//$6wdxdy 

c36w . 
cos a: - y sm a co8 01 ds - 2 

s 
g 6w cos a ds (f) 

Integrating by parts, we have 

a%0 s- a 6w 
sin a cos (Y ~ ds = 

PW 
- sin OL cos a Bw 

I / 
- 

8x2 as a22 
6w ds 
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The first term on the right-hand side of this expression is zero, since we are integrating 
along the closed boundary of the plate. Thus me obtain 

J’ a% . a 6~ -- ax2 sm CY cos OL x ds = - 620 as 

Substituting this result in Eq. (f), we finally obtain the variation of the first term in the 
,Lsprc-ssion for the strain energy in the following form: 

Transforming in a similar manner the variations of the other terms of expression (117), 
ivc obtain 

-2 2 
/[ ( 

*sinacosa)+$sinu]6wds (h) 
as a2/* 

11 

a2w a2w 
- - dx dy = 2 

/I/ 

a410 
6 

a22 dy2 
__ 6wdxdy 
asap 

it'w 
+ iiip .I( 

cos2a +$!sinzn)zda - / (&sinn+$$cosa 

-i-:$2 -z)siu,cos,]) &wds (i) 

6// (s)‘dxdy = ?jl$f&tudxdq 

+2 * 
J 

sin 01 cos 012 ds + 
a a%9 

ax ay /I-[- as ax ag 
(sin2 (Y - cos2 a) 1 

ak a370 
- __ cos a - ~ sin cy 

ax ap a22 ay 
&II ds (j] 

By using these formulas the variation of the potential energy will be rcprcscnted in the 
follonk~g form: 

61’=D AAw bw dx dy 

+/[(I -~)($c0s2a+2~sinczcosa+$sinza)+~Aw]~ds 

+I ((I-~)~[(~-~)sin~cosa-+&(c0s2~-sinaa)] 

Substituting this expression in Eq. (b) and remembering that, 6w and a(sw)/an are 
arbitrary small quantities satisfying the boundary conditions, ~‘1: conclude that Eq. (0) 
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will be satisfied only if the following three equations are satisfied: 

I/ ( DAAW - q) SW dx dy = 0 

+ M,, “t ds = 0 (I) 

The first of these equations will bc satisfied only if in every point of t,he middle surface 
of the plate we have 

DAAW - 9 = 0 

i.e., the differential equatjion (104) of the dellcction surface of the plate. Equations 
(1) and (~1) give the boundary conditions. 

If the plat,c is built in along the edge, 6w and a(6w)/an are zero along the edge; and 
Eqs. (I) and (nr) arc satisfied. In the case of a simply supported edge, 6w = 0 and 
M, = 0. Hence Eq. (?I&) is satisfied, and Eq. (I) will be satisfied if 

(1 - v) 
a%0 
-- cos2 a! + 2 

Pw 
axa 

~ sm CY cos 01 + $9 sin2 01 
ax ?!I 

+ Y Aw = 0 (n) 

In the particular case of a rectilinear edge parallel to the y axis, a: = 0; and we obtain 
from Eq. (n) 

azw 
322+y$=o 

as it should be for a simply supported edge. 
If the edge of a plate is entirely free, the quantity 6w and a(aw)/an in Eqs. (I) and 

(VL) are arbitrary; furthermore, M,, = 0 and Qn - (aJf,J&) = 0. Hence, from 
Eqs. (I) and (vz), for a free edge we have 

sin 01 cos 01 - ------ (cosz 01 - sin’ ~7) 

cY=o 

These conditions are in agreement with Eqs. (116) which were obtained previously 
(see page 88). In the particular case of a free rectilinear edge parallel to t)hc u axis, 
a = 0, and we obtain 

$J -f- (2 - v) e2 = 0 

These equations coincide with Eqs. (112) and (113) obtained previously. 
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In the case when given moments M, and transverse forces Qn - (a&f,,/&) are dis- 
tributed along the edge of a plate, the corresponding boundary conditions again can 
be easily obtained by using Eqs. (I) and (m). 

24. Reduction of the Problem of Bending of a Plate to That of Deflec- 
tion of a Membrane. There are casts in which it is advantageous to 
replace the differential equation (103) of the fourth order developed for 
a plate by two equations of the second order which represent the deflec- 
tions of a membrane.’ For this purpose we use form (104) of this 
equation : 

($+$)($+$)=s (a! 

and observe that by adding together the two expressions (101) for bend- 
ing moments (see page 81) we have 

Introducing a new notation 

the two Eqs. (a) and (b) can be represented in the following form: 

(119) 

(120) 

Both these equations are of the same kind as that obtained for a uni- 
formly stretched and laterally loaded membrane.2 

The solution of these equations is very much simplified in the case of 
a simply supported plate of polygonal shape, in Tvhich case along each 

rectilinear portion of the boundary we have ~2~/ds2 = 0 since w = 0 at 
the boundary. Observing that M, = 0 at a simply supported edge, we 
conclude also that d2w/&a2 = 0 at the boundary. Hence me have [see 
Es. (34)l 

at the boundary in accordance with the second of the equations (111). 
It is seen that the solution of the plate problem reduces in this case to 
the integration of the two equations (120) in succession. We begin with 

* This method of investigating the bending of plates was introduced by H. Marcus 
in his book “Die Theoric elastischer Gewebe,” 2d ed., p. 12, Berlin, 1932. 

2 See S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2d ed., p. 269, 1951. 
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the first of these equations and find a solution satisfying the condition 
111 = 0 at the b0undsry.l Substituting this solution in the second equa- 
tion and integrating it, we find the deflections w. Both problems are of 
the same kind as the problem of the deflection of a uniformly stretched 
and laterally loaded membrane having zero deflectlion at the boundary. 
This latter problem is much simpler than the plate problem, and it can 
always be solved with sufficient accuracy by using an approximate 
method of integration such as Ritz’s or the method of finite differences. 
Some examples of the application of these latter methods will be dis- 
cussed later (see Arts. 80 and 83). Several applications of Ritz’s method 
are given in discussing torsional problems.2 

A simply supported plate of polygonal shape, bent by moments M,, 
uniformly distributed along the boundary, is another simple case of the 
application of Eqs. (120). Equations (120) in such a case become 

!%!+??&-g 

Along a rectilinear edge we have again a2w/&+ = 0. Hence 

(121) 

M,= -~i!%$ 

and we have at the boundary 

This boundary condition and the first of the equations (121) will be 
satisfied if we take for the quantity M the constant value M = M, 
at all points of the plate, which means that the sum of the bending 
moments M, and M, remains constant over the entire surface of the 
plate. The deflections of the plate will then be found from the second 
of the equations (121),3 which becomes 

It may be concluded from this that, in the case of bending of a simply 
supported polygonal plate by moments M, uniformly distributed along 
the boundary, the deflection surface of the plate is the same as that of 

1 Note that if the plate is not of a polygonal shape, A4 generally does not vanish at 
the boundary when AT,, = 0. 

2 See Timoshenko and Goodier, op. cit., p. 280. 
3 This 1~:~s shown first by S. Woinowsky-Kriegcr, Ingr.-Arch., vol. 4, p. 254, 1933. 
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a uniformly stretched membrane with a uniformly distributed load. 
There are many cases for which the solutions of the membrane problem 
are known. These can be immediately applied in discussing the corre- 

FIG. 55 

----x 

sponding plate problems. 
Take, for example, a simply sup- 

ported equilateral triangular plate 
(Fig. 55) bent by moments M, 
uniformly distributed along the 
boundary. The deflection surface 
of the plate is the same as that of 
a uniformly stretched and uni- 
formly loaded membrane. The 
latter can be easily obtained ex- 
perimentally by stretching a soap 
film on the triangular bound;ary 
and loading it uniformly by air 
pressure.’ 

The analytical expression of the deflection surface is also comparatively 
simple in this case. We take the product of the left-hand sides of the 
equations of the three sides of the triangle: 

x3 - 3y2x = _ 4x2 + y2) + 4u3 -- 
3 3 3 .27 

This expression evidently becomes zero at the boundary. Hence the 
boundary condition w = 0 for the membrane is satisfied if we take for 
deflections the expression 

a(x2 + y”) 4a3 
3 + 3.27 -1 

(e> 

where N is a constant factor the magnitude of which we choose in such a 
manner as to satisfy Eq. (~2). In this way we obtain the required solution: 

dl 
w  = -11 

4 
4aD 

x3 - 3$x - a(x2 + ,lJ”) + z a3 
I 

(f) 

Substituting x = y = 0 in this expression, we obtain the deflection at the 
centroid of the triangle 

M,a2 
w” = 270 

1 Such experiments are used in solving torsional problems; see Timoshenko and 
Goodier, op. cit., p. 289. 
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The expressions for the bending and twisting moments, from Eqs. (101) 
and (102), are 

M 
M, = -L 

2 
l+v-(l-v)g 

I 

M, = A+ 1 + v + (1 - v) $ 
I 1 

M,,, = - 
3(1 - v)H,y 

2a 

(h) 

Shearing forces, from Eqs. (106) and (107), are 

Qz = Q, = 0 

Along the boundary, from Eq. (d) of Art. 22, the shearing force Qn = 0, 
and t,he bending moment is equal to M,. The twisting moment along 
the side BC (Fig. 55) from Eqs. (c) of Art. 22 is 

M 
nt 

= 3(1 - v)‘!V, 
4a 

(y - 43 XT) 

The vertical reactions acting on the plate along the side UC (Fig. 55) are 

(9 

From symmetry we conclude that the same uniformly distributed reac- 
tions also act along the two other sides of the plate. These forces are 
ba,lanced by the concentrated reactions at the corners of t,he triangular 
plate, the magnitude of which can be found as explained on page 85 and 
is equal to 

R = 2(M,t),=g,,u=o = (1 - v) v’$ ill,, (5 
The distribution of the reactive forces along the boundary is shown in 
Fig. 556. The maximum bending stresses are at the corners and act on 
the planes biscct’ing the angles. The magnitude of the corresponding 
bending moment, from Eqs. (h), is 

This method of determining the bending of simply supported polygonal 
plates by moments uniformly distributed along the boundary can be 
applied to the calculation of the thermal stresses produced in such plates 
by nonuniform heating. In discussing thermal stresses in clamped plates, 
it was shown in Art. 14 [Eq. (b)] that nonuniform heating produces uni- 
formly distributed bending moments along the boundary of the plate 
which prevent any bending of the plate. The magnitude of these 
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moments is1 

To obtain thermal stresses in the case of a simply supported plate we 
need only to superpose on the stresses produced in pure bending by the 
moments (I) the stresses that are produced in a plate with simply sup- 
ported edges by the bending moments -&D(l + v)/h uniformly dis- 
tributed along the boundary. The solution of the latter problem, as was 
already explained, can be obtained without much difficulty in the case of 
a plate of polygonal shape.2 

Take again, as an example, the equilateral triangular plate. If the 
edges of the plate are clamped, the bending moments due to nonuniform 
heating are 

M’ = M’ - atD(l + v> z Y h 

To find the bending moments ill, and M, for a simply supported plate 
we must superpose on the moments (m) the moments that will be obtained 
from Eqs. (h) by letting M, = -c&D(l + v)/h. In this way we finally 
obtain 

M = atD(l + v) &D(l + v) 
z h 2h I 

l+v-(l-V)$ 
I 

cdEh2 
= 3% 

I+$ 

j/J ll = awl + v) _ atD(l +..<I 1 + v + (1 _ v) g 
( ) 

h 2h [ a I 
adEh2 =-- 

24 ( > 
1-;3” 

CL 
M 

w 
= 1 atEh2y 

8 a 
* It is assumed that the upper surface of the plate is kept at a higher temperature 

than the lower one and that the plate thus has the tendency to bend convexly upward. 
2 See dissertation by J. L. Maulbetsch, J. Appl. Mechanics, vol. 2, p. 141, 1935. 
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The reactive forces can now be obtained from Eqs. (i) and (j) by substi- 
tution of III, = --&I(1 + v)/h. Hence we find 

R = d/5 atEh2 
12 

The results obtained for moments and reactive forces due to nonuniform 
heating are represented in Fig. 3.3~ and 6, respectively. 

26. Effect of Elastic Constants on the Magnitude of Bending Moments. It is seen 
from Eqs. (101) and (102) that the magnitude of the bending and twisting moments 
in a plate is considerably affected by the numerical value of Poisson’s ratio Y. On the 
other hand, it can be easily shown that in the case of a transverse load the magnitude 
of the quantity Dw is independent of both constants E and Y if the plate is either 
simply supported at rectilinear edges or clamped along some edges, whether rectilinear 
or not. 

Assuming such boundary conditions in any combination, let us consider the follou-- 
ing problem. Some values of the bending moments M, and M, being given numeri- 
cally for an assumed numerical value of P, these moments must be computed for a new 
value, say Y’, of the same elastic constant. Let ML and iVf; be the new values of the 
bending moments. Writing Eqs. (101) first for Y, then for Y’, eliminating from them 
the curvatures a220/axz and @w/dy2, and solving the resulting equations for ML and 
&‘l, we obtain 

ML = & [(I - w’)Mz + (v’ - v)My] 

M; = 1, [(I - vv’)M, + (v’ - v)nfz] 

(122) 

Thus ilf: and 2ML can be readily calculated if M, and ild, arc known. 
If the constant Y is implied in some of the given boundary conditions, as in the cast 

of a free edge [Eq. (112)], Eqs. (122) do not hold any more. 
If the plate is elastically supported or elastically cIarnped, the moments also depend 

on th,e flexural rigidity D of the plate with respect to the stiffness of its restraint. 
The thermal stresses, finally, are affected not only by all the above-mentioned 

factors, but also by the absolute value of the rigidity D of the plate. 
Average values of Y for some materials are given in Table 5. The last value of the 

table varies widely, depending on the age of the concrete, on the type of aggregate, 
u.nd on other fact0rs.l 

TABLE 5. AVERAGE VALUES OF POISSON’S RATIO Y 

Material Y 

Steel 0.30 
Aluminum . . . 0.30 
Glass. . 0.25 
Concrete. , . 0.15~0.25 

‘The German Code (DIN 4227) gives values of Y which approximately can be 

expressed by Y = dfT/350, f: being the compressive strength of concrete at 28 days 
in pounds per square inch. See also J. C. Simmons, Mug. of Concrete Research, vol. 
8, p. 39, 1956. 
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26. Exact Theory of Plates. The differential equation (103), which, together with 
the boundary conditions, defines the deflections of plates, was derived (see Art. 21) by 
neglecting the effect on bending of normal stresses gr and shearing stresses 7zr and rUZ. 
This means that in the derivation each thin layer of the plate parallel to the middle 
plane was considered to be in a state of plane stress in which only the stress components 
oZ, cII, and 7Zv may be different from zero. One of the simplest casts of this kind is that 
of pure bending. The dcfl&ion surface in this cast is a second-degree function in 5 
and ?/ [see Eq. (c), Art. 111 that satisfies Eq. (103). The stress components (TV, gII, 
and rZy are proportional to z and independent of z and 1~. 

There are other cases of bending in which a plane stress distribution takes place and 
Eq. (103) holds rigorously. Take, for example, a circular plate with a central circular 
hole bent by moments M, uniformly distributed along the boundary of the hole (Fig. 
57). Each thin layer of the plate cut out by two adjacent planes parallel to the middle 
plane is in the same stress condition as a thick-walled cylinder subjected to a uniform 
internal pressure or tension (Fig. 57b). The sum (rl + (it of the two principal stresses 
is constant in such a case,i and it can be concluded that the deformation of the layer in 
the 2 direction is also constant and does not interfere with the deformation of adjacent 
layers. Hence we have again a planar stress distribution, and Eq. (103) holds. 

Let us discuss now the general question regarding the shape of the deflection surface 
of a plate when bending results in a planar stress distribution. To answer this qucs- 
tion it is necessary to consider the three differential equations of equilibrium together 
with the six compatibility conditions. If body forces are neglected, these equat,ions 
are2 

in whicll 

and AI =g2 +$ +G2 

i See Timoshenko and Goodier, op. cit., p. 60. 
2 See ibid., pp. 229, 232. 
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Adding Eqs. (b), -we find that 

99 

(4 

i.e., the sum of the three normal stress components represents a harmonic function. 
In the case of a planar stress 7zz = 7212 = (T# = 0, and it can be concluded from the last 
two of the equations (c) arid tlic last of t,hc equations (b) that M/&z must be a constant, 
say p. Hence t,he general expression for 0 in the case of planar stress is 

8 = eo + @z (e) 

where 00 is a plane harmonic function, i.e., 

We see that in the case of planar stress the function 0 consists of two parts: e. 
independent of z and pz proportional to z. The first part does not vary through the 
thickness of the plate. It depends on deformation of the plate in its own plane and 
can be omitted if we are interested only in bending of plates. Thus we can take in our 
further discussion 

e = 62 (.f) 
Equations of equilibrium (a) will be satisfied in the case of a planar stress distribution 
if we take 

8% azp @v 
Oz = z? 

lsII = - 
as2 

Tzy = -- 
ax a~ 

(0) 

where ‘p is the stress function. Let us consider now the general forin of this functiou. 
Substituting expressions (g) in Eq. (f), we obtain 

Furthermore, from the first of the equations (b) we conclude that 

which, by using Eq. (It), can be put in the following forAm: 

a2 azrp 

$p ( > -G 
= 0 

In the same manner, from the second and the third of the cquat,ious (h). wt. find 

ii! 

From Eqs. (i) and (j) it follows that @p/&Z is a linear function of z and y. This func- 
t ion may be taken to be zero without affecting the magnitudes of the stress components 
given by expressions (g). In such a case the general expression of the stress function is 

$0 = (00 + CplZ 
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where 1p0 is a plane harmonic function and PI satisfies the equation 

z+f$, 

Since we are not interested in the deformations of plates in their plane, we can omit 
‘p,~ in our further discussion and take as a general expression for the stress function 

(0 = ‘PlZ (1) 

Substituting this in Eqs. (g), the stress components can now be calculated, and the 
displacements can be found from the equations 

For the displacements w perpendicular to the plate we obtain in this way’ 

w = - ‘$ (x” + y2 + YZ') + 1 'y p, 

and the deflection of the middle surface of the plate is 

The corresponding stress components, from Eqs. (g) and (I), are 

and the bending and twisting moments are h/2 h/2 
nr, = J’ gz& 2x?! z 

12 ap 
M, = s h” a$, 

lJyz dz = - - 
-h/2 -h/2 13 a.9 

M,, = - 
/ 

h/2 h3 a%ppl 
rzyz dz = - __ 

-h/2 12 ax a?/ 

(n) 

(0) 

For the curvatures and the twist of a plate, we find, from Eq. (n) 

from which, by using Eqs. (k) and (o), we obtain 

a2w 1 + y ah MZ, 
ax ay E axay (1 - v)D 

1 Several examples of calculating u, ZJ, and w from Qs. (m) are given in ibid. 
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From this analysis it may be concluded that, in the case of bending of plates resulting 
in a planar stress distribution, the deflections w [see Eq. (n)] rigorously satisfy Eq. 
(103) and also Eqs. (101) and (102) representing bending and twisting moments. If a 
solution of Eq. (k) is taken in the form of a function of the second degree in z and y, the 
deflection surface (n) is also of the second degree which represents the deflection for 

(b) 
FIG. 57 

pure bending. Generally we can conclude, from Eq. (k), that the deflection of the 
plate in the case of a planar stress distribution is the same as that of a uniformly 
stret,ched and uniformly loaded membrane. The plate shown in Fig. 57 represents a 
particular case of such bending, viz., the case for which the solution of Eq. (k), given 
in polar coordinates, is 

(01 = AT-2 + B log r + c 

where A, B, and C are constants that must be chosen so as to satisfy the boundary 
conditions. 

Plates of a polygonal shape simply supported and bent by moments uniformly 
distributed along the boundary (see Art. 24) represent another example of bending in 

FIG. 58 

which the deffection surface has a form satisfying Eq. (n), and Eqs. (lOl), (102), and 
(103) hold rigorously. In all these cases, as we may see from Eqs. (k) and (o), we have 

i.e., the sum of the bending moments in two perpendicular directions remains constant 
over the entire plate. 
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Let us consider now the case in which bending of a plate results in a generalized 
planar stress distribution. i.e., one in which the normal stress component nr is zero at 
all point,s of the plate and t,hc shearing stress components rzz and T,,,~ are zero on the 
surfaces z = *h/z of lhc ph1tc. The deflection of a rectangular plate clamped along 
one edge and unifornlly loaded along the oppo,jite edge (Fig. 58) represents an example 
of such bending. From the theory of bendin g of rectangular beams we know that 
in this cast mi = 0 at all points of the plate and ~~~ is zero on the surfaces of the plate 
and varies along the depth of the plate according to the parabolic law 

Using again the general equations (a), (h), ancl (c) and proceeding as in the preceding 
case of a planar stress distribution, we find’ that the general expression for the deflec- 
tion surface in this case has the form 

I 
(rl) 

in which p is a planar harmonic function of z and v, and cp~ satisfies the equation 

It can be conrllrdcd that, in this case again the differential equation (103) holds with 
q = 0. 

The equations for t,he bending and twistin g moments and for the shearing forces in 
this case are 

M, = -D(g + v$) +s&bh2~a~~ 

s+v M,, = D(l - v) d2w + ao Dh=z Aw 
ax ay ax ay 

Qz = -D$ Qy = -D+u 

(123) 

Hence the expressions for the shearing forces coincide with expressions (103) given bJ 
the approximate theory, but the expressions for moments are different, the second 
terms of those expressions rcprcscnting the effect of the &caring forces. 

These correction terms can be obtained in an elementary way by using the same 
reasoning as in t,he case of bending of beams. Considering the curvature in the xz 
plane, WC can state that the total curvature is produced by two factors, the bending 
moments M,, M, and the shearing force Q.. The curvature produced by the bending 

1 The rigorous solution for this case was given by Saint Venant; see his translation 
of Clebsch’s “ThCorie de i’elasticite des corps solidcs,” p. 337. A general discussion 
of the rigorous theory of bending of plates was given by J. H. Michell, Proc. I.ondor~ 
Math. Sot., vol. 31, p. 100, 1900. See also A. 15. H. Love, “The Mathematical Theory 
of l+Xnsticity,” p. 473. 1017. The results given in our further discussion are taken 
from the latter book. 
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moments is obtained by subtracting from the total curvature -@uJ/~x~ the portion 
-a(kQ,/lG)/&r produced by the shearing force.’ Substituting 

and -(a2W/ay2) + ajkQ,/hG)/ay for -~a2~/a~2 and -a”w/a?/z in Eqs. (101) and 
using the last two equations of the system (123), we find for the bending moments the 
expressions 

These equations coincide with the first two equations of the system (123) if we take 

k s+v -=__ 
6 40 

For Y = 0.3 this gives k = 1.245. 
From the theory of bending of beams we know that the correction due to the action 

of the shearing force is small and can be neglected if the depth h is small in comparison 
with the span of the beam. The same conclusion also holds in the case of plates. 

The exact expressions for stress components are 

The second terms on the right-hand sides of the equations for u2, cIl, and 7zy are the 
corrections due to the effect of shearing forces on bending. It is seen that the stresses 
cx> flu, and 7zy are no longer proportional to the distance z from the middle plane but 
contain a term proportional to z3. Shearing stresses 7zz and ryr vary according to the 
same parabolic law as for rectangular beams. In the case of a plane stress distribu- 
tion, Aw is a constant, and formulas (T) coincide with those given by the approximate 
I hcory. 

The problem of a uniformly loaded plate can also be treated rigorously in the same 
ivny. Thus it can be shown that the general expression for dcflcctions in this case is 
obtained by adding to expression (cl) the term 

& ; (y + y’) 
( 

x2 + .p - 2h2 
l--v > 

(8) 

1 k is a numerical factor that in the case of beams depends on the shape of the cross 
section. 
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which again satisfies Eq. (103) of the approximate theory. The equations for bending 
moments do not coincide with Eqs. (101) of the approximate theory but contain some 
additional correction terms. If the thickness of the plate is small in comparison with 
the other dimensions, thcsc terms are small and can be neglected. 

In all previous cases general solutions of plate bending problems were discussed 
without considering the boundary conditions. There are also rigorous solutions of 
several problems in which boundary conditions are considered.’ These solut,ions 
indicate that, provided the plate can be considered “thin,” the customary theory is 
accurate enough for practical purposes cxccpt (1) in the vicinity of a highly con- 
centrated transverse load and (2) in narrow edge zones, especially near the corners of 
plates and around holes with a diameter of the order of magnitude of the plate thick- 
ness itself. 

In the first of these two cases the stress components qz and the transvcrsc &caring 
stresses must be considered equally important in their effect on the deformation of the 
plate. In obtaining the necessary correction to the stresses given by the approximate 
theory (see page 70) the boundary conditions can be eliminated from consideration. 
In such circumstances the thick-plate theory proves most convenient for the solution 
of the problem. 

In the second case the effect of the stress components gr on the deformation becomes 
secondary as compared with the effect of the transverse shearing stresses T,* and 7Ul. 
Primarily taking into account this latter effect, several modified thin-plate theories 
have been developed recently (see Art. 39). These theories are better suited for the 
analysis of the st,ress distribution in the edge zone of the plates than the mom rigorous 
thick-plate theory. 

1 In recent times the rigorous theory of plates has attracted the interest of engineers, 
and several important papers in this field have been published. We shall mention 
here the following: S. WoinoTvsky-Krieger, Zngr.-,lrch., vol. 4, pp. 203 and :iO5, 19X:<. 
B. Galerkin, Con@. rend., vol. 190, p. 1047; vol. 193, p. 5G8; vol. 194, p. 1410. G. I). 
Birkhoff, Phil. &Zag., vol. 43, p. 953, 1922. C. A. Carabedian, I’rans. dm. X&h. Sot., 
vol. 25, p. 343, 1923; Compt. rend., ~01s. 178 (1924), 180 (192.5), 186 (1988), 195 (1932). 
It. Archie Higdon and D. I,. Hall, Duke Math. J., vol. 3, p. 18, 1937. -4. C. Stcvcnson, 
Phil. dfaq., ser. 7, vol. 33, p. 639, 1942; R. Ohlig, Zngr.-,4rch., vol. 13, p. 155, 1912; 
I. 11. Sncddon, Proc. Cambridye Phil. Sot., vol. 42, p. 260, 19 16; I,. Leibenson, “ \Vorks,” 
vol. 1, p. 111, Moscow, 1951; H. Jung, 2. angew. Nath. llfech., vol. 32, p. 57, 1952; 
E. Koppe, 2. angew. Math. Me&, vol. 37, p. 38, 1957. For thermal stresses see K. 
Marguerre, Z. anyew. Math. Nech., vol. 15, p. 369, 1935; and I. S. Sokolnikoff and 
E. S. Sokolnikoff, Pans. Am. Math. Sot., vol. 45, p. 235, 1939. 



CHAPTER 5 

SIMPLY SUPPORTED RECTANGULAR PLATES 

27. Simply Supported Rectangular Plates under Sinusoidal Load. 
Taking the coordinate :axes as shown in Fig. 59, we assume that the load 
distributed over the surface of the plate is given by the expression 

q = 40 sin F sin y 

in lvhich pa represents the intensity of the load at the center of the plate. 
The differential cquat’ion (103) for the deflection 
surface in this cast becomes 

p ___.-- Q ---7 

FIX 

The bound:u-y conditions for simply supported i- I 
edges are 

w=o iv, = 0 for .r = 0 and :(: = a Y 
w=o 111, = 0 for y = 0 and y = b FIG. 59 

ITsing expression (101) for bendin g moments and observing that, since 
w = 0 at the edges, Pw/d.? = 0 and d2w/dy2 = 0 for the edges parallel 
to the R: and y axes, respectively, we can represent the boundary condi- 
tions in the following form: 

(1) w = 0 (2) gg = 0 for z = 0 and 2 = Q 

(cl 
(3) w = 0 (4) $ = 0 for y = 0 and y = b 

It may hc seen that all boundary conditions are satisfied if we take for 
deflections the expression 

w = C sin 5 sin !I!!! 
a’ 6 (4 

in which the constant’ C must be chosen so as to satisfy Eq. (b). Sub&i- 
tuting expression (cl) into Eq. (b), me find 
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and we conclude that the deflection surface satisfying Eq. (b) and bound- 
ary conditions (c) is 

(cl 

Having this expression and using Eqs. (101) and (102), we find 

It is seen that the maximum deflection and the maximum bending 
moments arc at the center of the plate. Substituting :c = a/2, y = b/2 
in Eqs. (e) and (.f), me obtain 

(12.5) 

(12-1) 

In the particular case of a square plate, a = b, and the foregoing 
formulas become 

q0a4 __. wrnisx = 4n4D (126) 

We use Eqs. (106) and (107) to calculate the shearing forces and obt,ain 

Q, = - 

rb 

TX . cos n sm “2 
b 

(9) 
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To find the reactive forces at the supported edges of the plate we pro- 
ceed as was explained in Art. 22. For the edge x = a we find 

1 II t,he same manner, for the edge y = b, 

Hence the pressure distribution follows a sinusoidal law. The minus sign 
indicates that the reactions on the plate act upward. From symmetry 
it may be concluded that formulas (h) and (i) also represent pressure dis- 
tributions along the sides x = 0 and y = 0, respectively. The resultant 
of distributed pressures is 

(.i) 

Observing that 

qo sin r: sin y dx dy (k) 

it can be concluded that the sum of the distributed reactions is larger 
than the total load on the plate given by expression (k). This result can 
be easily explained if we note that, proceeding as described in Art. 22, 
we obtain not only the distributed reactions 
but also reactions concentrated at the cor- _---- ______ 
ners of the plate. These concentrated re- 
actions are equal, from symmetry; and their 
mngnitude, as may be seen from Fig. 31, is 

2qo(l - v) R = 2(MzJz=a,+ = ~-~- 
r2ab 

( ) ;+; FIG. 60 

The positive sign indicates that the reactions act downward. Their sum 
is exactly equal to the second term in expression (j). The distributed 
and the concentrated reactions which act on the plate and keep the load, 
defined by Eq. (a), in equilibrium are shown graphically in Fig. 60. It 
may be seen that the corners of the plate have a tendency to rise up 
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under the action of the applied load and that the concentrated forces R 
must be applied to prevent this. 

The maximum bending stress is at the center of the plate. Assuming 
that a > b, we find that at the center M, > M,. Hence the maximum 
bending stress is 

The maximum shearing stress will be at the middle of the longer sides of 

the plate. Observing that the total transverse force V, = Q, - ?$? 

is distributed along the thickness of the plate according to the parabolic 
law and using Eq. (i), we obtain 

(7yz)max = 

If the sinusoidal load distribution is given by 

q = q. sin 7 sin nq 

a2 / 

the equation 

(4 

where m and n are integer numbers, we can proceed as before, and we 
shall obtain for the deflection surface the following expression: 

027) 

from which the expressions for bending and twisting moments can be 
readily obtained by differentiation. 

28. Navier Solution for Simply Supported Rectangular Plates. The 
solution of the preceding article can be used in calculating deflections 
produced in a simply supported rectangular plate by any kind of loading 
given by the equation 

Q = fbu) (a) 
For this purpose we represent the function f(z,y) in the form of a double 
trigonometric series :l 

f(z,y) = -$ -$ alnn sin m$ sin nay 
b (128) 

n=l n=l 

1 The first solution of the problem of bending of simply supported rectangular plates 
and the use for this purpose of double trigonometric series are due to Xavier, who 
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To calculate any particular coefficient umrn’ 0 f this series we multiply both 
sides of Eq. (12s) by sin (n’7r!j/6) dy and int.egrate from 0 to 6. Observing 
that 

b 1. sill y sin T dy = 0 when n z n’ 
0 

s 

h I 
b 

sin r"zg sin ??F dy = z when n = n’ 
0 

we find in this way 
m 

c 
. m7rx 

arm’ sin __ 
a 

VL=l 

Mult,iplying both sides of Eq. (b) by sin (m’?rz/a) dz and integrating from 
0 to a, we obtain 

a b ss 0 0 
j(x,y) sin e sin T dx dy = 3 anL’,g 

from which 
, 

f(x,y) sin ?!$!Z sin n?? d’ dy (129) 

Performing the integration indicated in expression (129) for a given load 
distribution, i.e., for a given f(s,y), we find the coefficients of series (128) 
and represent in this way the given load as a sum of partial sinusoidal 
loadings. The deflection produced by each partial loading was discussed 
in the preceding article, and the total deflection will be obtained by sum- 
mation of such terms as are given by Eq. (127). Hence we find 

1 m - 

cc 

awm ‘U)=- 
iT4D 

m=I n=I gg sin 7 sin y (130) 

Take the case of a load uniformly distributed over the entire surface 
of the plate as an example of the application of the general solution (130). 
In such a case 

few) = 40 

where p. is the intensity of the uniformly distributed load. From formula 
(129) we obtain 

4qo a a,, = -- 
ss 

b 18qo 
cdl 0 0 

sir1 m$ sin nq dx dy = ~ 
dmn 

presented a paper on this subject to the French Academy in 1820. The abstract of the 
paper was published in Bull. sot. @il.-~a/h ., Paris, 1823. The manuscript is in the 
library of l’ficole des Ponts et ChaussPes. 
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where m and n are odd integers. If m or n or both of t’hem are even 
numbers, am,, = 0. Substituting in Eq. (130), we find 19 

sin c-- 
n=l 

mn 

mm 
a 

,( 7n2 _- 
a2 

(131) 

where m = 1, 3, 5, . . . and n = 1, 3, 5, . . . . 
In the case of a uniform load we have a deflection surface symmetrical 

with respect to the axes x = a/2, y = b/2; and quite naturally all terms 
with even numbers for m or n in series (131) vanish, since they are 
unsymmetrical with respect to the above-mentioned axes. The maxi- 
mum deflection of the plate is at its center and is found by substituting 
.I: = CL/~, /J = b,/il in formula (131), giving 

This is a rapidly converging series, and a satisfactory approximation is 
obt,ained by taking only the first term of the series, which, for exampIt>, 
in the case of a square plate gives 

or, by substituting expression (3) for D and assuming v = 0.3, 

This result is about 24 per cent in error (see Table 8). 
From expression (132) it may be seen that t,hc deflections of t\ro plates 

that have the same thickness and the same vn,lue of the ratio a/h increase 
as the fourth power of the length of the sides. 

The expressions for bending and twisting moments can be obtained 
from the general solution (131) by using Eqs. (101) and (102). The 
series obtained in this way are not so rapidly convergent as series (13 I), 
and in the further discussion (see Art. 30) another form of solution will be 
given, more suitable for numerical calculations. Since the moments are 
expressed by the second derivatives of series (131), their maximum values, 
if we keep q0 and D the same, are proportional to the square of linear 
dimensions. Since the total load on the plate, equal to yoab, is also pro- 
portional to the square of the linear dimensions, we conclude that, foi 
two plates of equal t,hickness and of the same value of t)he ratio a/b, the 
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maximum bending moments and hence the maximum stresses are equal 
if the total loads on the two plates are equa1.l 

29. Further Applications of the Navier Solution. From the discussion 
in the preceding article it is seen that the deflection of a simply supported 
rectangular plate (Fig. 59) can always be represented in the form of a 
double trigonometric series (X30), the coefficients a,,,, being given by 
Eq. (129). 

Let us apply this result in the case of a single load P uniformly dis- 
tributed over the area of the rectangle shown in Fig. 61. By virtue of 
Eq. (129) we have 

4P E+u/Z 

.I / 

7+u/2 
czmn = ~ ----- Ublill E-u/2 ‘) -a/2 

sin 7 sin nq d.c d!/ 

or Gm = 
162’ . m7i-( . n7r7j . rnru . n7w 

rzmrbuv sin a sm o sin 2a sin 2b 

If, in particular, .$ = a/2, 7 = b/2, u = CL, and 
v = b, Eq. (a) yields the expression (c) obtained 
in Art,. 28 for the uniformly loaded plate. 

Another case of practical interest is a single 
load concentrated at any given point x = ,$, y = 17 
of the plate. Gsing Eq. (a) and letting u and 1’ 
trend to zero n-e arrive at the expression 

4P 
a mai: 

n’* = ab 
_ sin a sin ‘?!?rg 

b 

and, by Eq. (I SO), at the d&&ion 

----- (J-----I 

Y 
FIG. 61 

w= sin 
max . -~- sm ‘EJ 

b 

The series converges rapidly, and we can obtain the deflection at any 
point of the plate with sufficient accuracy by taking only the first few 
terms of the series. Let us, for example, calculate the deflection at the 
middle when the load is applied at, the middle as well. Then we have 
E = x = a/2. 7 = y = b/2, and the series (133) yields 

1 TThis conclusion was established by Mariotte in the paper “Trait4 du mouvement 
des eaux,” published in 1686. See Mariotte’s scientific papers, new ed., vol. 2, p. 467, 
1740. 
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where m = 1, 3, 5, . . . and n = 1, 3,5, . . . . In the case of a square 
plate, expression (c) becomes 

m cc 

4Pa2 
w - mar T4D nc=l ,LE1 cm2 : n2)2 cc 

Taking the first four terms of the series we find that 

0.01121Pa2 
W”XiX =--------- 

D 

which is about 39 per cent less than the correct value (see Table 23, 
page 143). 

As for the series (128) representing the intensity of the concentrated 
load it is divergent at z = .$, y = 7, and so also are the series expressing 
the bending moments and shearing forces at the point of application of 
the load. 

Let us consider now the expression 

m m 

w = K(x,~,t,d = T&D 
cc ?lL=I 7L=l 

(134) 

which, by virtue of Eq. (132)) represents the deflection due to a unit load 
P = 1 and for which the notation K(zc,y,[,v) is introduced for brevity. 

Regarding zr and y as the variables, w = K(~L.,~,(,v) is the equation of 
the elastic surface of the plate submitted to a unit load at a fixed point 
2 = .$, y = q. Now considering .$ and q as variable, Eq. (134) defines 
the influence surface for the deflection of the plate at a fixed point X, y, 
the position of the traveling unit load being given by l and 7. If, there- 
fore, some load of intensity f(+$,~) distributed over an area A is given, the 
corresponding deflection at any point of the plate may easily be obtained. 
In fact, applying an elementary load f(<,q) d.$ dq at J: = t, y = 9 and 
using the principle of superposition, we arrive at the deflection 

w= 
Jl f(Lv)K(x,~,S,v) dE drl 

A 

(135) 

the double integral being extended over the loaded area and K(x,y,.$,q) 
being given by Eq. (134). 

The function K(s,l~,E,v) is sometimes called Green’s function of the plate. When 
given as by Eq. (134), this function is associated with the boundary conditions of the 
simply supported rectangular plate. Many properties of Green’s function, however, 
are independent of those restrictions. An example is the property of symmetry, 
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expressed by the relation 
~(w,61) = ~(E,?,W) 

113 

which follows from the well-known reciprocal theorem of Maxwell’ and is easy to 
verify in the particular case of the function (134). 

As the last example in the application of Xavier’s solution let us consider the case of 
as ingle load P uniformly distributed over the area of a circle with radius c and with 
center at x = t, v = 7. Introducing polar coordinates p, 0 with the origin at the 
renter of the loaded arca and replacing the elementary area dz dy in Eq. (129) by the 
area p dp de, we have, by this latter equation, 

4P c 2% 
a 

ss 
sin 

m?r(E + P cos 0) nn(q + p sin 0) 
mn=-- 

ab TI+ 0 
sin ___- --~- p dp d0 

0 a b (4 

Provided that the circle p = c remains entirely inside the boundary of the plate the 
evaluation of the integral (d) gives the cxpression2 

8P 
amn - 

abcynin 
Jl(-ymnc) sin F!? sin nT 

a 

in which yVn = T 2/(m/a12 + (n/b)2 and JI(rm7ic) is the Bessel function of order one, 
with the argllment Y,,~~~c. The required deflection now is obtainable by substitution 
of the expression (e) into Eq. (130). 

It is seen that the form of the Nuvier solution remains simple even in 
relatively complex cases of load distribution. On the other hand, the 
double series of this solution are not convenient for numerical computa- 
tion especially if higher derivatives of the function w are involved. So, 
another form of solution for the bending of the rectangular plate, more 
suitable for this purpose, will be discussed below. 

30. Alternate Solution for Simply Supported and Uniformly Loaded 
Rectangular Plates. In discussing problems of bending of rectangular 
plates that have two opposite edges simply supported, M. L&y” sug- 
gested taking the solution in the form of a series 

cc 
w= c Y, sin 7 (136) 

n=l 

where Y, is a function of y only. It is assumed that the sides .?: = 0 and 

s = a (Fig. 62) are simply supported. Hence each term of series (136) 
satisfies the boundary conditions w = 0 and a2w/dx2 = 0 on these two 
sides. It remains to determine Y, in such a form as to satisfy the bound- 

1 See, for instance, S. Timoshenko and I). H. Young, “Theory of Struct,ures,” p. 
250, 1945. 

* See S. Woinowsky-Krieger, Ingr.-ilrch., vol. 3, p. 240, 1932. 
3 See Compt. rend., vol. 129, pp. 535-539, 1899. The solution was applied to several 

particular cases of bending of rectangular plates by E. Estanave, “ThBses,” Paris, 
1900; in this paper the transformation of the double series of the Envier solution to the 

simple series of M. LFvy is shown. 

WIN
Highlight
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ary conditions on the sides y = + b/2 and also the equation of the deflec- 
tion surface 

(a> 

In applying this method to uniformly loaded and simply supported 

i- a ---1 
rectangular plates, a further simplification can be 

” 
b 
f and letting 

x 

~ 

made by taking the solution of Eq. (a) in the form’ 

w = Wl + W2 @I 

b w1 = p&j (x4 - 2azR + a”x) CC, 
F 
i i.e., w1 represents the deflection of a uniformly 

loaded strip parallel to the z axis. It satisfies Eq. 
Y 

FIG. 62 
(a) and also the boundary conditions at the edges 
x = 0 and x = a. 

The expression wz evidently has to satisfy the equation 

(137) 

and must be chosen in such a manner as to make the sum (b) satisfy all 
boundary conditions of the plate. Taking w2 in the form of the series 
(136) in which, from symmetry, m = 1, 3, 5, . . . and substituting it) 
into Eq. (137), we obtain 

This equation can be satisfied for all values of I(: only if the function Y, 
satisfies the equation 

(4 

The general integral of this equation can be taken in the form2 

y, = 2; A, co& 7 + fi,, ?!!I sinh 7 

+ C,,, sinh 7 + D, “,“y coslI mz (138) 

1 This form of solution was used by A. N(Ldai, Forschungsarb., nos. 170 and 171, 
Berlin, 1915; see also his book “Elastische Platten,” Berlin, 19%. 

? A somewhat different form for Y,, more convenient to satisfy some particular 
boundary conditions, has been suggested by P. F. Papkovitch, Priklad. Mat. Mekh., 
vol. 5, 1941. 
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Observing that the deflection surface of the plate is symmetrical with 
respect to the 5 axis (Fig. 62), we keep in the expression (138) only even 
functions of y and let the integrat’ion constants C, = D, = 0. 

The deflection surface (b) is then represented by the following 
expression : 

1” = 22D (x4 - 2ax3 + a3x) 
m 

+ PI! 

D CC 
A, cash 7 + B, 7 sinh 7 sin !!!$T! (e) 

m=l 

which satisfies Eq. (a) and also the boundary conditions at the sides 
.c == o and II‘ = n. It remains now to adjust the constants of integration 
A,,, and B, in such a maimer as to satisfy the boundary conditions 

(f> 

on the sides y = *h/2. We begin by developing expression (c) in a 
trigonometric series, which gives’ 

gE (x4 - 2ax3 + u3x) = $$ jj $ sin y 
m=l 

wherem=1,3,5,. . . . The deflection surface (e) will now be rcpre- 
sented in the form 

m 

w = (la: 4 
D CC- a5m5 

+ A, cash 7 + B, y sinh y 
> 

sin -“,“” (g) 
m=l 

where m = 1, 3, 5, . . . Subst,ituting this expression in the boundary 
conditions (,f) and using the notation 

(h) 

we obtain the following equations for determining the constants A, and 
Bm : 

JL + il,,, 
a57n5 

cash cy,, + (Y,B,,, sinh a,,z = 0 

(A,, -+ 2B,) cash o(, + a,B, sinh LY, = 0 
from which 

1 See S. Timoshenko, “Strength of Mstcrials,” 3d ed., prtrt II, p. 60, 1956. 
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Substituting these values of the constants in Eq. (g), we obtain the 
deflection surface of the plate, satisfying Eq. (a) and the boundary con- 
ditions, in the following form: 

+ a c* ?f sinh ‘7 sin 7 (139) 
m > 

from which the deflection at any point can be calculated by using tables 
of hyperbolic functi0ns.l The maximum deflection is obtained at the 
middle of the plate (X = a/2, y = 0), where 

Disregarding the second term in the parentheses, this series represents the 
deflection of the middle of a uniformly lou,ded strip. Hence we can 
represent expression (j) in the following form: 

m 

5 (- 01, tanh (Y, + 2 
wrn,x = _ 

pa* 4qd --~ l)(frL-l)y 384 D ?r6D 4 7 m5 2 cod1 cy, (140) 

m=1,3,5.. 

The series in this expression converges very rapidly,2 and sufficient accu- 
racy is obtained by taking only the first term. Taking a square plate as 
an example, we know from Eq. (h) that 

H 37r 
a1 = - 

2 a3=- ... 2 

and Eq. (140) gives 

5 ‘W,,, qa4 = -- -- 
384 L’ 

$“; (0.68562 . -- 0.00025 + .) = 0.00406 g 

It is seen that the second term of the series in parentheses is negligible 

1 See, for example, “Tables of Circular and Hyperbolic Sines and Cosines,” 1939, 
and “Table of Circular and Hyperbolic Tangents and Cotangents,” 1043, Columbia 
University Press, New York; also British Association for the Advancement of Science, 
“Mathematical Tables,” 3d ed., vol. 1, Cambridge University Press, 1951 ; finally, 
F. LBsch, “Siebenstelligc Tafeln der clementaren transzendenten Funktionen,” 
Berlin, 1954. 

2 We assume that b 2 a, as in Fig. 62. 
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and that by taking only the first term the formula for deflection is 
obtained correct to three significant figures. 

Making use of the formula (140), we can represent the maximum 
deflection of a plate in the form 

qa4 wm,x = ct - D (141) 

where CY is a numerical factor depending on the ratio b/a of the sides of 
the plat,e. Values of o( are given in Table 8 (page 120). 

The bending moments M, and M, are calculated by means of expres- 
sion (e). Substituting the algebraic portion of this expression in Eqs. 
(lOl), we find that 

The substitution of the series of expression (e) in the same equations gives 

m 

may cash __ 
a 

+ Bm cosh m*y sin ?!!?E 
a a 

The tom1 bending moments are obtained by summation of expressions 
(lz) and (I). Along the x axis the expression for the bending moments 
becomes 

m 
qx(a - z) 

(i~fz)1,=0 = 2 - qa2s2 
c 

mz[2vB, - (1 - v) A,] sin !?! 
a 

m= 1,3,5, 
m 

(M,),,o = v gxw - q&r2 
c 

m2[2B, + (1 - v)Am] sin y 
m= 1,3,5 ) . 

Roth series converge rapidly and the moments can readily be computed 
and represented in the form 

(*a-f,),=0 = P’qd (M&o = Lqp2 cm> 

The numerical values of the factors 6’ and pi are given in Table 6. 
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The bending moments acting along the middle line x = a/2 can be 
computed in a similar manner and represented in the form 

(M&--a/* = P”fp* (MJ242 = LYqa” (n) 

Values of 0” and 8:’ are given in Table 7. 
The maximum values of these moments, 

(M,),., = Pqa2 (M,Jmax = Plqa2 (0) 

are at the center of the plate (z = a/2, y = 0), and the corresponding 
factors fi and PI are found in Table 8. The distribution of the moments 
in the particular case of a square plate is shown in Fig. 63. 

TABLE 6. NUMERICAL FACTORS /3' AND S: E'OR BENDING MOMENTS OF SIMPLY 
SUPPORTED REC~,ANGULAR PLATES IJNDER UNIFORM PRESSURE q 

Y = 0.3, b 2. n 

b/a 

M, = p'qa2, y = 0 

1.0 
1.1 0.02340.03890.0-1860.05410.05540.01720.03110.0~1120.04750.0493 
1.2 
1.3 
1.4 1 

1.5 
1.6 
1.7 
1.8 
1.9 0.03~80.06440.0~~50:09480.09&5~0.01650.02970.03930.0~2510.0471 

From Table 8 it is seen that, as the ratio b/a increases, the maximum 
deflection and the masimum moment,s of the plate rapidly approach the 
values calculated for a uniformly loaded strip or for a plntc bent to a 
cylindrical surface obtained by making b/a = M. For b/a = 3 the dif- 
ference between the deflection of the strip and the plate is about 6% per 
cent. For b/a = 5 this difference is less than 4 per cent. The differ- 
ences between the maximum bending moments for the same ratios of 
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TABLE 7. NU~UERICAL FACTORS B” AND fi:’ FOR BENDINO MOMENTS OF SIMPLY 
SUPPORTED RECTASGULAR PLATES UNDER UNIFOR~I PRESSURE q 

Y = 0.3, b 1 a 

M, = p"qa2, I = a/2 
I 

M, = &qa2,x = a/2 

b/a 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 0.03020.05320.06900.07810.08120.02750.04100.04700.04930.0498 
1.6 0.03240.05710.07370.08:~20.08ti20.02880.04170.04710.04890.0492 
1.7 0.03480.06070.07800.08'i70.09080.0"950.04230.04700.04840.0486 
1.8 0.03710.06110.08190.09170.09-180.0:~0-10.0~~80.04690.04780.0479 
1.9 0.03920.06730.08~540.09530.0985~0.03140.0-1330.01670.04720.0471 

2.0 
2.5 
3 
4 
c.2 

0.02520.044i0.05850.06670.06940.02520.03910.04620.04940.0503 
0.02750.04!~10.06390.07270.07550.02630.04020.04680.04950.0502 

0.04130.07030.08870.09860.10170.03220.04360.04640.04650.0464 
0.05050.08280.1012,0.11020.11290.03600.0~~~~60.04470.04350.0430 
0.0~860.09230.10!~%0.11680.11S!~0.03890.0~~70.04310.04130.040S 
0.0723 0.105~10.1180,0.1224~0.1235 0.0.126 0.0436 0.0406 0.0389 0.0384 

-I 0.125U0.1%500.1L'50~0.1250i0.1P50~0.03i5 0.037q0.03i5~0.0375 0.0375 

b-------+-------f------+------l 

FIG. 63 
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b/a are 5 and Q per cent, respectively. It may be concluded from this 
comparison that for b/a > 3 the calculations for a plate can be replaced 
by those for a strip without substantial error. 

TABLE 8. NUMERICAL FACTORS a, 8, y, 6, n FOR UNIFORMLY LOADED AND 
SIMPLY SUWORTIGD RECTANGUI~AR PLATES 

b/a 

(&z)m,x 

= wa 

Y 

1.0 
1.1 

1.2 
1.3 
1.4 

0.338 
0.360 
0.380 
0.397 
0.411 

- - - - 

:U,)“,,X , WVLX (Ql/)msx (V,),., (V,),“., n 
= Pqa2 = P1qa2 = r1qa = 6qa = &qa = nqa2 

B i31 71 6 61 12 ~~~ -- 
0.00~VI% 0 0479 0.0479 0.338 0.420 0.420 O.OG5 
o.ooks5 0 0554 0 .04!)3 0.347 0.440 0.440 0.070 
0.00564 O.OB27 0.0501 0.353 0.455 0.453 0.074 
O.OOG38 0. owl 0.0503 0.357 0.468 0.464 0.079 
0.00705 0.0755 0.0502 0.361 0.478 0.471 0.083 

0.00772 0.0812 0.0498 0.363 0.486 0.480 0.085 
0.00830 0.0862 0.0492 0.3G5 0.491 0.485 0.086 
0.00883 0.0908 0.0486 0 3G7 0.496 0.488 0.088 
0.00931 0.0948 0.0479 0.368 0.499 0.491 0.090 
0.00974 0.0985 0.0471 0.X9 0.502 0.494 0.091 

0.01013 0.1017 0 U-l&t 0.370 0.503 0.496 0.092 
0.01223 0.118!) 0.0-106 0.372 o.m5 0.498 0.093 
0.01282 0.1235 0.0384 0.372 0.502 0.500 0.094 
0.01207 0.124G 0.0375 0.372 0.501 0.500 0.095 
0.01302 0.1250 0.0375 0.372 0.500 0.500 0.095 

- - - - 

Expression (c) can be used also for calculating shearing forces and 
reactions at the boundary. Forming the second derivatives of this 
expression, we find 

1.5 
1.6 
1.7 
1.8 
1.9 

0.424 
0.435 

0.444 
0.152 
0.459 

2.0 
3.0 
4.0 
5.0 

m 

U.4G5 
0.493 
O/l98 
0.500 
0.500 

Y = 0.3 

m 

c 
m2B, cash ~ sin zx m*y 

a a 
m=1 

Substituting this in Eqs. (106) and (107), we obtain 

Q 
z 

= da -  22) 
2 

- 2dqu 
c 

m3B, cash m+ cos y 
m=l 

00 

Q, = -2r3qa 
c 

m3B, sinh y sin T 
V&=1 

WIN
Rectangle
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For the sides x = 0 and y = -b/2 we find 

(&Jd = y - 27r3ga c m=Y m3B, cash - 
a 

VA=1 m 
=!t?! %a cash m+ 

-- 
2 T-2 c m2 cash (Y,,, 

m= 1.3,5, . . . 

(&uL=-b/2 = 2n3qa c m7rx m3B, sinh LY, sin - 
a 

m==l 00 %a =- 
1r2 c tanh 01, sin ~ 

m2 a 
m = 1,3,5, . . . 

These shearing forces have their numerical maximum value at the middle 
of the sides, where 

1 
m2 cash LY, = rw 

m = 1,3.5, . 

(&v)z=a,2.u=--b,2 = F 2 

(P) 

(-l~~-l”z tanh (Y, = ylqa 
m=1.3,5.... 

The numerical factors y and y1 are also given in Table 8. 
The reactive forces along the side x = 0 are given by the expression vzqQzL!!!$)*~o+~ - c cash 7 

m2 cash (Ye 
m=1.3.5, . . . 

m + W - v)qa c 1 
7r2 m2 cosh2 am 

*= 1.3,s. 

o(, sinh LY,, cash 7 - mG Gosh my, sinh y 
> 

The maximum numerical value of this pressure is at the middle of the 
side (y = 0), at which point we find 

m 

m + 2(1 - v> 
7r2 c 

am sinh (Y, 
m2 cosh2 G,, I 

= &P Cd 
n&=1,3.5,... 
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where 6 is a numerical factor depending on v and on the ratio b/a, which 
can readily be obtained by summing up the rapidly converging series 
that occur in expression (a). Numerical values of 6 and of a1, which 
corresponds to the middle of the sides parallel to the x axis, arc given in 
Table 8. The distribution of the pressures (q) along the sides of a square 
plate is shown in Fig. 03. The portion of the pressures produced by the 

0.151 I I 1 I I I 

0 
1.0 1.5 2.0 2.5 30 3.: 4.0 

Rotio $ 

FIG. 64 

twisting moments M,, is also shown. These latter pressures are bal- 
anced by reactive forces concentrated at the corners of the plate. The 
magnitude of these forces is given by the expression 

R = 2(M,ZI)z=a.y=b,2 = 20(1 - v) & 
( > z-a,y-b/2 

10 
_ 40 - v)cP2 

-c 
1 

79 m3 cash (Y, 1u + cy, tanh CY,) sinh cxm 

m= 1,3,5, . . . 

- a, cash (Y,] = nqa2 (T) 

The forces are directed downward and prevent the corners of a plate 
from rising up during bending. The values of the coefficient n are given 
in the last column of Table 8. 
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The values of t’he fnct’ors cy, 0, PI, 6 as functions of the ratio b/a are 
represent,ed by the curves in Fig. 64. 

In the presence of the forces Iz, which act downward and are by no means small, 
anchorage must bc provided at t,he corners of the plate if the plate is not solidly joined 
with the supporting beams. 

In order to determine the moments arising at the corner let us consider the equi- 
librium of the element abc of the plate next to its corner (Fig. 65) and Iet us introduce, 
for the same purpose, new coordinates 1, 2 at an angle of 45” to the coordinates z, 21 in 
Fig. 59. We can then readily verify that the bending moments acting at the sides ab 
and cb of the element are U, = -A’/2 and .19, = +R/2, respectively, and that the 
corresponding twisting moments are zero. In fact, using Eq. (39), WC obtain for the 
side UC, that is, for the clement of the edge, 
given by (Y = -45”, the bending moment 

M,, = ill, cos2 (Y + AI,> sin2 LY = 0 

in accordance wit,li the I)oundnry condi- 2 
tions of a simply supported plate. The I 

L-X 
niagnitude of the twisting moment applied 0 

at the same edge elemc~nl is ol)tained in like 
manner by means of Eq. (4oj. Putting 
01 = -15” we have 

Y R 
M,, = f sin 2a(M1 - iVz) = f FIG. 65 

according to Eq. (T). Thus, the portion of the plate in the vicinity of the corner is 
bent t,o an anticlnstic surface, the moments &R/2 at the corner itself being of the 
same order of magnitude as the bending moments at the middle of the plate (XC 
Table 8). 

The clamping effect of the corners of a simply supported plate is plainly illustrated 
by the distribution of the bending moments iW, and fir2 of a square plate (Fig. 63). 
If the corners of the rectangular plate are not properly secured against lifting, the 
clamping becomes ineffective and i.hc bending moments in the center portion of the 
plate increase accordingly. The values of (A&),,, and (AT,),,,, given in Table 8 
must then be multiplied by some factor k > 1. The approximate expression’ 

k= 
(cd - T5Ta’b= + b4 

a4 - +u2b2 + b4 

may be used for that purpose. 
It should be noted that, in the case of a polygonal plate with simply supported edges 

no single reactive forces arise at a corner point provided the angle between both 
adjacent sides of the plate is other than a right angle.2 

Even in rectangular plates, however, no corner reactions are obtained if the trans- 
verse shear deformat,ion is taken into account. In view of the strongly concentrated 

1 Recommended by the German Code for Reinforced Concrete (1943) and based 
on a simplified theory of thin plates due to H. Marcus; see his book “Die vereinfachte 
Bercchnung bicgsamer Platten,” 2d ed., Berlin, 1925. 

2 For a simple proof see, for example, H. Marcus, “Die Theorie elastischer Gewebe,” 
2d ed., p. 46, Berlin, 1932. 
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reactive forces this shear deformation obviously is no longer negligible, and the 
customary thin-plate theory disregarding it completely must be replaced by a more 
exact theory. The latter, which mill be discussed in Art. 39, actually leads to a dis- 
tribution of reactive pressures which include no forces concentrated at the corners of 
the plate (see Fig. 81). 

31. Simply Supported Rectangular Plates under Hydrostatic Pressure. 
Assume that a simply supported rectangular plate is loaded as shown in 

Fig. 66. Proceeding as in the case of a uniformly distributed load, we 
take the deflection of the plate in the form’ 

w = Wl + w2 (a) 
in which 

Y 
FIG. 66 

represents the deflection of a strip under the tri- 
angular load. This expression satisfies the differ- 
ential equation 

m 

_ 2qoa4 
Da5 c 

(-1)*+1 
m5 

sin -m$ (b) 
?n= 1,2,x 

and the boundary conditions 

WC0 s-0 for x = 0 and x = a 

The part w2 is taken in the form of a series 
01 

w2 = c Y, sin 7 (4 
m=l 

where the functions Y, have the same form as in the preceding articlc, 
and m = 1, 2, 3, . . . . Substituting expressions (b) and (d) into Eq. 

(a), we obtain 
m - 4oa4 2( - w c F~ 1)“f’ 

D 7Pm5 + A, cash 7 + B, !!I?$ sinh y 1 sip “,“” ??&=I 
(e) 

where the constants A, and B, are to be determined from the conditions 

1 This problem was discussed by E. Estanave, op. cit. The numerical tables of 
deflections and moments were calculated by B. G. Gale&in, Bull. Polytech. Inst., St. 
Petersburg, ~01s. 26 and 27, 1918. 
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From these conditions we find 

2( - l)“fl 
g5m5 -k 8, cash am + Brn~, sinh cym = 0 

(a&, + A,) cash o(~ + Bmct, sinh (Y, = 0 

In these equations we use, as before, the notation 

Solving them, we find 

The deflection of the plat’e along the x axis is 

(w) * max 
pdl = g 2( - l)“+’ - T5m5 + Am a 

I 
sin ~ 

TL=l 

For a square plate a = b, and we find 

(w)?/=o = g ( 0.002055 sin r; - 0.000177 sin % 

+ 0.000025 sin !?k! - . . * 
a > 

(9) 

The deflection at the center of the plate is 

(w).=,,z,~=o = 0.00203 'g (h) 

which is one-half the deflection of a uniformly loaded plate (see page 116) 
as it should be. By equating the derivative of expression (g) to zero, we 
find that the maximum deflection is at the point 2 = 0.557a. This maxi- 
mum deflection, which is 0.00206 q0a4/D, differs only very little from the 
deflection at the middle as given by formula (h). The point of maximum 
deflection approaches the center of the plate as the ratio h/a increases. 
For b/a = to, as for a strip [see expression (b)], the maximum deflection 
is at the point x = 0.5193a. When b/a < 1, the point of maximum 
deflection moves away from the center of the plate as the ratio b/a 
decreases. The deflections at several points along the CC axis (Fig. 66) 
are given in Table 9. It is seen that, as the ratio b/a increases, the 
deflections approach the values calculated for a strip. For o/a = 4 the 
differences in these values are about 19 per cent. We can always calcu- 
late the deflection of a plate for which b/a > 4 with satisfactory accu- 
racy by using formula (0) for the deflection of a strip under triangular 
load. The bending moments M, and M, are found by substituting 
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TABLE 9. NUMERICAL FACTOR (Y FOR DEFLECTIONS OF A SIMPLY SUPPORTED 
RECTANGULAR PLATE UNDER HYDROSTATIC PRESSURE q = qoz/a 

b>a 
w = q,a4/D, Y = 0 

b/a 

1 
1.1 

1.2 
1.3 
1.4 

z = 0.25a 
~__ 

0.00131 
0.00155 

0.00186 
0.00212 
0.00235 

2 = 0.50a 

0.00203 
0.00243 
0.00282 
0.00319 
0.00353 

z = 0.6Oa 
--~ 

0.00201 
0.00242 
0.00270 
0.00315 
0.00348 

1.5 0.00257 0.00386 0.00379 
1.6 0.00277 0.00415 0.00407 
1.7 0.00296 0.00441 0.00432 
1.8 0.00313 0.00465 0.00455 
1.9 0.00328 0.00487 0.00475 

2.0 0.00342 0.00506 0.00494 
3.0 0.00.116 0.00612 0.00592 
4.0 0.00-137 0.00641 0.00622 
5.0 0.00441 0.00648 0 00629 
cc 0.00443 0.00651 0.00632 

- 

- 

- 

~ 

i 

x = 0.75a 

0.00162 
0.00192 
0.00221 
0.00248 
0.00273 

0.00296 
0.00317 
0.00335 
0 .00:353 
0.00368 

0 00382 
0. CM56 
0.0 1477 
0 00483 
0 .00484 

expression (c) for deflections in Eqs. (101). ;\long the :I’ axis (y = 0) 
the expression for M, becomes 

(M,),,=o = q0n2 c 2( - 1)“f’ m7rx ~~~~~~~~~ sin __ 
7r3m3 a 

7n = 1 m 

+ q0a27r2 
c 

‘rn2[(1 - v)AnL - ZYB,,,] ninPF (Q 
m=l 

The first sum on the right-hand side of this expression represent’s the 
bending moment for a strip under the action of a triangular load and is 
equal to (qo/6)(az - ?/a). Using expressions (,f) for the constants A,,, 
and B, in the second sum, we obtain 

(fifz)y=o = (lo(u2x - x3) 
6a 

q0a2 -__ 
7r" c 

(- l)nk+l 
m3 cash (Y, [2 + (1 - v)(Y, tanh a,] sin m$ (j) 

VII=1 

The series thus obtained converges rapidly, and a sufficiently accurate 
value of M, can be realized by taking only the first fern terms. Tn t,his 
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TAELE 10. NUMERICAL FACTORS fi AND j31 FOR BENDINQ MOMJWTS OF SIMPLY 
SUPPORTED RECTAKGULAR PLATES UNDER HYDROSTATIC PRESSURE p = qQ/a 

Y = 0.3, b > a 

x= 
0.25a 

1 .o 
1.1 
1.2 

1.3 
1.4 

0.0132 0.0239 0. oxi 0.0259 0.0149 0.0239 0.0215 0.0207 
0.0156 0.0276 0.0302 0.0259 0.0155 0.0247 0.0251 0.0211 
0.0179 0.0313 0.033x 0.0318 0.0158 0.0250 0.0254 0.0213 
0.0200 0.0346 0.0371 0.0344 0.0160 0.0252 0.0255 0.0213 
0.0221 0.0376 0.0402 0.0367 0.0160 0.0253 0.0254 0.0212 

1.5 0.0239 
1.6 0.0256 
1.7 0.0272 
1.8 O.O"SG 
1.9 0.0'298 

2.0 
3 .o 
1.0 

a -0 
a 

0.0309 
0.03G9 
0.0385 
0 .0389 
o.0391 

T 

- 

T 

x= 
0.50a 

X= 
0.60a 

x= 

0.75a 
x= 

0.25a 
2= 

0.50a 

0. OlOG 
0.0431 
0.0-15-t 
0.0474 
0.0492 

0.0429 0.0388 0.0159 
0.0 15-1 0.0107 0.0158 
0.0476 o.ol%l 0.0155 
0.0.I96 0.0439 0.0153 
0.0513 0.0452 0.0150 

0.0249 0.0252 0.0210 
0.0246 0.0219 0.0207 
0.0243 0.0246 0.0205 
0.0239 0.02FZ O.o'LO2 
0.0235 0.0238 0.0199 

0.0508 0.05'29 0.0463 0.0148 0.0232 
0.0594 0.0611 0.0525 0.0128 0.0202 
0.0617 0.0632 0.0541 0.0120 0.0192 
0 ,062:~ 0.0638 0.0546 0.0118 0.0187 
0.0625 0.0640 0.0547 0.0117 0.0187 

M, = plaZqO, y = 0 

x= 
0.60a 

2= 
0.75a 

0.0234 0.0197 
0.0207 0.0176 
0.0196 0.0168 
0.0193 O.OlGG 
0 0192 0.0163 

way the bending moment at any point of the x axis can be represented 
by the equation 

(nlz>,=o = f3qoa2 (ICI 

where p is a numerical fact,or depending on the abscissa z of the point, 
In a similar manner we get 

(M,),=o = p,qoa,2 

The numerical values of the factors p and @i in formulas (k) and (I) are 
given in Table 10. It is seen that for b 5 4a the moments are very close 
to the values of the moments in a strip under a tjriangular load. 

Equations (106) and (107) arc used to calculate shearing forces. From 
the first of these equations, by using expression (j), we obtain for points 
on the x axis 

= qo(a2 - 3x7 2q0a -~ 
6a T2 

m=l 
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The general expressions for shearing forces Qz and Q, are 

co Qz = yo(a26; 322) 2$” ~~~ c (- l)“+’ cash 7 

m2 cash CY, 
COs mT (m) 

m Q, = _ '5 c 
(- I)"+1 sinh !!?I! 

a 

m2 cash LY,,, 
sin y 

The magnitude of the vertical reactions V, and Vl, along the boundary 
is obtained by combining the shearing forces wit.h the derivatives of the 
twisting moments. Along the sides x = 0 and x = a these reactions can 
be represented in the form 

v, = (Qz - f$)z=o,z_a = + &7oa (0) 

TABLE 11. NUMERICAL FACTORS 6 AND 8, FOR REACTIONS OF SIMPLY 
SUPPORTED RECTANGULAR PLATES UNDER HYDROSTATIC PRESSURE q = pox/cc 

Y = 0.3, b > a 

b/a I - 
1.0 0.126 0.098 0.294 0.256 0.115 0.210 0.234 0.239 
1.1 0.136 0.107 0.304 0.267 0.110 0.199 0.221 0.224 
1.2 0.144 0.114 0.312 0.276 0.105 0.189 0.208 0.209 
1.3 0.150 0.121 0.318 0.284 0.100 0.178 0.196 0.196 
1.4 0.155 0.126 0.323 0.292 0.095 0.169 0.185 0.184 

1.5 0.159 0.132 0.327 0.297 0.090 0.160 0.175 0.174 
1.6 0.162 0.136 0.330 0.302 0.086 0.151 0.166 0.164 
1.7 0.164 0.140 0.332 0.306 0.082 0.144 0.157 0.155 
1.8 0.166 0.143 0.333 0.310 0.078 0.136 0.149 0.147 
1.9 0.167 0.146 0.334 0.313 0.074 0.130 0.142 0.140 

2.0 0.168 0.149 0.335 0.316 
3.0 0.169 0.163 0.336 0.331 
4.0 0.168 0.167 0.334 0.334 
5.0 0.167 0.167 0.334 0.335 
M 0.167 0.167 0.333 0.333 

0.071 0.124 0.135 0.134 
0.048 0.083 0.091 0.089 
0.036 0.063 0.068 0.067 
0.029 0.050 0.055 0.054 

y=o 

- 

y= 
0.25b 

- 

x=a 

y=o Y= X= 2= 5= x= 
0.251) 0.25~ 0.50a 0.6Oa 0.75a 

T- 

I- 

Reactions 6,qob 

- 

y = &b/2 

- 
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and along the sides y = L-b/2 in the form 

v, = (c)” - egg*,,, = fu%b (PI 

in which 6 and 61 are numerical fact,ors depending on the ratio b/a and 
on the coordinates of the points taken on the boundary. Several values 
of these factors are given in Table 11. 

The magnitude of concentrated forces that must be applied to prevent 
the corners of the plate rising up during bending can be found from the 
values of the twisting moments M,, at the corners. Since the load is not 
symmetrical, the reactions RI at z = 0 and y = F b/2 are different from 
the reactions Rz at x = a and y = *b/2. These reactions can be repre- 
sented in the following form: 

RI = nlqoab Rz = nzqoab (cl> 

The values of the numerical factors nl and nz are given in Table 12. 

TABLE 12. NUMERICAL FACTORS n, AND n2 IN EQS. Cc/) FOR REACTIVE FORCES 
RI AND It2 AT THE CORXERS OP' SI.MPLY SLWPOKPED RECTANGULAR PLATES 

UNDER HYDROST.ZTIC PRESSURE q = qax/a 

Y = 0.3, b > a 

n* 
na 

s’incc a uniform load ~0 is obtained by superposing the two triangular 
loads Q = qoz/a and qo(a - x)/a, it can be concluded that for correspond- 
ing values of b/a the sum nl + nz of the fact,ors given in Table 12 multi- 
plied by b/a must equal the corrcspondiug value of n, the last column in 
Table 8. 

If the relative dimensions of t’he plate are such that a in Fig. 66 is 
greater than b, then more rapidly converging series will be obtained by 
representing w1 and wz by the following espressions: 

WI = Q0-c: a & (16~~ - 240”!/” + 31, ‘) 

wz = c 
xzmel cos em - lb!/ 

b (s) 
V&=1 

The first of these expressions is the deflection of a narrow strip parallel to 
the y axis, supported at y = f b/2 and carrying a uniformly distributed 
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TABLE 15. NUMERICAL FACTORS 6 AND s1 FOR REACTIONS IN SIMPLY SUPPORTED 

RECTANGULAH PLATES UNDER HYDROSTATIC PI~ESS~RE q = qox/a 
Y = 0.3, b < a 

a/b 

5:0 
4.0 
3.0 
2.0 

1.9 
1.8 
1.7 
1.6 
1.5 

1.4 
1.3 
1.2 
1.1 
1.0 

I- 

_-  

-  

Reactions Gqoa 

x=0 

y = 0 f = b/4 x= 
2 , = b/4 y = 0 li 

2= 

0.250, 0.50a 
x= 2= 

0.60~ 0.75a 

i&S Oili 
0.013 0.010 
0.023 0.018 
0.050 0.038 

0.092 
0.112 
0.143 
0.197 

0:0;6 
0.093 
0.119 
0.166 

0.125 
0.125 
0.125 
0.125 
0.127 

0.250 0.300 0.375 
0.250 0.301 0.379 
0.251 0.301 0.377 
0.252 0.304 0.368 
0.251 0.296 0.337 

0.055 
0.060 
0.066 
0.073 
0.080 

0.041 0.205 0.172 0.127 0.251 0.294 0.331 
0.025 0.213 0.179 0.128 0.249 0.291 0.325 
0.050 0.221 0.187 0.127 0.248 0.288 0.318 
0.055 0.230 0.195 0.127 0.245 0.284 0.311 
0.060 0.240 0.204 0.127 0.243 0.279 0.302 

0.088 0.067 0.250 0.213 0.126 0.239 0.273 0.292 
0.097 0.07‘1 0.260 0.223 0.124 0.234 0.266 0.281 
0.106 0.081 0.271 0.233 0.122 0.227 0.257 0.269 
0.116 0.090 0.282 0.244 0.120 0.220 0.247 0.255 
0.126 0.098 0.294 0.25G 0.115 0.210 0.234 0.239 

T 

x=a v = &b/2 

- - - 

the strip is nom obtained by integration in the following form: 
cc 

4qoa2 

c 

1 . max a/2 

( sin q dE + 
i * wl = -i>71-1 2 sin cc (a - 8 _ oi2 

sin?di 1 in=1 m _ 8qoa4 
D7T6 c 

( - 1) (m-l)‘2 sin s 
m6 a (4 

m- 1.3,5, 

Substituting this in Eg. (a) and using Eq. (d) of the preceding article, 
we obtain 

P 
w - @a4 

2 1 

8( _ 1) (v-l)/2 
~-- 

D @m6 
m= 1,3,5, . . 

+ A, cash y + B, 7 sinh m$ sin m< 1 (d) 

This expression satisfies Eq. (103) and also the boundary conditions at 
the edges x = 0 and x = a. The constants A, and B, can be found 
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from the conditions along the edges y = &b/2, which are the same as in 
the preceding article and which give 

8(-1)(Tn-1)‘2 + n 
7r6m6 m 

cash a,, + Bma, sinh o(~,~ = 0 
(e) 

(2& + A,) cash a, + &,,(Y, sinh CY, = 0 

where, as before, we use the notation 

mnb 

Solving Eqs. (e), we find 

A = 4c2 + a, tanh CX,) (- 1)(m-1)‘2 
m +mG cash cx, 

L3 = 4( - 1)‘“‘-“‘2 (f) 
m 7hz6 cash 01, 

To obtain the deflection of the plate along the x axis we put y = 0 in 

TABLE 16. NUMERICAL F~WOIZS n, AND n2 IN Eus. (q) (ART. 31) FOR REACTIVE 
FORCES RI AND R, AT TIIE CORXERS OF SIMPLY SUPPORTED RECTANGULAR 

PLATES UNDER HYDROSTATIC PRESSURE q = qox/a 
Y = 0.3, b < a 

a/b 

expression (d). Then 

The maximum deflection is at the ccntcr of the plate, where 
co 

c/a4 
wmax = ~ D c i 

g& + A,( - 1) (7’1--1)‘2 
Ii 

w&=1,3.5, 

It can be represented in the form 

in which CY is a numerical factor depending on the magnitude of the ratio 
b/a. Several values of this factor are given in Table 17.l 

1 The tables are taken from the paper hy Qalerkiu, lot. cit. 
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TABLE 17. ~XUAIEEH~AI, FAC~~OES CY, p, 7, 6, n r'o~ SIMPLY SUPPORTED 
RECTANGULAR P~..~TEs GNDEH A LOAD I?; FORM OF A TKI~NCULAR PRISM 

Y = 0.3, b > n 

h /a 

1.0 
1.1 
1.2 
1.3 
1.4 

01 81 Y Yl 6 61 n -- - -~ 

0.00263 0.0317 0.199 0.315 0.147 0.250 0.038 
0.00314 0.0326 0.212 0.297 0.161 0.232 0.038 
0.00364 0.0330 0.222 0.280 0.173 0.216 0.037 
0.00411 0.0332 0.230 0.265 0.184 0.202 0.036 
0.00455 0.0331 0.236 0.250 0.193 0.189 0.035 

P -- 
0. 0:;,10 
0 .0390 
0.043G 
0.0479 
0.0518 

1.5 
1.6 
1.7 
1.8 
1.9 

0.00496 0 .032'9 0.241 0.236 0.202 0.178 0.034 
0.00533 0.0325 0.246 0.224 0.208 0.168 0 ,033 
0.005G7 0.0321 0.247 0 212 0.214 0.158 0.031 
0.00597 0.0316 0.249 0.201 0.220 0.150 0.030 
0.00625 0.0:311 0.251 0.191 0.224 0.142 0.029 

0.0554 
0.0586 
0.0615 
0.0641 
0.0664 

2.0 
3.0 
m 

0 .0685 
0.0794 
0. os3:5 
-- 

0.00649 0 .OYOB 0.252 0.183 0.228 0.135 0.028 
0.00783 0.0270 0.253 0.122 0.245 0.090 0.019 
0 0083Y 

L 
0 0250 0.250 0.250 

2.- -- 1. - - - 

Using expression (cl) and proceedin g as in the preceding article, we can 
readily obtain the expressions for bending moments M, and M,. The 
maximum values of these moments in this case are evidently at the center 

:!IfL)“,:,, 
= &On’ 

of the plate and can be represented in the fol- 
lowing form: 

(Mz)- = Pqua2 (M&w = PlqoaZ 

The values of the numerical factors fi and fir are 
also given in Table 17. This table also gives 

numerical factors y, 71, 6, 6r, and IL for calculating (1) shearing forces 
(Qz)m‘%x = yqou, (Qu)max = rrqob at the middle of the sides x = 0 and 
y = -b/Z of the plate, (2) reactive forces 

v, = (Q.. - q$)*2,x = Gqoa 

Vu = (Qu - 2),,.., = blob 

at the same points, and (3) concentrated reactions R = nqoab at the 
corners of the plate which are acting downward and prevent the corners 
of the plate from rising. All these values are given for b > a. When 
b < a, a better aon\~ergency can be obtained by taking the portion WI 
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TABLE 18. NUMERICAL FACTORS CY, p, y, 6, n FOR SIMPLY SUPPORTED 
RECTANGULAR PLATES UNDER A LOAD IN FORM OF‘ A TRIANGULAR PRISM 

Y = 0.3, b < a 

(1 /b 

cc 0.01302 0.0375 
3 0 0.00868 0.0387 
2.0 O.OOG8G 0.0392 
1.9 0.0065D 0.0392 
1.8 0.00624 0.0391 
1.7 0.00588 0.0390 
1.6 0.00549 0.0388 

1.5 0.00508 0.0386 
1.4 0.00464 0.0382 
1.3 0.00418 0.0376 
1.2 0.00367 0 .o:m 
1.1 0.0031G 0.0356 
1.0 0.002G3 0 .03-w - - 

ioi 

T 

a 

of the deflect 

- 

( 

P 

n of t1 

- 

/ 

L 

le 

:M,),lXLX 

= PlQOh 

81 

0.1250 

0.0922 
0.0707 
O.OG81 
0.0651 
O.OG09 
0.0585 

0.0548 
0.0.508 
0.3464 
0.0418 
0.03G9 
0.0317 

(Qz)innr (QuLx (V,) ll,ilX (V,Lx R 
= YQOU = rrqob = 6yoa = &qob = nqoab 

Y YI 6 72 

ii&i5 
0.091 
0.098 
O.lOG 
0.115 
0.124 

0.500 
0.442 
0.412 
0.407 
0.402 
0.396 
0.389 

iii; 
0.057 
0.062 
0.098 
0.074 
0.081 

0.500 
0.410 
0.365 
0.358 
0.350 
0.342 
0.332 

0.010 
0.023 
0.024 
0.026 
0.028 
0.029 

0.135 0.381 0.090 0.322 
0.146 0.371 0.099 0.311 
0.158 0.330 0.109 0.298 
0.171 0.347 0.120 0.284 
0.185 0.332 0.133 0.268 
0.199 0.315 0.147 0.250 

i 

0.031 
0.033 
0.035 
0.036 
0.037 
0.038 

plate in the fo rm of 

I 

t1 

- 

- 

ne deflection of a strip 
parallel to the y direction. We omit the derivations and give only the 
numerical results assembled in Table 18. 

Combining the load shown in Fig. 67a with 
the uniform load of intensity PO, the load p 
shown in Fig. 68 is obtained. Information D;r\l 
regarding dcflcctions and stresses in this lat- 
ter case can be obtained by combining the X 

data of Table 8 with those of Table 17 or 18. 
33. Partially Loaded Simply Supported 

Rectangular Plate. Let us consider a sym- i 
metrical case of bending in which a uniform 
load q is distributed over the shaded rectan- Y 
gle (Fig. 69) with the sides u and u. FIG. 69 

We begin by developing the load in the series 

ez 

-3 2 
(- l)‘“--“‘2 . ?1z7rU . 77rJr2 

H m sin ~ sin a (a) 2a 
m= 1.3,5, 
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which represents the load for the portion prst of the plate. The corre- 
sponding dcflcction of this portion of the plate is governed by the differ- 
ential equat,ion (103), which becomes m 
g+2gi4+ + ;;j = ;; c (- 1)(“-1)‘2 . mm.6 . m7rx (b) 

.> 
-- --___ sin 2a sin 7 

m 
m= 1,3.6, 

Let us again t’ake the deflection in the form 

w = w1-t w2 (cl 

where w1 is a particular solution of Eq. (b), independent of the variable y, 
that is, satisfying the equation 

m 

#WI 4q 
kc4 7rD c 

(- l)(rn-1)/Z mm mrx ~~-~- sin ~ sin ~-- 
m 2a a 

m=l,3,6... 

Integrating this latt,er equation with respect to x, we obtain 

Then wz must be a solution of Eq. (137) (page 114). Choosing t,he form 
(136) for this solution and kccpin, m in t,be espression (138) for Y, only 
even functions of u, becnusc of t,he symmetry of the deflection surface 
with respect to the x axis, we have, by Eq. (c), 

P 

w= 
2 ( 

a, + A, cosh ‘rAiy + B, ma?l sinh !?!I! 
a a > 

sin !?EE (e) 
a 

111 = 1 ,R, Tr , 

in which, this time, 

urn = ,~~j$ (_ 1)(77-1)/2 Sin ms (.f) 

Equation (e) reprcscnts deflections of the portion prst of the plate. 
(‘onsidering non; t,he unlonded portion of the plate below the line ts 

~,.~t con cake: the deflection surface in t,he form 
m 

wt = c ( _ 1 i,, cash “,“” + Rk 5%’ sinh ‘7 
m=1,3,.5,. 

+ CL sinh 7 + 0; mT cash T? sin 7 (g) 

It is now necessary t,o choose the constants A,, B,,, , 0; in t,he 
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series (e) and (g) in such a manner as to satisfy the boundary conditions 
at y = b/2 and the continuity conditions along the line ts. To repre- 
sent these conditions in a simpler form, let us introduce the notation 

m3rb mm 
a m=-g ym=- (h) 

The geomekic conditions along the line ts require that 

w = w' and 
aw ad 
$7 = ay for y = i 

Furthermore, since there are no concentrated forces applied along the 
line ts, t’he bending moments M, and the shearing forces Q, must be 
continuous along this line. Observing Eqs. (i) these latter conditions 
can be Jvritten down in the form 

a94 a2d ak a3d -=- 
w a!J2 

and - = __ ag ag for y = i (8 

Subst.itut’ing expressions (e) and (9) in Eqs. (i) and (j) and using notation 
(h), we can represent these equations in the following form: 

(A, - AL<) cash 2ym + (B, - Bk)2y, sinh 2y, 
- CL sinh 2y, - DhL2y, cash 2y, + a, = 0 

(AIL - AL&) sin11 2y7, + (EL - BL) (sinh 2~~ + 2ym cash 2y,) 
- c:, cash 2ym - DL(cosh 2ym + 2ym sinh ‘Ly,) = 0 

(-4, - AL) cod1 2ym + (B, - Bk)(2 cash 2y, + 2~~ sinh 2y,) (k) 

- CT’:,* sinh 2y, - Dk(2 sinh 2y, + 2ym cash 2y,) = 0 
(A, - AL) sinh 2y,, + (B, - BLJ(3 sinh 2ym + 2ym cash 2~~) 

- Cl, cash 2y, - Dk(3 cash 2y, + 2y, sinh 2y,) = 0 

From these equations me find 

A, - .Lik = a,(y, sinh 2y, - cash 2ym) 

B,, - B:, = f$’ cash 2ym 

CT:, = a,(~, cash 2ym - sinh 2y,) (0 

Q,, = 7 sinh 2ym 

To these four equations, containing six constants A,,,, . . . , Dk, we add 
tmo equations representing the boundary conditions at the edge y = b/2. 
Substituting expression (g) in the conditions w’ = 0, a2w’/ay2 = 0 at 
y = b/2 WC obtain 

A:, cash a, + B:, ay, sinh lym. + CL sinh 01, + Dga cash (Ye = 0 
BL cash CG,, + 0; sinh LY,,, = 0 (4 
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Equations (m), together with Eqs. (I), yield the constants 

A,=-& 
m 

cash (CY, - 2~~) + yrn sinh (am - 2x4 + (Y~ Efsfzrn 
1 

(n) 

B, = am 
2 cash CY, cash (a, - 2rm) 

Substituting these and expression (.f) in Eq. (e), we obtain 

m 

4qd WE--- 
D3r5 c 

m=1,3,5,. 

cash (CT, - 27,) + -ym sinh (CY~ - 27,) + corn ;:klT$ 
m 

+ 
cash (cx,n. - 27~~) n?? sinh 3 sin = 

2 cash 01, a 
1 

a ' a (142) 

From this equat’ion the deflection at any point of the loaded portion of 
t>he plate can be calculated. 

In the particular case where u = a and v = 0 we have, from Eqs. (h), 
Ym = c&/2. Espressions (n) become 

and Eq. (142) coincides with Eq. (139) (page 116) derived for a uni- 
formly loaded rectangular plate. 

The maximum deflection of the plate is at the center and is obtained 
by substituting y = 0, x = a/2 in formula (l-la), which gives 

27,) + 7n sinh ((u, - 2-y,) + (Y, ;‘~~5~~~]) .’ m 
(143) 

As a particular example let us consider the case where u = a and v is 
very small. This case represents a uniform distribution of load along 
the 1% axis. Considering yrn as small in Eq. (143) and ret,aining only small 
terms of the first order, we obtain, using the notation qv = qo, 

m 

q0a3 
Wmsx = --- 

c 

tanh (ym *m 

D79 cosh2 am (144) 
711 = 1.3.5, 
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For a square plate this equation gives 

Wmsx = 0.00674 Qoa3 
D 

In t,he general case the maximum deflection can be represented in t,he form 

W”1.X 
(pXL” 

=cy-- 

D 
for a < b 

(lob” 
= N 7,~ 

for n > b 

Several values of the coefficient cx are given in Table 19. 

TABLE 19. DEFLECTIOXS OF SIMPLY SUPPORTED RECTANGULAR PLATES 
UNIFORMLY LOADED ALONG THE AXIS OF SYMMETRY PARALLEL TO 

THE DIMENSION a 
‘urnax = aqoa3/D 

b/U 
I 
i 2 1.5 1.4 1.3 1.2 1.1 1.0 

a 0 OU!l87 0 00911 0.00882 0.00844 0.00799 0.00742 0.00674 
_~.. ~___ ~--___ ___- 

a/b 1.1 I .2 1.3 1.4 1.5 2.0 
01 0.00802 / 0.00926 0.010-U 0.01151 0.01251 O.OlG%S 0.0;083 I 

Returning to the general case where u is not necessarily small and z( 
may have any value, the expressions for the bending moments JI, and 
AI, can be derived by using Eq. (142). The maximum values of these 

TABLE 20. (:OEFI'I('IENTS p FOR (M ) z msx IN SIMPLY SUPI'ORTEU PAKTIALLY 
LOADED SQUARE PLATES 

Y = 0.3 ' 

(L/a = 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.321 
0.;78 0.284 
0.308 0.254 
0.262 0.225 
0.232 0.203 
0.208 0.185 

0.6 0.188 0.168 
0.7 0.170 0.153 
0.8 0.155 0.140 
0.9 0.141 0.127 
I .o 0.127 0.115 

: 0 0.3 1 0.4 j 0.5 1 0.6 / 0.7 1 0.8 j 0.9 1 1.0 
___-- ~ 

0.251 0.209 
0.232 0.197 
0.214 0.184 
0.195 0.168 
0.179 0.158 
0.164 0.146 

0.150 0.135 
0.137 0.124 
0.126 0.114 
0.115 0.104 
0.105 0.095 

0.180 
0.170 
0.161 
0.151 
0.141 
0.131 

0.125 0.112 
0.120 0.108 
0.114 0.103 
0.108 0.098 
0.102 0.092 
0.096 0.087 

0.090 0.081 
0.083 0.076 
0.077 0.070 
0.070 0.064 
0.064 0.058 

0.102 0.09" 
0.098 0.088 
0.093 0.084 
0.088 0.080 
0.084 0.076 
0.079 0.071 

0.074 0.067 
0.069 0.062 
0.063 0.057 
0.058 0.053 
0.053 0.048 
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TABLE 21. COEFFICIENTS p AND & FOR (M,),,, AND (My),,, IN PARTIALLY 
LOADED RECTANGULAR PLATES WITH 6 = 1.4a 

Y = 0.3 

u/a = 0 / 0.2 1 0.4 / 0.6 / 0.8 j-l.C- 0 / 0.2 / 0.4 1 0.6 / 0.8 1-1: 
-_ 

v/a 
Coefficient /3 in the exprrssion Coefhcient PI in the expression 

(M,),,, = PP (nf?,),,,, = PIP 

0 I I m 0.276~0.2080.1ci30.1340.110 m 0.2990.2300.1830.1510.1'5 
0.2 0.3320.2390.1860.1520.1250.1030.2460.2080.1750.1470.1240.102 
0.4 0.2610.2070.1680.1380.1150.0950.1770.1570.1380.1190.1010.08Y 
0.6 0.2190.1810.1510.1260.1050.0860.1380.1250.1110.0970.0830.069 
0.8 0.1870.1580.1340.1120.0940.0750.1120.1020.0910.0800.0690.058 
1.0 
1.2 

0.1620.1390.1180.1000.0840.0700.0930.0850.0770.0~i80.058,0.049 
0.1410.1220.1040.0890.0750.0620.0790.0i20.0650.0580.0500.042 

1.4 0.12~30.1000.0!~10.0770.0650.0540.0f~80.0620.05G0.050~0.0-130.036 

TABLE 22. COEFFICIENTS p AND p, FOR (M,),,,,, AND (dly)max IN PARTIALLY 
LOADED RECTANGULAR PLATES WITH b = 2a 

P = 0.3 

u/a = o / 0.2 / 0.4 / 0.G i 0.8 i 1.0 1 O / 0.2 ~ 0.4 1 0.6 1 0.8 ( 1.0 

v/a 
Coefficient p in expression Coefficient p, in expression 

(Mz)m,x = PP (M,),,, = PIP 
~____ 

0 m 0.2890.2200.1750.1440.118 m 0.2940.2250.1790.1480.122 
0.2 0.3470.2520.1990.1630.1350.1110.2420.2030.1700.1430.1200.099 
0.4 0.2750.2210.1810.1500.1250.1030.1720.1520.1330.1140.0970.081 
0.6 0.2330.1950.1640.1380.1150.0950.1330.1200.1060.0930.0790.066 
0.8 0.2030.1740.1480.1260.1060.0880.1070.0970.0870.0760.0650.054 
1.0 0.1790.1550.1340.1150.0970.0800.0890.0810.0730.0640.0550.046 

1.2 0.1610.1410.1220.1050.0890.0740.0740.0680.0610.0540.0460.039 
1.4 0.1440.1270.1110.0960.0810.0680.0640.0580.0520.04G0.0400.033 
1.6 0.1300.1150.1010.0870.07l0.0620.0560.0510.0460.0400.0350.029 
1.8 0.1180.1040.0910.0790.0670.0560.0~90.0450.0410.0360.0310.026 
2.0 0.1070.0940.0830.0720.0610.0510.04.10.0410.0370.0320.0280.023 

moments occur at the center of the plate and can be represented by the 
formulas 

(Mz) max = puvq = pP (My)max = Pwq = PIP 

where P = uvq is the total load. The values of the numerical factors /3 
for a square plate and for various sizes of the loaded rectangle are given 
in Table 20. The co&icients PI can also be obtained from this table by 
interchanging the positions of the letters u and V. 
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The numerical factors 0 and p1 for plates with the ratios b = 1.4~ and 
b = 2a are given in Tables 21 and 22, respectively.* 

34. Concentrated Load on a Simply Supported Rectangular Plate. 
Using Navier’s method an expression in double-series form has been 
obtained in Art. 29 for the deflection of a plate carrying a single load P 
at some given point x = E, y = 17 (Fig. 70). To obtain an equivalent 
solution in the form of a simple series we begin by representing the Navier 
solution (13::) in the following manner: 

0 

(a) 
m=l 

the coefficient X, being given by 

. nay 3in -- 
b 

Y 

Introducing the notation FIG. 70 

we can also represent expression (b) in the form 

To evaluatJe the sums (c) we use the known series 

which holds for 0 5 x < 2a and which we regard, first of all, as a func- 
tion S(a) of o(. Differentiation of the left-hand side of Eq. (e) with 
respect to a gives 

After differentiat,ing also the right-hand side of Eq. (e) and substituting 

1 The values of fir, and M, for various ratios u/b, u/u, and u/b are also given in the 
form of curves by G. Pigcnud, Ann. pants et chmmPe.s, 1929. See also Art. 37 of this 
book. 

WIN
Highlight
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the result in Eq. (f), we conclude that 

m 
c cos nz 1 asccr) T cosha(?r -2) 
n=l {c$ + n2)2 = - 2ff aff = - 2a4 sinh TCX 

T(P - 2) sinh CX(?T - z) - -~-- 
4cY2 smh TCY 

Now, to obtain the values of the sums (c) me have to put, in Eq. (cJ), 
first z = (a/b)(y - TJ), then x = (a/b)(y + 7) and, in addition, or = mb/a. 
Using these values for substitution in Eqs. (d) and (a) we arrive, finally, 
at the following expression for the deflection of the plate: 

c&h &?! c&h !!!!?Y! sill ?L7FE qin !?!!I!! 
b ’ b a ’ a 

m3 sinh Pm (14.5) 

y, = b - y and Y27 

In the case of !I < 9 ‘the quant’ity vl must be 
replaced by 2/ and the quautity 17 by T,Q = b - q, in 
using expression (14.5). 

Let us consider more closely the particular case 
X of a load P concentrated at a point A on the axis 

of symmetry of the plate, which may be used as the 
x axis (Fig. 71). With v = b/2 and the notation 

I 
Y 

FIG. 71 

WLlrb btn 
cyo, ZE -...- = - 

2a 2 (h) 

the general expression (14.5) for the deflection of the plate becomes 

‘D 
Pa2 

I0 = 2rr3B CI 
(1 + a, tan11 LY,,,) sinh Uf (6 - 2~) 

W&=1 
t 

I 

sill !?!?I> sin ‘n? 
- T (b - 2y) cash 2 (6 - 2~) --m3acoih o( a 

5. n (146) 

which is valid for !I > 0, that is, below the .?: axis in Fig. 71. Putting, 
in particular, !/ = 0 WC‘ ol)I niu the deflection of the plate along the zr axis 
is the form 
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m 

sin ~ sin !!?!Z-! md 

(w) Pa? tanh a,,, - Urn 
a a 

U-O = zr3D cosh2 a, m3 G> 
m=1 

This series converges rapidly, and the first few terms give the deflections 
with sufficient accuracy. In the case of a load P applied at the center of 
the plate, the maximum deflection, which is at the center, is obtained by 
substituting x = l = a/2 in expression (i). In this way we arrive at the 
result 

co 

tanh a, - cosG (y 
Pa2 

wn*x = --. =(y- 
D (147) m 

m=l 

Values of the numerical factor (r for various values of the ratio o/a are 
given in Table 23. 

TABLE 23. FACTOH a E‘OH DEFLECTION (147) OF A CENTRALLY I,OADEI) 
RECTANCKJLAR PLATE 

It is seen that, the maximum deflection rapidly approaches that of an 
infinitely long plak’ as the length of the plate increases. The compnri- 
son of the maximum deflection of a square plate with that of a ccntrnll~ 
loaded circular plntc inscribed in the square (see page 681 indicates that 
the deflection of the circular plate is larger than that of t,he corrciponding 
square plate. This result may be attributed to the action of the reactive 
forces concentrated at the corners of the square plate which have the 
tendency to product dcflcction of the plate convex upward. 

The calculation of bending moments is discussed in Arts. 35 and 37. 
36. Bending Moments in a Simply Supported Rectangular Plate with 

a Concentrated Load. To determine the bending moments along the 
central axis y = 0 of the plate loaded according to Fig. 71 we calculate 
the second derivatives of expression (146), which become 

1 The deflection of plates by a concentrated load was investigated expcrimcntally 
by M. BergstrLsscr; see Porschungsarb., vol. 30 2, Berlin, 19%; see also the report of 
?rr. M. Newmark and H. A. Lepper, Univ. Illinois Bull., vol. 36, no. 84, 1939. 
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Substituting these derivatives into expressions (101) for the bending 
moments, we obtain 

When b is very large in comparison with a, we can put 

tanh LY, = 1 ff?n 
cosh2 (Y, 

zz 0 

This series does not converge rapidly enough for a satisfactory calcu- 
lation of the moments in the vicinity of the point of application of the 
load P, so it is necessary to derive another form of representation of the 
moments near that point. From the discussion of bending of a circular 
plate by a force applied at the center (see Art. 19) we know that the 

shearing forces and bending moments become infi- 

~ 

nitely large at the point of application of the load. 
We have similar conditions also in the caseof a rec- 
t’angular plate. The stress distribut.ion within a 

-- [ -. 

0 
7 

circle of small radius with its center at the point of 
c----X A application of the load is substantially the same as 

that near the center of a centrally loaded circular 
plate. The bending stress at a point within this cir- 
cle may be considered as consisting of two parts: one 
is the same as that in the case of a centrally loaded 

1 ~~~- 0 -_-- circular plate of radius a, and the other represents the 

Y difference between the stresses in a circular and those 

FIG. 72 in a rectangular plate. As the distance r’ between 
the point of application of the load and the point 

under consideration becomes smaller and smaller, the first part of the 
stresses varies as log (a/r) and becomes infinite at t,he center, whereas 
the second part, representing the effect of the difference in the boundary 
conditions of the two plates, remains continuous. 

To obtain the expressions for bending moments in the vicinity of the 
point of application of the load we begin with the simpler case of an 
infinitely long plate (Fig. 72). The deflection of such a plate can readily 
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be derived from expression (146) by increasing the length of the side b, 
and consequently the quantity (Y, = ,mrb/2a, indefinitely, i.e., by putting 

tanh o(, N 1 cash CY, = +ea- 

sinh 7 (b - a!/) 
1 z co& !!f (t, - ‘Q) = 2 ,(~nJW(~--2r/) 

Substituting this into Eq. (146) the required deflection of the simply 
supported strip carrying a conccntrntjed load P nt LC = .$, ‘y = 0 becomes1 

which holds for 7~ 2 0, that is, below t;he II: axis (Fig. 72). 
The corresponding evpressiolls for the bending moments and the twist- 

ing moment are readily obtained by means of Eqs. (101) and (102). We 
have 

The moments (II!)) can be expressed no\v ilk terms of the function M in 
the following simple maruler: 

(151) 

1 This important case of bending of it plate has been discussed in detail by A. NSdai; 
SW his book “Elastische Flatten,” pp. 78-109, Berlin, 1925. 
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Summing up the series (150), we obtain the expression] 

aud, using Eqs. (151), we are able now to represent the moments of the 
infinitely Ioug plate in a closed form. Observing, furthermore, that 
AAw = 0 everywhere, except at the point (z = l, y = 0) of the appli- 
cation of the load, we conclude that the function M = -D Aw satisfies 
(except at the above-mentioned point’) the equation AIM = 0. By virtue 
of the second of the equations (111) the boundary condition M = 0 along 
the edges :L: = 0 and x = a is also satisfied by the function M. 

For the points along the 5 axis Eqs. (151) yield M, = M, and therefore 

(AI&o = (M,,)@ = (M),,, ‘I;y cc> 
Using Eqs. (c) and Eq. (152) in the particular case of a load applied at 

the center axis of the strip, $ = a/2, we obtain 

a result which also can be obtained by summation of the series (6). 
Now let us return to the calculation of bending moments for points 

which are close to the point of application of the load but not necessarily 
on the x axis. In this case the quantities (z - [) and y are small and, 
using expression (152), we can put 

Thus we arrive at the result 

P 
M = - log - 

4a 
I 

1 - cos 3 
a 7rzy2 9(x - .$)” +--I+- za2 

( ) 
2a sin 2 

2 
= $og 

2a sin d 

wr = &log pr a (153) 

1 See, for instance, W. Magnrls and F. Oberhcttinger, “Formeln und S&e fur die 
speziellen Funktionen der mathemat)ischen Physik,” 2d ed., p. 214, Berlin, 1948. 
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r = d/(x - .$)” + y2 

147 

represents the distance of the point under consideration from the point 
of application of t’he load P. Sow’, using expression (153) for substi- 
tution in Eqs. (151) we obtain the following expressions, valid for points 
in the vicinity of the concentrated load: 

It, is interesting to compa,re t,his result with that for a centrally loaded, 
simply supported circular plate (see Art. 19). Taking a radius r under 
an angle a to the 2 axis, we find, from Eqs. (90) and (91), for a circular 
plate 

The first terms of expressions (154) and (e) will coincide if we take the 
outer radius of the circular plate equal to 

2a ~4 - sin - 
lr a 

Under this condition the moments M, are the same for both cases. The 
moment M, for the long rectangular plate is obtained from that of the 
circular plate by subtraction of the constant quantity’ (1 - v)P/4rr. 
From this it can be concluded that in a long rectangular plate the stress 
distribution around the point of application of the load is obtained by 
superposing on the stresses of a centrally loaded circular plate with 
radius (2n/a) sin (~#a) a simple bending produced by the moments 
M, = -(I - v)P/47r. 

It may be assumed that the same relation between the moments of 
circular and long rectangular plates also holds in the case of a load P 
uniformly distributed over a circular area of small radius c. In such a 
case, for the center of a circular plate we obtain from Eq. (83), by neg- 
lecting the term containing c2, 
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Hence at t,he center of t#he loaded circular area of a long rectangular 
plate we obtain from Eqs. (154) 

[ 

2a sin I3 
M, = - E (l+V)log---;F~~ +1 

1 

2a sin 3 
(155) 

Lid u = -- ;, (1 + y) log --~$Y + 1 - &I&E 
[ I 

From this comparison of a long rectangular plate with a circular plate 
it may be concluded that all informat,ion regarding the local stresses at 
the point of application of the load I>, derived for a circular plate by 
using the thick-plate theory (see Art. 19), can also be applied in the case 
of a long rectangular plate. 

When the plate is not very long; Eqs. (a) should be used instead of 
Eq. (b) in the calculation of the moments M, and M, along the z axis. 
Since tanh o(~ approaches unity rapidly and cash o+~ becomes a large 
number when m increases, the differences between the sums of series (a) 
and the sum of series (6) c:an easily be calculated, and the moments n/I, 
and M, along the x axis and close to the point of application of the load 
can be represenkd in the following form: 

a 

P(l + V) log 2” sin 2 P 
47r xr + y1 G (15fg 

in which ~1 and y2 are numerical factors the magnitudes of which depend 
on the ratio D/a and the posit,ion of the load on the z axis. Several values 
of these factors for t,he case of central application of the load are given in 
Table 24. 

Again the stress distribution near the point of application of the 
load is substantially the same as for a centrally loaded circular plate 
of radius (2a/n) sin (~.$/a). To get the bending moments M, and M, 
11e:w the load we have only to superpose on t,he moments of the 
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TABLE 24. FACTORS yt AND ye IN EQS. (156) 

140 

I 
b/a 1.0 1.2 1.4 1.6 1.8 2. 0 Lo 

-_______ ~-- - 

Y 1 -0.565 --0.:150 -0.211 -0.125 -0.073 -0 042 ~ 0 
1'3 1 +0.135 I +o.t15 -to.085 +0.057 

I +O-Os7 
+o .o":< ) 0 

circular plate the uniform bending by the moments d1: = rIP/4w and 
q = -(I - V - ys)P/&r. hssuming that this conclusion holds also 
when the load P is uniformly distributed over a circle of :I small radiiIs r, 
we obtain for the center of the circle 

P 1 d 2a sin - 
M,=- (l+V)logm- 

AT L n-c 
u+1 +g 

1 

I 

1 

2a sin d 
(157) 

nr, = ;; (1 + v) log XC-: + I 
1 

- (1 - Y - yz) -g 

Just as in the case of a distributed load, reacti\-e forces acting down- 
ward and considerable clamping moments are produced by concentrated 
loads at the corners of a rectangular plate. The corner reactions 

R = nP (.f) 

due to a central load P are given in Table 25 by the numerical values of 
the factor YX, whereas the clampin, v moments have the value of - 12/2 
(see page 85). The computation of the values of R has been carried out 
by a simple method which will be described in Art. 36. 

The distribution of the bending moments and reactive pressures in the 
particular case of a square plate with a central load is shown in l;ig. 73. 
The dashed portion of the curves holds for a uniform distribution of the 
load P over the shadowed circular area with a radius of c = 0.05a. 

36. Rectangular Plates of Infinite Length with Simply Supported 
Edges. In our foregoing discussions infinitely long plates have been 
considered in several cases. The deflections and moments in such plat’es 
were usually obtained from the correspond&, (I‘ solutions for a finit,c plate 
by letting the length of t,he pln,te increase indefinitely. Tn some cases 
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Y 
Fro. 73 

it is advantageous to obtain solutions for an infinitely long plate first 
and combine them in such a way as to obtain the solution for a finite 
plate. Several examples of this method of solution will be given in this 
article. We begin with the case of an infinitely long plate of width a 
loaded along the x axis as shown in Fig. 74. Since the deflection surface 
is symmetrical with respect to the z axis, we need consider only the por- 
tion of the plate corresponding to positive values of y in our further dis- 

0 

cussion. Since the load is distributed only along 
the x axis, the deflection w of the plate satisfies the 

E equation 

* & T 
X 

;g+2ggi +$=o (a) ‘\I! 
2 2 

We take tjhe solution of this equation in the form 

4 m ---- (I ---- 
Y w= 

c 
Y, sin 7 (0) 

FIG. 74 m=l 

which satisfies the boundary conditions along the simply supported 
longitudinal edges of the plate. To satisfy Eq. (a), functions Y, must 
bc chosen so as to satisfy the equation 
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Taking the solution of this equation in the form 

y,n = Amemado + B, 7 ewh + Cme-mmh + D,, ?F elnsy/o (c) 

and observing that the deflections and their derivatives approach zero 
at a great distance from the II: axis, it may be concluded that the con- 
stants A, and B,, should be taken equal to zero. Hence solution (6) 
can be represented as follows: 

c-2 

/u = 
CC 

C,, + D,, y 
> 

e-m*gla sin y (4 
m=l 

From the condition of symmetry we have 

tJW (> dy l/=o = 
0 

This condition is satisfied by taking C, = D,, in expression (d). Then 

(e> 
,a = 1 

The constants C, can be readily calculated in each p:n%iculnr case pro- 
vided the load distribution along the .?: axis is given. 

As an example, assume that the load is uniformly distributed along 
the entire width of the plate. The intensity of loading can then be 
represent,cd by the following trigonometric series: m 

*=;qo c 1 mirx 
m sm a 

m = 1,3,5, , . 

in which qO is the load per unit length. Since the load is equally divided 
between the two halves of the plate, we see that 

(Q,),+ = --D&(2 + $),=. = - fq0 2 kain 7 (f) 
m=1,3,5.. . 

Substituting espression (e) for w, we obtain 
cc 

,n= 1 

m 

c m a 
m= 1,3,5, 

from which 

c, = ;;& where m = 1, 3, 5, . . . 
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The deflection is a maximum at the center of the plate (z = a/2, !/ = 0), 
where m 

(w),,, = $$; c 
(- 1)‘m-11’2 57rqocL3 

m4 1,530 (h) 
m=l,3,R ,... 

The same result can be obtained by setting tanh (Y, = 1 and cash (Y, = 00 
in Eq. (144) (see page 138). 

As another example of the application of solution (e), consider a load 
of length. u uniformly distributed along a portion of tht: 5 axis (Fig. 74). 
Representing this load distribution by a trigonometric series, we obtain 

where q. is the intensity of t>hc load along the loaded portion of the z axis. 
The equation for determinin g the constants C,, corresponding to Eq. (f), 
is 

Substituting e:;prcssion (e) for w, we obtain 

co m 

2Lw 

-74 

C,,m3 sin mirx 2~~ ~ = -- 
2 

-- I sin ma< -.~- 
3 

sin ?!??I!! sin T!!!!? 
a a 7r m a 2a a 

m=l m=l 

from which 

Expression (c) for the deflections then becomes 

The particular case of a concent,rntcd force applied at a distance .$ from 
the origin is obtained by makin, (I‘ the length IL of the loaded portion of the 
x axis infinitely small. Substituting 
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qou = P and 
mnu sin mT 5z -~- 

in Eq. (i), we obtain 

an expression that coincides with expression (148) of the preceding article. 
We can obtain various other cases of loading by 

integrating expression (i) for the deflection of a long 
plate under a load distributed along a portion u of the 
x axis. As an example, consider the case of a load 
of intensity q uniformly distributed over a rectangle 
with sides equal to u and v (shown shaded in Fig, 75). 
Taking an infinitesimal element of a load of magni- 
tude qu & at a distance r] from the x: axis, the corre- 
sponding deflection produced by this load at points 

Y 
with y > 7 is obtained by substituting q dq for qo and FIG. 75 
y - 7 for y in expression (i). The deflection pro- 
duced by t,he ent)ire load, at points for which y 2 v/2, is now obtained by 
integration ns follows: 

2 

w = 2%” 
T4D c . ._ --. sin ~-- sin ?I!!?? 1 rnrr.$ me6 

m4 a 2a a 
??L = 1 

e/a 

i’ i 

1 + y-T(y - r/g e-T- 

1 
d? 

--o/z u 
m 

qa3 

c 

1 rnr.$ . m7ru max 
dD 

- sin a sm ~ sin a 
m4 2a 

VZ=l 

By a proper change of the limits of integration the deflection at points 
with y < v/2 can also be obtained. Let us consider the deflection along 
the x axis (Fig. 75). The deflection produced by the upper half of the 
load is obtained from expression (j) by substituting the quantity v/4 for 
y and for v/2. By doubling the result obtained in this way we also take 
into account the action of the lower half of the load and finally obtain 
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When u = w , the load, indicated in Fig. 75, is expanded along the entire 
length of the plate, and the defiection surface is cylindrical. The corre- 

sponding deflection, from expression (k), is 

(w),,=o = $‘1; -$ ;$ sin a~ sin mHU yin 7 m=E . 2a 
m=l 

(0 

;\Iaking < = I( ~‘2 = ai2 in t,his expression, we obtain 

which represents the deflection curve of a uniformly loaded strip. 
The following expressions for bending moments produced by the load 

uniformly distributed along a portion u of t’he 5 axis are readily obtained 
from expression (i) for deflection w: 

sin 

sin 

rnr.$ . 
-a s1n 

ma4 . 
a sm 

mru 
2a 

mm 
2a 

These moments have their maximum values on the z axis, where 

(M,),_” = (J/r,),=0 

qoa(l + v) - 1 

c 

rn?r( . mwu 
a2 --> sin a sin ~ 

2a 
sin F (n) 

m=l 

In tht: particular case when { = u/2 = n/2, that is, when the load is 
distributed along the entire width of the plate, 

(ill,),,, = (Iliy),-0 = ““‘y v) c 1 . mm 
z sm a 

m= 1,3,5, . . . 

The maximum moment, is at, t,hr center of the plate where 
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m 

(M,),,, = (Mu),,, = puao c 
(- 1)‘m-11’2 

m2 
= O.O928qoa(l + 

m= 1,3,5,. . 

When u is very small, i.e., in the case of a concentrated load, we put 

. m7ru miru 
s1n a = 2a 

Then, from expression (n), we obtain 

and qlju = P 

which coincides with expression (b) of the preceding article and can he 
expressed also in a closed form (see page 146). 

In the case of a load q uniformly distributed over the area of a rec- 
tangle (Fig. 75), the bending moments for the portion of the plate for 
which y 2 v/2 are obtained by integration of expressions (m) as follows: 

m 

qa 1 . rn7rt . m7ru . m?rx 
= ?rz 

c 
2 sin a sin -2Y sin a 

llL=l 

([z - (1 - y) (!] - $1 ,-=P 

- 
F 
2 _ (1 - v) (y + $1 ,-%q 

The moments for the portion of the plate for which y < v/2 can be calcu- 
lakd in a similar manner. To obtain the moments along the CC axis, we 
have only to substitute v/2 for v and v/4 for y irl formulas (1%) and 
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double the results thus obtained. Hence 

If values of the moments at’ the center of the loaded rectangular area arc 
required, the calculation may also be carried out by means of expressions 
(167), which will be given in Art. 37. When u is very small, Eqs. (1GO) 
coincide with Eq. (n) if we observe that QV must be replaced in such a 
case by qo. When v is very large, we have the deflection of the plate to a 
cyljndrical surface, and ICqs. (160) become 

Y 
(0) 

Fro. 76 

-A- 
+ p- 
-;- 
$1 

~ 

-t-- 
.-L P, 

(b) ’ 

The expressions for the deflections 
and bending moments in a plate of finite 
length can be obtained from the corre- 
sponding quantities in an infinitely long 
plate by using the method of images.] 
Let us begin with the case of a concen- 
trated force P applied on the axis of 
symmetry J: of the rectangular plate 
with sides a and b in Fig. 7613. If we 
now imagine the plate prolonged in both 
the positive and the negative y direc- 
tions and loaded with a series of forces 
P applied along the line mn at a dis- 
tance b from one another and in alter- 

nat,e directions, as shown in Fig. 76b, the deflections of such an infinitely 

1 This method was used by A. N(Ldai (see 2. angew. Math. Mech., vol. 2, p, 1, 1922) 
2nd by hf. T. Huber (see %. angew, Math, Me& vol. 6, p. 228, 1926). 
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long plate are evidently equal to zero along the lines AIB1, AB, CD, 
CIDI, . . . . The bending moments along the same lines are also zero, 
and we may consider the given plate ABCD as a portion of the infinitely 
long plate loaded as shown in Fig. 76b. Hence, the deflection and the 
stresses produced in the given plate at the point of application 0 of the 
concentrated force can bc calculated by usin, v formulas derived for infi- 
nitely long plates. From Eq. (158) we find that the deflcctiou prodlrccd at, 
the rl; axis of the infinitely long plate by the load P applied at the point, 0 is 

m 

Pa2 
w1 = FD 

c 

I rn7r{ . mxx 
m3 Sill a- 8111 -a 

m=l 

The two adjacent forces P applied at the distances h from the point 0 
(Fig. 7Gb) produce at the x axis the deflect,ion 

in which, xs before, 
mab a 

nL = a- 

The forces P at the distance 2b from the point 0 produce at the x axis 
t,he deflection 

:tnd so on. The total deflection at the x axis I\-ill be given by the 
summation 

Observing t,hnt 
w = WI + ‘WQ + w3 + . * . (P) 

\ve can bring expression (p) into coincidence with expression (146) of 
Art. 34. 

I,et us apply the method of images to the calculation of the renrtivc force 
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acting at the corner D of the rectangular plate ABCD (Fig. 76) and produced by a load 
P at the center of this plate. Using Eqs. (151) and (152), we find that the general 
expression for the twisting moment of an infinitely long plate in the case of a single 
load becomes 

PC1 - V)Y = 
8a 

sin ____ 

cash ?f - coI T?! - 

4z + El 
sin ___ 

u 

cash “21 - cos ~ 42 + 5) 
a a I 

(!I) 

Hence a load P concentrated at z = f = a/2, y = 0 produces at z = 0 the twisting 
moment 

Now, putting y = b/2, 3b/2, 5bl%, . . . consecutively, we obtain the twisting 
moments produced by the loads iP acting above the line lX. Taking the sum of 
these moments we obtain 

M, = -PWl - ~1 1 3 -___ a 8a rb -Fb +---+ ” (s) 

cosh z cash - cash - 
2t1 2a 

To take into account the loads acting below the line DC we have to double the 
effect (s) of loads acting above the line DC in order to obtaiu the effect of all given 
ioatls. Thus we arrive at the final result 

M 
ZY 

= _ Pb(l - v) 

4a 
c 

(-1)(Wl)iZ 2-& w 
cash - 

Tn= 1,3,.x . . . 2a 

.\s for the reactive force acting downward at the point D, and consequently at the 
other corners of the plate, it is equal to R = -2M,,, M,, being given by Eq. (t). 

The method of images can be used also when the point of application of P is not on 
the axis of symmetry (Fig. 77~). The deflections and moments can be calculated by 
introducing a system of auxiliary forces as shown in the figure and using the formulas 
derived for an infinitely long plate. If the load is distributed over a rectangle, for- 
mulas (167), which will be given in Art. 37, can be used for calculating the bending 
moments produced by actual and auxiliary loads. 

37. Bending Moments in Simply Supported Rectangular Plates under a Load 
Uniformly Distributed over the Area of a Rectangle. Let us consider once more the 
practically important case of the loading represented in Fig. 78. If we proceed as 
described in Art. 33, we find that for small values of u/a and v/b the series representing 
the bending moments at the center of the loaded area converge slowly and become 
unsuitable for numerical computation. 

In order to derive more convenient formulas’ in this case let us introduce, in exten- 
sion of Eq. (119), the following notation: 

1 See S. Woinomsky-Krieger, Ingr.-Arch., vol. 21, p. 331, 1953. 
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Hence 

N = Mz - Mu 

l-v 
= -ll(~-$) 

M, = Q(l + v),kf + +(I - t’)N 
111, = Q(l + v)M - $(l - v)N 

(161) 

(162) 

At first let us consider n. clamped circ~rlar plate of a radius a~ with a central load, 
distributed as shown in Fig. 78. The bending 
moments at the center of such a plate can be 
obtained by use of the Michell solution, for an 
eccentric single load. If u and v are small in 

FIG. 77 Fro. 78 

comparison with no, the result, evaluated by due integration of expression (197) (p. 
29:3), can be put in the form 

M=gT 2+210gF-v 
( > 

in which 
1 1 

‘p = k arctnn - + - arctan k 
k k 

1 1 
$ = k arctan - - - arctan k 

k k 

kc! and d = da2 + v2 
u 

(a) 

(163) 

For a simply supported circular plate with the same radius a0 as before, we have to 
add a term P/k to Al, and Al, (see p. 68), i.e., a term P/2?r(l + V) to Al and nothing 
to N, so that these latter quantities become 

P 
+----m 

2?r(l + Y) 
@I 
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Finally, to obtain the corresponding expressions for an infinite strip (Fig. 75), 
we must assume no = 2a/7r sin (rg/a) and introduce an additional moment 
116, = -(I - v)P/~TT (see p. 147). This latter operation changes the quantity 
il l by -(I - v)P/4~(1 + Y) and the quantity N by +P/4,. Introducing this in 
Eqs. (b) we arrive at the result 

.a!! = ;* ( 4a sin 5 

2 log * 
) 

t-3-v (164) 

The values of the factors ‘p and $, depending only on the ratio v/u, are given in 
Table 26. 

Considering now the case of a rectan&ar plate (Fig. 78), we have only to take into 
account the cffcct of the auxiliary loads’ +P (Fig. 77) and to add this effect to the 
values (164) of M and N. The final result, in the case shown in Fig. 78, can then he 
put in the form 

(165) 

where ‘p, $, d are given by expressions (I 63) and Table 26, and 

m 

c 
e-a, 

x=3--4 
m?rt -----~- sin2 - 

COSll Olm a 
m=l 

cc2 (1’35) 

with CX,,, = mrb/2a. The terms A and I*, expressed by rapidly convcrgcnt series, are 
wholly independent of the dimensions ZL and v (and even the shape) of the loaded area. 
Their numerical values are given in Table 27. 

From Eqs. (162) we obtain the expressions for the bending moments 

I( 4a sin S 

M, =f 2 log 2+X-v (l+r)+(P+&)u--v) 
rd ) 1 (167) 

M, = Y 
ST 

2 log (1+v)-~P+~)u--v) 

acting at the center of the loaded area (Fig. 78). Expressions (165) and (167) are also 
applicable to the calculation of moments of a simply supported infinite strip as a 
particular case. 

1 It is permissible to regard them as concentrated provided u and a are small. 
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TABLE 26. VALUES OF THE FACTOR ‘p AND $ DEFINED BY EQS. (163) 
k = v/u 

k 

0 1.000 -1.000 1.0 1.571 
0.05 1.075 -0.923 1.1 1.569 
0.1 1. 14-2 -0.850 1.2 1.564 
0.2 1.262 -0.712 1.3 1.556 

G 
_- .-- 

0.000 
0.054 
0.104 
0.148 

2.5 1.427 0.475 
3.0 1.382 0.549 
4.0 1.311 0.648 
5.0 1.262 0.712 

0.3 1 ,355 -0.588 1.4 1.547 0.189 6.0 1.225 0.757 
0.4 1.427 -0.475 1.5 1.537 0.227 7.0 1.197 0.789 
0.5 1.481 -0.371 1.6 1.526 0.261 8.0 1.176 0.814 
0.6 1.519 -0.282 1.7 1.515 0.203 9.0 1.158 0.834 

0. 7 I.545 -0.200 I.8 1.504 0.322 10 1.144 0.850 
0.8 1.560 -0.127 1.9 1.492 0.349 20 1.075 0.923 
0.9 1.568 -0.060 2.0 1.481 0.37,1 m 1.000 1.000 

- 

‘P 

- 

k (0 

- 

- 

k 

- 

TABLE 27. VALYJES OF THE FACTORS X AND p (EQ. 166) FOR SIMPLY SUPPORTED 
RECTAXGULAR PLATES 

x for E/u = 
h/(X - 

0.1 0.2 0.3 0.4 0.5 0.1 
-___ ___ ~ -- 

0..5 2.792 2.352 1.945 1.686 1.599 0.557 
0.6 2.861 2.5-15 2.227 2.011 1.936 0.677 
0.7 2.904 2.677 2.333 2.25!1 2.198 0.758 
0.8 2.933 2.768 2.584 2A-28 2.39!1 0.814 
0.9 2.95% 2.832 2.G94 2.591 2.553 0.856 

1.0 2.966 2.879 2.776 2.G98 2.669 0.887 
1.2 2.982 2.933 2.880 2.836 2.820 0.931 
1.4 2.990 2.9G6 2.936 2.912 2.903 0.958 
1.6 2.995 2.982 2.966 2.953 2.948 0.975 
1.8 2.997 2.990 2.9s’L 2.975 2.972 0.985 

2.0 2.999 2.995 2.990 2.987 2.985 0.991 
3.0 3.000 3.000 3.000 2.999 2.9!30 0.999 
m 3.000 3.000 3.000 3.000 3.000 1.000 

p for t/n = 

0.2 0.3 0.4 0.5 
.- 

-0.179 -0.647 -0.852 -0.906 
0.053 -0.430 -0.701 -0.779 
0.240 - 0. 2°C) Y, -0.514 -0.605 
0.391 -0.031 -0.310 -0.404 
0.456 0.148 -0.108 -0.198 

0.611 0.304 0.080 0.000 
0.756 0.551 0.393 0.335 
0.849 0.719 0.616 0.578 
0.908 0.828 0.764 0.740 
0.945 0.897 0.858 0.843 

0.968 0.939 0.915 0.906 
0.998 0.996 0.995 0.994 
1.000 1.000 1.000 1.000 

- 
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Extending the integration over circular, elliptic, and other areas, the corresponding 
expressions for M and RT for these loadings are readily found. Taking, for instance, 

a circular loaded area (Fig. 79) we obtain for its center 

Y 
FIG. 79 

2a sin S 
2log---- a +x-z 

XC > W3) 

these expressions being equivalent to the result (157). 
Comparing (168) with expressions (l&5) for k = I, we 
may conclude that a circular and a square loaded area 
are equivalent with respect to the bending moments they 
produce at the center of the area, if 

c = 3 e*/4-1 = 0.57~ or u = 0.88 X 2c (c) 

It should be noted that, as the load becomes more and more concentrated, the 
accuracy of the approximate logarithmic formulas for the bending moments, such as 
given by Eqs. (157) and (167), increases while the convergence of the customary series 
representing these moments becomes slower. Numerical calculations’ show also that 
the accuracy of those approximate formulas is entirely sufficient for practical purposes. 

38. Thermal Stresses in Simply Supported Rectangular Plates. Let 
us assume that the upper surface of a rectangular plate is kept at a higher 
temperature t’han the lower surface so that the plate has a tendency to 
bend convexly upward because of nonuniform heating. Because of the 
constraint along the simply supported edges of the plate, which prevents 
the edges from leaving the plane of the supports, the nonuniform hent- 
ing of the plate produces certain reactions along the boundary of the 
plate and cert,ain bending stresses at a distance from the edges. The 
method described in Art. 24 will be used in calculating these stresses.2 
We assume first that the edges of the plate are clamped. In such a case 
the nonuniform heating produces uniformly distributed bending moments 
along the boundary whose magnitude is (see page 50) 

where t is the difference between the temperatures of the upper and the 
lower surfaces of the plate and LY is the coefficient of thermal expansion. 

1 See 8. Woinowsky-Kricger, Z,ngr.-ilrch., vol. 3, p. 340, 1932; and Zngr.-Arch., vol. 
21, pp. 336, 337, 1953. 

2 See paper by J. L. Maulbctsch, J. Appl. Mechanics, vol. 2, p. 141, 1935; see also 
E. Melan and H. Parkus, “Wlrmcspannungen infolge stationgrer Temperaturfelder,” 
Vienna, 1953, which includes a bibliography on thermal stresses. For stresses due to 
assemblage errors in plates, see W. Nowacki, Rull. acad. polo*. sci., vol. 4, p. 79, 1956. 
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To get the bending moments M, and M, for a simply supported plate 
(Fig. SZ), we must superpose on the uniformly dist,ributed moments given 
by Eq. (a) the moments that are produced in a simply supported rec- 
tangular plate by the moments ML = --octD(l + v),/h uniformly dis- 
tributed along the edges. We shall use Eqs. (120) (see page 92) in dis- 
cussing this latter problem. Since the curvature in the direction of an 
edge is zero in the case of simply supported edges, we have MI = vMh. 
Hence at the boundary 

M = M, + Mu _ M:, f M: _ atD(1 + v) 
1$-v - 1+v -- h 6) 

Thus the first of equations (120) is satisfied by taking M constant along 
the entire plate and equal to its boundary value (b). Then the second 
of equations (120) gives 

;: 1 ;; - 41hi- 4 cc> 

Hence the deflection surface of the plate produced by nonuniform hcat- 
ing is the same as that of a uniformly stretched and uniformly loaded 
rectangular membrane and is obtained by finding the solution of Eq. (c) 
that satisfies the condition that UI = 0 at the boundary. 

Proceeding as before, we take the deflection surface of the plate in the 
form 

w = WI + wz (n’, 
in which w1 is the deflection of a perfectly flexible string loaded uni- 
formly and stretched axially in such a way that the intensity of the load 
divided by the axial force is equal to --~~t(l + v)/h. In such a case the 
deflection curve is a parabola which can be represented by a trigonometric 
series as follows: 

w1 = _ 4 + v) z(a - 5) 
h 2 

m 

sin 7 
=- &(l + v) 4a2 ~- 

h iT3 
2 

ma 
m=1,3,,5,. 

This expression sat,isfies Eq. (c). The deflection wz, which must satisfy 
the equation 

d2Wz a2wz 
zfdyLI=O (f> 

can be taken in the form of the series 

w2 = c Y, sin m$ 
m=1,3,6,... 

(9) 
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in which Y, is a function of y only. Substituting (g) in Eq. (.f), we find 

Hence 

Y; - 

Y, = A,, sinh 7 + B, cash ‘E:g (h) 

From the symmetry of the deflection surface with respect to the J: axis 
it may be concluded that Y,,, must, be an even function of y. Hence the 
constant A,, in t,he expression (!L) must be taken equal to zero, and we 
finally obtain 

cc 

w = WI + wz = c sin 5 _ F 
m = 1,3,5 , . . . 

cd(l + v) 4a2 
h 7r3m3 

This expression satisfies the boundary conditions w = 0 at the edi:: 
z = 0 and z = a. To satisfy the same condition at the edges y = i b/2, 
we must have 

+ B, cash m+ 

B, cosh ??!$ - a”‘lh+ ‘) 2% = 0 

Substituting the value of B, obtained from this equation in Eq. (i), 
we find that 

in which, as before, a, = mrb/2a. 
Having this expression for the deflections 20, WC can find the corre- 

sponding values of bending moments; and, combining them with the 
moments (a), we finally obtain 

co 
c 

m7ry 
= g&(1 - v”) 

sill l!?!Z ~0~1~ --.. 
a a 

rh m cash CY, 
nk= 1,3,5, . . 

~,2wp-I) $+v!T$ 

( ) 
m 

olt(l - v”)D 4Dcut(l - v”) sin y cash m?FIJ 

h rrh 
2 

a 
m cash CY, 

7n= 1,3,5,. , , 

(k) 
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The sum of the series that appears in these expressions can be readily 
found if we put it in the following form: m 
c ~~ _____ 

m cash 01, 
7x=1,3,5,... 

emr!Jio sin max __ 
a = _-____ 

me”- ) 
m= 1.3,s 

m 

The first series on the right-hand side of this equation converges rapidly, 
since cash (mrg/a) and cash CY, rapidly approach efnrrg’a and ~1 as m 
increases. The second series can bc represented as fol1ows.l 

The bending moments M, and M, have their maximum values at, the 
boundary. These values are 

It is seen that these moments are obtained by multiplying the value of 
M,, in formula (a) by (1 - v). The same conclusion is reached if we 
observe that the moments 111; which were applied along the boundary 
produce in the perpendicular direction the moments 

which superposed on the moment (a) give the value (75). 
39. The Effect of Transverse Shear Deformation on the Bending of 

Thin Plates. We hnvc seen that the customary theory of thin elastic 
plates leads to a differential equation (103) of the fourth order for the 

1 See IV. E. Byerly, “Elementary Treatise on Fourier Series and Spherical, Cylin- 
drical and Ellipsoidnl Hnrmonics,” p. 100, Boston, 1893. The result can be easily 
obtained by using the known series 

1 2x sin rp 
G n&an __ -- 
i I --x2 

= 2 sin ‘p -f : sin 3~ + $ sin 59 + . 
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deflection and, accordingly, to two boundary conditions which can and 
must be satisfied at each edge. For a plate of a finite thickness, how- 
ever, it appears more natural to require the fulfillment of three boundary 
conditions than of two. The formal reason for the impossibility of satis- 
fying more than two conclitJions by the customary theory has been the 
order of the basic equation of this theory; physically this reason lies in 
the fact that the distortion of the elements of the plate due to transverse 
forces such as Q (page 52), QZ, and Q, (page 79) has been neglected in 
establishing the relations between the stresses and the deflection of the 
plate. The disregard of the deformation due to the transverse stress 
component obviously is equivalent to the assumption of a shearing 
modulus G, = CC ; proceeding in this way we replace the actual material 
of the plate, supposed to be isotropic, by a hypothetic material of no 
perfect isotropy. Owing to the assumption G, = CQ the plate does not 
respond to a rotation of some couple applied at the cylindrical surface 
of the plate, if the vector of the couple coincides with the normal to this 

FIG. 80 

surface. This enables us to identify 
the variation aM,,/dy of twisting cou- 
ples due to horizontal shearing stresses 
and acting along an edge x = a with 
the effect of vertical forces Q, applied 
at the same edge, thus reducing the 
number of the edge conditions from 
three to two (page 83). The stress 
analysis of the elastic plates is greatly 
simplified by this reduction. On the 
other hand, in attributing some purely 

hypothet,ic properties to the material of the plate we cannot expect com- 
plete agreement of the theoretical stress distribution with the actual one. 
The inaccuracy of the customary thin-plate theory becomes of practical 
interest in the edge zones of plates and around holes that have a diameter 
which is not large in comparison with the thickness of the plate. 

The generalization of the customary theory with respect to the effect 
of shear deformation is subst’antially due to E. Reissner.’ 

Let us consider an element of the plate submitted to the external 
transversal load q do dy and to a system of stress componcms (Fig. 80). 

In accordance with E. Reissner’s theory we assume a linear law for the 
distribution of the stress components uZ, uy, and rZU through the thickness 
of the plate. By equations of equilibrium (a) on page 98 the distribu- 

1 See J. Math. and Phys., vol. 23, p. 184, 1944; J. Appl. Mechanics, vol. 12, p. A-68, 
1945; Quart. Appl. Math., vol. 5, p. 55, 1947. For the history of this question going 
hack to B controversy between M. L&y and Boussincsq, see L. Bollo, Hull. 2ech. Suiase 
ronmnde, Octolm, 1947. 
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tion of the components 7zz and rUr then follows a parabolic law. As for 
the stress component u, it is readily obtained from the third of equations 
of equilibrium (a) if one takes into account the conditions 

(U&=--h/Z = -q (U&=h,‘L = 0 

at the upper and lower surface of the plate. We arrive, in this manner, 
at the following expressions for the stress components in terms of their 
resultants and the coordinate z: 

Ca) 

Except for Eq. (b) the foregoing system of equations coincides with the 
corresponding relations of the cust#omary theory, In like manner we can 
rewrite the following conditions of equilibrium of the stress resultants 
(see pages 80, 81): 

~+!$+,=o (cl 
aM, aM,, ~ _ 
ax --Q&,=0 

dY 
aM, aM, 

ay 
p-Q,=0 ax 

(4 

Assuming an isotropic material and supposing the displacements u,,, vu, 
wa of any point of the plate to be small as compared with its thickness h, 
we make use of the general stress-strain relations 

au0 
-- = ; [a, - v(u, + a,)] ax 

in which G = E/2(1 + v). We do not use the sixth relation 

(e) 

awe l bz dn = z - v(u.7 + q/)1 
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however, since this latter proves to be in contradiction with the assumed 
linear lam for the distribution of the stresses uz, u!,, T,!,. 

Next,l we introduce some average value w of the transverse displace- 
ment, taken over the thickness of t,hc plate, as well as some average values 
p2. and pU of the rotat>ion of the sections n: = constant and y = constant, 
respectively. We dcfinc these quantit,ies by equating the work of the 
resultant couples on the average rotations and the work of the resultant 
forces on the average displnccment to the work of the corresponding 
stresses on the actual displacements ~0, ~0, and wo in the same section; 
i.e., we put 

s h/2 

-h/2 
rzzwo dz = f&w s h/2 

-h/Z 
TyzWO dz = Qyw 

Now, substituting expressions (a) for the stresses in Eqs. (j), we arrive at 
the following relations between the average and the actual displacements: 

(9) 
12 

s 

h/2 2102 
Y ’ = @ - dx --h/2 h 

Using Eqs. (e) and otwrving F:q. (h), we are also able to express the 
stress components uz, uy, and 7xy in terms of the actual disl)laccmcnts; 
WC find” 

1 E. Rcissner, in his treatment of the subject,, makes use of Castigliano’s principle of 
least work to introduce the conditions of compatibility in the analysis. The method 
here followed and leading to substantially the same results is due to A. I<. Green, 
Quart. dppl. M&z., vol. 7, p. 223, 1949. See also Bf. Schlifer, Z. any~w. Math. Mech., 
vol. 32, p. 161, 19.52. 

2 Terms with 23 do not actually occur in the following expressions for gz and ny 
since they are canceled out, by identical terms with oppositr sign contained in &,/ax 
and &,/a~. 
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Substituting this in Eqs. (a), multiplying the obtained equations by 
122 &z/h”, integrating between z = -h/2 and z = h/2, and observing 
relations (g), we arrive at the expressions 

1 

1 (4 

in which D is defined, as before, by Eq. (3). In like manner, substituting 
expressions (a) for the stress components 7Zr and rUz in the last two equa- 
tions (e), multiplying the result by jJ[ 1 - (2z/h)2] d/h, and integrating 
between the limits z = + h/2, we obtain 

Now, eight unknown quantities, namely M,, M,, M,, Qz, QU, w, c,o=, and 
‘pU, are connected by t,wo equations (j), three equations (i), and, finally, 
by three equations of equilibrium (c) and (d). 

In order to transform this set of equations into a form more convenient 
for analysis we eliminate the quantities ppz and ‘py from Eqs. (j) and (i), 
and, taking into account Eq. (c), we obtain 

(k) 

Substitution of these expressions in Eqs. (d) yields, if one observes Eq. 
(c), the result 

Q,+Qz= -DF--“- aq 
lO(1 - v) a.?: 

Q,+Q,= -D?@$-‘“__% 
io(i - v) ag 

(0 

in which, as before, the symbol A has the meaning (105). In the par- 
ticular case of h = 0, that is, of an infinitely thin plate, the foregoing 
set of five equations, expressions (Ic) and (I), gives Eqs. (101) and (102) 
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for the moments and Eqs. (108) for the shearing forces of the customary 
thin-plate theory. 

To obtain the more complete differential equation for the deflection 
of the plate we only have to substitute expressions (1) in Eq. (c); thus 
we obtain 

h22- v 
DAAW = q -lol- Aq 

V 
(1W 

We can satisfy this equation by t’aking w, that is, the “average deflection” 
at (z,y), in the form 

w = w’ + w” Cm) 

in which SU’ is a part)icular solution of the equat)ion 

and w” is t.he general solution of the equation 

AAw” = 0 (0) 

Therefore, using Eq. (IGY), ne arc able, just as in the ordinary thin-plate 
t,heory, t,o satisfy four boundary conditions in all. We can obtain a sup- 
plementary differential equation, however, by introducing into consider- 
ation the shearing forces & :~nd Q!,. Equation of equilibrium (c) is 
satisfied, in fact, if wc express t’hese forces in n form suggested by the 
form of Eqs. (0, i.c.. 

In these expressions # denotes some new stress function, whereas Qb and 
(ilb must satisfy the relations 

as we can conclude from Eqs. (I) and (n). Differentint~ing the foregoing 
equations with respect to x and y, respectively, and adding the results 
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we arrive at the condition of equilibrium 

dQ:: x-+%+n=o 
‘I’o establish a differential equ:ztion for the stress function + MT substitute 
expressions (y) in Eqs. (1) 1vit.h the result 

from which we conclude that the expressions in parentheses are COW 
stnnts. Making these constants equal to zero we have the relation 

(170) 

which, still assuming that) h # 0, yields a second fundamental equntiorl 

of the generalized theory of bending, in addition to Eq. (169). 
Having established two differential equntions, one of which is of the 

fourth and the other of the second order, we now are ublc to satisfy three 
conditions, instead of only two, on the edge of the plate. Considering 
the general case of an element1 of the cylindrical boundary of the plat,e 
given by the directions of the normal n and the tangent, t (Fig. 54) we can, 
for instance, fix the position of the element by the equations 

U’ z.z 27; 5% = p’n pt = @t (u) 

Herein @ is the given average deflection and p,, and @,t are the given 
average rotations of the element with respect to the a.xes t and 12 respec- 
tively. In the particular case of a built-in edge the condiCons arc w = 0, 
(Pn = 0, and (Pi = 0. Instead of displacements some values an, a,, 
Mrrt of the resultants may be prescribed on the boundary, and the corre- 
sponding edge conditions would be 

Qn = al Al, = llz, M, t = LIT,, * (v) 

Hence the conditions along a free edge are expressed by equations Q, = 0, 
M, = 0, LI~,,~ = 0, and for a simply support)cd edge the conditions are 
w = 0, M,, = 0, ill,Lt = 0. In the latter case we obtain no concentrated 
reactions at the corners of the plate, which act there according to the 
customary theory and tire in obvious cont’radiction to the disregard of 
the shear deformation postulated by this theory. 

As an illustration of the refined theory let US consider a plate in form of a setni- 
infinite rectangle bounded by two parallel edges 11 = 0, y = a and the edge z = 0. 
We asswne that there is no load acting on the plate, that the deflections w and the 
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bending moments 2111, vanish along the edges y = 0, y = a, and that the edge z = 0 
is subjected to bending and twisting moments and to shearing forces given by 

n=y M, = Mosin- 
a 

(WI 

w4 
Qz = QO sin - 

a 

where Ma, HO, QO are constants and n is an integer. Then, in view of * = 0, we have 
10’ = 0 by Eq. (n) and w = W” by Eq. (vL). We can satisfy Eq. (0) and the condition 
of vanishing deflections at z = m by taking 

A and l3 being any constants. Next, assuming for $ a solution of the form 

n=y 2) = x co9 - 
a 

where X is a function of 2 alone, and substituting this in Eq. (170) we obtain 

* = Ce-20 cos ET.!! 
a 

In this last expression 

and C is a constant. From Eqs. (r) we have Q: = Q: = 0 and Eqs. (n) give 

Finally, Eqs. (h-) yield the following expressions for moments acting along the edge 
z = 0: 

(M&o = 

Equating these expressions, together with the expression for the shearing force 

to the expressions (w), respectively, we obtain a set of three equations sufficient to 
calculate the unknown constants A, R, and C. In this way, by using the refined plate 
theory, all three conditions at the edge z = 0 are satisfied. 
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Considering now the edges y = 0 we see that w vanishes along those edges, and M, 
also vanishes there, as can be proved by substituting t,he expression for Qv into 
the second of equations (k). 

Another theory of plates that takes into account the transversal &car deformation 
has been advanced by A. Kromm.1 This theory neglects the transverse contraction 
E= but, in return, does not restrict the mode of distribution of bending stresses across 
the thickness of the plate to a linear lam. Applying this theory to the wise of a 
uniformly loaded, simply supported square p1at.e with a/h = 30, Kromm found the 
distribution of shear forces act,ing along the edge as shown in Fig. 81. For comparison 
the results of customary theory (Fig. 63) are also shown by the dashed line and the 

forces 12. We see that, as soon as the transversal shear deformation is taken into 
account, no concentrated reaction is obtained at the corner point of the plate. The 
corresponding negative forces are distributed instead over a small portion of the 
boundary adjacent to t.he corner, yielding at the corner itself a finite pressure acting 
downward. The moments M,, on the four sides of the plate are zero in that solution. 

Still another approach to the theory of shear deformation can be found in a paper 
of H. Hencky.2 

40. Rectangular Plates of Variable Thickness.$ In deriving the differential equa- 
tion of equilibrium of plates of variable thickness, we assume that there is no abrupt 
variation in thickness so that the expressions for bending and twisting moments 
derived for plates of constant thickness apply with sufficient accuracy to this case also. 
Then 

AL=-D($+v$) Al,.=-D(~+,~) 

AT,, = -Al,, = D(1 - V) ?!!L 

() 

a 

ax au 

1 A. Kromm, Ingr.-Arch., vol. 21, p. 266, 1953; Z. anger. Math. Mech., vol. 35, p. 
231, 1955. 

2 Zngr.-Arch., vol. 16, p. 72, 1947. 
8 This problem was discussed by R. Gran Olsson, Zngr.-Arch., vol. 5, p. 363, 1934; 

see also E. Reissner, J. Math. and Phys., vol. 16, p. 43, 1937. 
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Substituting these expressions in the differential equation of equilibrium of an clement 
[Eq. (loo), page 811, 

PM, -- 
a22 

2 
GM,, PM, -++= 
ax ay aY2 

-q (h) 

and observing that the flexural rigidity D is no longer a constant but a fllnction of the 
coordinates I and 21, we obtain 

+An.h-(1-v) = q (171) 

where, as beforc, we employ the notation 

As a particular example of the application of Eq. (171) let us consider the case in 
which the flexural rigidity D is a linear function of 2, expressed in the form 

II = Do $ Dly (cl 

where DO and DI are constants. 

‘Y 
FIG. 82 

In such a case Eq. 

or 

a 
(Do + .&!/)AAw + 2D, - Aw = q 

a?/ 

A[(& + DIY) Awl = q (172) 

Let us consider the case in which the intensit,y of the load q is proportional to the 
flexural rigidity D. 1%’ e s ~a 1 11 assume the deflection of the plate (Fig. 82) in the form 

w = WI + w* 

and let 10~ equal the deflection of a strip parallel to the z axis cut from the plate and 
loaded wit,h a load of intensity 
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This deflection can be represented, as before, by the trigonometric series 

175 

Dl 
( ) 

m m 4qo 1 + E’J a4 1 . m7rx 4qon4 

w1 = (Do + D,y)?r~ - c 
- sin __ zx - 
m5 a dD0 

c 

-L sin 7 (e) 
rn6 

m=1,3.5,... m- 1,3,5, . 

By substitution we can readily show that this expression for %C’I satisfies Eq. (1%). 
It sntisfics also the boundary conditions ~1 = 0 and I%P~/~Iz~ = 0 along the supported 
edges 2 = 0 and x = n. 

The &&&on w1 must then satisfy the homogeneous equatjion 

A[(& + DG/) Am1 = 0 (.f) 

\\‘c take it in t,he form of n scrirs 
m 

Substituting this scrios in Eq. (f), we find that the functions I-,, satisfy the following 
ordinary differential equation : 

(~-~)[(,,,;1)I1,)(y,-~Y~)l =O 

Using the notation 

> 
7 = 01, 

we find, from Eq. (h), 

fm = AmleanS/ + B,e-%v 

Then, from Ey. (i), we obtain 

1.:; -- <x2,1.,,, = 
,4 n,@d~ + B,e-%a 

Do -t Da 

The general solution of this cquntion is 

(h) 

(9 

(j) 

Y, = C,,,e%v + D,,,e-“mu + q,,, (k) 

in which g,n is :I particular integral of Eq. ( j). To find this particular integral we use 
the Lagrange method of variation of constants; i.e., we assume that. g,,& has the form 

q,,, = E,,,P~~J + F,,eea,n* (0 

in which E,, and F, are functions of y. These funct,ions have to he determined from 
the following equations:’ 

El,eaa + FLeead = 0 

1 E!: and F’, in these equations are the derivatives with respect to 1, of II:,,, and P,,,. 
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from which 

THEOZlY OF PLATES AND SHELLS 

Integrating these equations, 

Em = 
s 

A,, + Bj,Czamu 
- dy 2orm(Do + UlY) 

E, = A,,, -t- BnLe-zan~y 
m 2a,(Do + DlY) 

FL, = - 
A,eznm* + B, 
2cY,(Do + DlY) 

572 find 

d[2cx,(Do + OI?/)l 
Ba,rL(Do + DIY) 

Substituting these expressions in Eqs. (1) and (k) and using the notation’ 

/ 

u 
E;(u) = “” du Ec(--u) = 

-cc tt 

we represent functions Y, in the following form : 

+ Cnt”Tn” + D,,Le-=,,u (m) 

The four constants of integration A’,, B’,, C,,, D,,, are obtained from the boundary 
conditions along the sides y = 0 and q = b. In the case of simply supported edges 
these are 

DZW 
(w)y4 = 0 

(-> 
0 

ay2 y-O = 

a 2’~ 
(w)+b=O - ( ) 0 

ai/* u-b = 

The numerical results for a simply supported square plat,e obtained by taking only the 
first two terms of the series (9) are shown in Fig. 83.2 The deflections and the 
moments M, and X, along the line zr = a/2 for the plate of variable thickness are 
shown by full lines; the same quantities calculated for a plate of constant flexural 
rigidity D = -fi(D~ + Dlb) are shown by dashed lines. It was assumed in the calcula- 
tion that D,b = ‘iDo and Y = 0.16. 

1 The integral Ei(u) is the so-called exponential integral and is a tabulated function; 
see, for instance, Jahnke-Emdc, “Tables of Functions,” 4th ed., pp. 1 and 6, Dover 
Publications, 1945; or “Tables of Sine, Cosine and Exponential Integrals,” National 
Bureau of Standards, New York, 1940. 

2 These results are taken from R. &an Olsson, lot. cit. 
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Finally, let us consider the case in which the thickness of the plate is a linear function 
of 2~ alone and the intensity of the load is any function of y (Fig. 82). Denoting the 
thickness of the plate along the line 1~ = h/2 by h, and the corresponding flexural 
rigidity by 

Do = 
Ehs, 

12(1 - V”) (4 

we have at any point of the plate 

where X is some constant. This yields h = (I - X)ho at 1/ = 0 and h = (1 + A)& at 
1) = 6. 

y = 0.0163 

y = 0.175 

y = 0.494 

y = 0.653 

y = 0.812 

y = 0.972 

Moment My Moment Mx Deflection 

FIG. 83 

The fol!owing method’ introducing the quantity A as a parameter proves to be most 
efficient in handling the present problem. Considering the deflection w as a function 
of the variables z, 2/, and X, we can express w(z,g,X) in form of the power series 

m 
W= c WA” (Q) 

m=O 

in which m is an integer and the coefficients rum are merely functions of 1: and y. 

1 See H. Favrc and B. Gilg, Z. angero. Math. u. Phys., vol. 3, p. 354, 1952 
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Substituting expressions (0) and (p) in Eq. (171) and equating to zero the coeffi- 
cients of successive powers of A, we obtain a sequence of differential equations 

AAwo = 5 

-3 ; 
I[ 

Awe-(1-u)$ 
I 

+$ - ,)~A,,.(;- I)lAAwo] 

We assume the edges z = 0 and r = a to be simply supported, and WC shall restrict 
the problem to the case of a hydrostatic load 

Using the method of M. Levy we take the solution of Eqs. (q) in the form 

wll = c Y,, sin 25F 
n 

n=1,3,. 
m c 7Lnx WI = Y,,, sin - 

0 
n= 1,3, 

m 

lUm = c I’,,,, sin n”lc a 
n= 1,:3, . 

(IL) 

the coefficients I-,,, (m = 0, I, 2, . .) being some functions of v. We can, finally, 
represent the load (T) in analogous manner by putting 

m 

4YOY 

c 

1 n7m 
Y=-g - sm - (21) 

n a 
?L=1.3 , . 

tiubatitution of expressions (s) and (a) in the first of the equations (‘1) ennblcs us to 
t&ermine the functions Y,,, the boundary conditjions being Y,,, = 0, YLL = 0 at 
y = 0 and y = b if these edges are simply supported. The substitution of expressions 
(s) and (t) in the second of the equations (y) yields the function Yn,. In like manner 
any function w,,, is found by substitution of ‘~0, ~1, . . , w,,-r in that differential 
equation of the system (q) which contains wrn at the left-hand side. The procedure 
remains substantially the same if the edges y = 0, h are built-in or free instead of being 
simply supported. 
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My: qoa’ -c-- M,: qoa’- 
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Moment My Moment Mx Deflection 
IY Y Y 
n -ii i i 

I+<;. 84 

Numerical results obtained by H. Favre and B. (+ilgl for the deflections and the 
bending moments along the cent,er line z = a/2 of a simply supported plate with 
X = 0.2 and Y = 0.25 under h>drostntic pressure (T) are shown in Fig, 81. Full lines 
give results obtained by taking three terms in the series (p), while the dashed lines 
hold for the result of the first approximations. 

1 Ibid. 



CHAPTER 6 

RECTANGULAR PLATES WITH 
EDGE CONDITIONS 

VARIOUS 

41. Bending of Rectangular Plates by Moments Distributed along the 
Edges. Let us consider a rectangular plate supported along the edges 
and bent by moments dist,riImt,ed along the edges u = *b/2 (Fig. 85). 
The deflections w must satisfy the homogeneous differential equation 

and the following boundary conditions: 

for x = 0 and x = a (b) 

w=o CC) 

= fdx) = fdx) Cd) 
Il=bl 2 

. f&Q 

*z- 
0 

P 

x 
f,(x) $4 

J- --------a--- ____ 

Y 
FIG. 85 

in which J”~ and jz represent the bending 
moment distribut’ions along the edges 
y*= -t b/2. 

We take the solutGon of Eq. (a) in the 
form of the series 

w= c Y,, sin ‘F (e) 
V&=1 

each term of which satisfies the boundary conditions (b). The functions 
Y, we take, as before, in the form 

Y, = A, sinh m+ + B, cash m2 + C, 7 sinh mG 

+ D, m2 cash 7 (f) 

which satisfies Eq. (a). 
180 
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To simplify the discussion let us begin with the two particular cases: 
1. The symmetrical case in which (A[,)+,,2 = (M,)u=--b,2 
2. The antisymmetrical cast in which (My)+,2 = - (A1y)yX+2 

The general case can be obtained by combining these two particular cases. 
In the case of symmetry Y, must be an even function of y, and it is 

necessary to put A, = D, = 0 in expression (f). Then we obtain, from 

Eq. te), 
m 

w= B,, cash *G + C, 7 sinh *+ sin 7 (9) 

To satisfy the boundary condition (c) we must put 

B, cash cy, + Crna7,, sinh o(, = 0 

where, as before, 
m7rb 

CY m=y&- 

Hence B, = -C,a, tanh CY~ 

and the deflection in the symmetrical case is 
ca 

w= sinh 7 - CY, tanh cym cash y sin y C/l) 
m=l 

We use the boundary conditions (d) to determine the constants C,. 
Representing the distribution of bending moments along the edges 
y 7 &b/2 by a trigonometric series, we have ill the case of symmetry 

(9 

where the coefficients E, can be calcula’ted in the usual way for each 
part’icular case. For instance, in the case of a uniform distribution of 
the bending moments we have (see page 151) 

Substituting expressions (h) and (i) into conditions (d), we obtain m 00 
-2D c m21r2 a2 C, cash CY~ sin 7 = 

c 
E, sin y 

m=l m=l 
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from which 

:md 

cm = - d&n 
2DmW cash (Y m 

m 

In the part,icular case of uniformly distributed moments of intensity MO 
we obtain, by using expression (j) , 

m 

2Moa2 1 WC- 
T3D c i&GO= 

CY,,, tanh CG,, cash ‘y 
?I&= 1,.1,5, 

m7ry 
a 

- sinh m$ 
> 

sin m+ 

The deflection along the axis of symmetry (y = 0) is 

When a is very large in comparison with 6, we can put tanh (Y, = a,,L 
and cash (Y, = 1. Then, by using series (j), we obtain 

This is the deflection at the middle of a strip of length 6 bent by two 
equal and opposite couples applied at the ends. 

When a is small in comparison with 6, cash 01, is a large number, and 
the deflection of the plate along the x axis is very small. 

For any given ratio between the lengths of the sides of the rectangle 
t,he deflection at the center of the plate, from expres;iion (I;), is 

Having expression (173) for deflections, we can obtain the slope of the 
deflection surface at the boundary by differentiation, and we can calcu- 
late the bending moments by forming the second derivatives of 20. 

. 
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Some values of the deflections and the bending moments computed in 
this way are given in Table 28. It is seen, for example, that the deflec- 
tion of a strip of a width a is about 3+ times that of a square plate of 
dimensions a. While the transverse section at the middle of a strip 
transmits the entire moment MO applied at the ends, the bending moment 
M, at the center of the plate decreases rapidly as compared with Mo, 
with an increasing ratio b/a. This is due to a damping effect of the edges 
x = 0 and x = a not exposed to couples. 

TABLE 28. I)EFLECTIOSS AND BEXDIN~ MOMENTS AT THE CENTER OF 
RECTANGULAR I?LATBH SIMPLY SUPPOHTED AND SLSJECTED TO 

COCPI,~ UNIFORMLY DISTRIRUT~JD ALONG THE EDGES TJ = &b/2 (FIG. 85) 

P = 0.3 

b/a w / fifz I M, 

0 
0.50 
0.75 
1.00 
1.50 
2.00 

0 1250M,b~/D I 0.30051n 
0.0064M0b~/D 1 0.58iMo 

0. 0620Mob2/D 0.424Mo 
0 .0368Jioa2/D 0.394.w~ 
o.O280M~a2/D 0.264M, 
0.0174Jl,,a2/D 0.153N” 

I,ct us consider now the antisymmt:trical case in which 

f~(x) = -f2(x) = 2 E, sin 
m = 1 

m7rx 
a 

1 OOOM~ 

0.77OMo 
0.476Mo 
0.256Mo 
0.046Mo 

-0 .OlOMa 

In this case the deflection surface is an odd function of y, and we must 
put B, = C, = 0 in exprcssiolk (,f’). Hence, 

w= A,,, sinh *gY + D, y co& ?? sin mxTE 

m=l 

From the boundary conditions (c) it, follows that 

A, sinh a,,, + Dma,,& cash CY,,, = 0 

whence D, = - L- tanh a,A, 
%n 

and m 
c ( 9, sinh mG - & tanh a, 7 cash y 

m7rx 
w= sin a 

lTL=l 
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The constants A, are obtained from conditions (d), from which it follows 
that 

(0 co 

%2D 
-4 a2 A, c sinh (Ye tanh (Y, sin 7 = 

GIL c 
E, sin 7 

m=l m=l 

Hence A,=GDE, % 
m2 sinh ac, tanh CX, 

and 

sin y (174) 

We can obtain the deflection surface for the general case represented 
by the boundary conditions (d) from solutions (173) and (174) for the 
symmetrical and the antisymmetrical cases. For this purpose we split 
the given moment distributions into a symmetrical moment distribution 
Mj and an antisymmetrical distribution Al:‘, as follows: 

(qL=b,2 = (~&--b/2 = B[fl(X) + fz(x)l 

(fifj’)~,=b,2 = - (Af:‘)v=-b/2 = +[fl(x) - f2(z>] 

These moments can be represented, as before, by the trigonometric series 

m 

(ikf~)Ti=b/2 = 2 E’k sin 7 
m=l 

DD 

(Mj’)y=b,2 = m a 
c 

E” sin ?!!?!T 

(0 

and the totma deflection is obtained by using expressions (173) and (174) 
and superposing the deflections produced by each of the two foregoing 
moment distjributions (1). Hence 

m7ry . E” 
-- a smhy +A- 

smh CY, 
a, coth o(,,, sinh y 

m=Y -- 
a 

cash m+ >I (175) 
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m 

If the bending moments M, = 
2 

E, sin (mrx/l) are distributed only 
m=l 

along the edge y = b/2, we have j2(x) = 0, EL = EL = &E,; and the 
deflection in this case becomes 

n=i 
miry . 1 - -- a smh 7 + 7 

smh cy,,, 
G,, coth (Y,,, sinh m+ 

mry -- a cash m3 
)I 

(176) 

Solutions (173) to (176) of this article will be applied in the investigation 
of plates with various edge conditions. 

Moments MO distributed along only one edge, say y = b/2, would pro- 
duce, at the center of the plate, one-half the deflections and bending 
moments given in Table 28. In case of a simultaneous action of couples 
along the entire boundary of the plate, the deflections and moments can 
be obtained by suitable superposition of the results obtained above for a 
partial loading. l 

42. Rectangular Plates with Two Opposite Edges Simply Supported 
and the Other Two Edges Clamped. Assume that the edges x = 0 and 
x = a of the rectangular plate, shown in Fig. 86, 
are simply supported and that the other two edges 
are clamped. The deflection of the plate under py: 
any lateral load can be obtained by first solving J”“U”““’ c 
the problem on the assumption that all edges are m/t-d I 
simply supported and then applying bending o I ; x 
moments along the edges y = + b/2 of such a &u 
magnitude as to eliminate the rotations produced A. 
along these edges by the action of the lateral load. 

/////f/Y/////// 
< 

In this manner many problems can be solved by Y------o-----W 
combining the solutions given in Chap. 5 with the FIG. 86 
solution of the preceding article. 

Uniformly Loaded Plates.2 Assuming that the edges of the plate are 
simply supported, the deflection is [see Eq. (139), page 1161 

1 Bending by edge couples was also discussed by H. Bay, Ingr.-Arch., vol. 8, p. 4, 
1937, and by U. Wegncr, 2. angew. Math. Mech., vol. 36, p. 340, 1956. 

2 Extensive numerical data regarding rectangular plates with uniform load and sides 
simply supported or clamped in any combination may be found in a paper by F. 
Czerny; see Bautech.-Arch., vol. 11, p. 33, Berlin, 1955. 
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co 
w - %a4 

c 
1 

T6D 2J 
sin rn~~ 1 _ (Y,,, tanh (Y~ + 2 

cash mxy 
a 2 cash (Y, a 

m- 1,3,5,. . . 

+ 
m7ry . 

’ __ smh y 
2 cash am a 

(a) 

and the slope of the deflection surface along the edge y = b/2 is 

- 0 dW 2qa3 
dy w=b/2 

=-- c 1 
?r4D m=l 35 m4 

sin 5 [am - tanh ~(1 + CL tanh am)] 
7 , 11.. 

To eliminate this slope and thus to satisfy the actual boundary conditions 
we distribute along the edges y = t-b/2 the bending moments My given 
by the series 

m 

@fu)u=m = 
2 

Em sin 7 Cc) 
m=l 

and we determine the coefficients E, so as to make the slope produced 
by these moments equal and opposite to that given by expression (b). 
Using expression (173)’ for the deflection produced by the moments, we 
find that the corresponding slope along the edge y = O/2 is 

m 

a 

-2 

sin 5 

27rD 
~ E,[tanh (~~(a, tanh aln - 1) - a,] 

m (4 
?n= 1,3,5. . . . 

Equating the negative of this quantity to expression (b), we find that 

E - 4ya2 am - tanh a,(1 + cr, tanh CG,,) 
m 7r3m3 (Y m - tan11 LY,(CY, tanh CY, - ij (e) 

Hence the bending moments along the built-in edges are 
m 

(M&=*,,,a = y c 
sin ?!!?!!T 

a am (f) 
___ 

- tanh (~~(1 + 01, tanh o(,) 
m3 a, - tanh CY,(CX, tanh am - 1) 

m = 1,3,5, . . . 

The maximum numerical value of this moment occurs at the middle of 
the sides, where x = a/2. Series (f) converges rapidly, and the maxi- 
mum moment can be readily calculated in each particular case, For 

I From the symmetry of the deflection surface produced by the uniform load it can 
bc concluded that only odd numbers 1, 3, 5, . . . must be taken for m in expression 
(173). 
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example, the first three terms of series (f) give -0.070qa2 as the maxi- 
mum moment in a square plate. In the general case this moment can bc 
represented by the formula -&, where y is a numerical factor the magni- 
tude of which depends on the ratio a/b of the sides of the plate. Several 
values of t)his coefficient are given in Table 20. 

Substituting the values (e) of the coellicients E, in expression (173), 
we obtain the deflection surface produced by the moments M, distributed 

TABLE 29. CONSTANTS OL, PI, &, y FOH A RECTANGULAR PLATE WITH Two 
EDGES SIMPLY SUITORTED AND Two EDGES Cuhrpm (FIQ. 86) 

Y = 0.3 
b<a 

a 

ii 

c=;g=o 

ul,,,,x = a Irb” D 

LY 

2 = ;c:q = 0 

Mz = 8,qb2 

x: = ;, y = 0 

M, = Pzqb2 

b z: = 2, y = - 
2 2 

N, = rqb2 

PI Bs Y 

cc 

2 
1.5 
1.4 
1.3 

1.2 
1.1 

0.00260 
0.00260 
0.00247 
0. ooz40 
0.00%34 
0.00223 
0.00209 

0.0125 
0.0142 
0.017!1 
0.0192 
0.0203 
0.0215 
0.0230 

0.0417 
0 0420 
0.0406 
0 .03!19 
0.0388 
0.0375 
0.0355 

-0.0833 
-0.0842 
-0.0822 
-0.0810 
-0.0794 
-0.0771 
-0.0739 

b>a 

b - 
a 

- 

I - 
- 

- 

1 1: = f, y = 0 

M, = Blqa2 

81 

- 
I - -_ c = ;, y/ = 0 

M, = 82qa2 

62 

6 $J = 2, y = - 
2 2 

M, = rqa2 

Y 

1 0.00192 0 0244 0.0332 -0.0697 
1.1 0.00‘351 0.0307 0.0371 -0.0787 
1.2 0.00:319 0.0376 0 -0400 -0.0868 
1.3 0 .00388 0.0446 0.042ti -0.0938 
1.4 0.00460 0.0514 0.0448 -0.0998 

1.5 0.00531 0.0585 0.0460 -0.1049 
1.6 0 00603 0.0650 0.0469 -0.1090 
1.7 0 00668 0.0712 0 -0475 -0.1122 

1.8 0 00732 0.0768 0.0477 -0.1152 

1.9 0.00790 0.0821 0.0476 -0.1174 

2.0 
3.0 

cc i 0.00844 0.0869 0.0474 -0.1191 

0.01168 0.1144 0.0419 -0.1246 

0.01302 0.1250 0.0375 -0.1250 

- 
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along the edges 
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m 

2qd 

c 

sin ?!I!!!? 
a wl= -~ 

T5D m5 cash (Y,,, 
m= 1,3,5, 

%7 - tanh ~y,(l + cy, tanh CL) may sinh rnyi! 
&IL - tanh Q(~(cG,, tanh a~, - 1) a a 

- a, tanh CX~ cash m?ry a > 
CY) 

The deflection at the center is obtained by substituting x = a/2, y = 0 
in expression (g). Then 

m 

2qd 
(wl)m.x = __ SbD c 

( - l)(mP1)/2 LY, tanh (Ye 
m5 cash cy, 

nk= 1.3.5 . . . . 
ffrn - tanh am(l + aym tanh (Y,) 
ffm - tanh CX,(CX, tnnh (Y, - 1) 

This is a rapidly converging series, and the deflection can be obtained 
with a high degree of accuracy by taking only a few terms. In the case 
of a square plate, for example, the first term alone gives the deflection 
correct to three significant figures, and we obtain 

w1 = 0.00214 @ 
D 

Subtracting this deflection from the deflection produced at the center by 
the uniform load (Table 8, page 120), we obtain finally for the deflection 
of a uniformly loaded square plate with two simply supported and two 
clamped edges the value 

w = 0.00192 @ 
D 

In the general case the deflect’ion at the center can be represented by the 
formula 

w=,@ 
D 

Several values of the numerical factor (Y are given in Table 29. 
Substituting expression (g) for deflections in the known formulas (101) 

for the bending moments, we obtain 

m J[ = - 2cla2 z- 
sin ?EJ! 

a G7l - tanh cym(l + CY, tanh oc,) 
z lr3 ma cash a~, (Y, - tanh OI,(CY, tanh 0~~ - 1) 

7i%= 1,3,5, 

(1 - V) 7 sinh Et” - [2v + (1 - V)CX, tanh (Y,] cash m$ (h) 
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m 31 =3!g Y ird x 
sin 7 

an - tanh a,(1 + 01, tanh 01~) 
m3 co& cy, (Ye - tanh CY,(CX, tanh OL, - 1) 

m=1.3,5,... 

(1 - VI y sinh y + [2 - (1 - v)a, tnnh a,] cash 7 
I 

(i) 

The values of these moments at the center of the plate are 
m 

jpf 2!@ c 
(- 1)‘m-1’12 z 73 m3 cash a, 

m = 1,3;5, 

%t - tsnh a,(1 + OL, tanh CL) 
- tanh CI,(OL, tanh CY~ - I) 

[ZV + (1 - v>a, tanh CX~] 
%I m 

&f = 2qaz c 
(- 1)&1,/2 

Y 
73 m3 cash CY, 

These series converge rapidly so that sufficiently accurate values for the 
moments are found by taking only the first two terms in the series. 
Superposing these moments on the moments in a simply supported plate 
(Table 8), the final values of the moments at the center of the plate can 
be represented as follows: 

M, = P1qa2 M, = P2qa2 (A 

where PI and flz are numerical factors the magnitude of which depends on 
the ratio b/a. Several values of these coefhcients are given in Table 29. 

Taking the case of a square plate, we find that at the center the 
moments are 

M, = 0.0244qa2 and M, = 0.0332qa2 

They are smaller than the moments M, = M, = 0.0479qa2 at the center 
of the simply supported square plate. But the moments M, at the 
middle of the built-in edges are, as we have seen, larger than the value 
0.0479qa2. Hence, because of the constraint of the two edges, the magni- 
tude of the maximum stress in the plate is increased. When the built-in 
sides of a rectangular plate are the longer sides (b < a), the bending 
moments at the middle of these sides and the deflections at the center of 
the plate rapidly approach the corresponding values for a strip with 
built-in ends as the ratio b/a decreases. 

Plates under Hydrostatic Pressure (Fig. 87). The deflection surface of 
a simply supported rectangular plate submitted to the action of a hydro- 
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static pressure, as shown in Fig. 66 (Art. 31), is 

+I_- m3ry . m7ry 
cash CY, a 

smh __ 
a 

sin 7 (1~) 

The slope of the deflection surface along the edge y = 6/2 is 

dW ( > qoa,3 * (-l)m+l 

ay y=b/l = Tim c m4 
m=l 

[c&n - tanh (~~(1 + a, tanh CY,)J sin y (1) 

This slope is eliminated by distributing the moments 111, given by series 
(c) along the edges y = + b/2 and determining the coefficients 8, of that 
series so as to make the slope produced by the moments equal and oppo- 
site to that given by expression (I). In this way we obtain 

E = 2q0a2(--I)“+’ a’m - tanh a,(1 + a, tanh CX,) 
7r3m3 wll - tanh ~!,(a, tanh CX~ - 1) 

Substituting this in series (c), the expression for bending moments along 
the built-in edges is found to be 

0 I m=1 

:: x %n - t~anh cy,rt(l + a, tanh a,) 
I J=au ~~ cm> 

A 
%a - t:m11 a,(cqn tan11 a,,, - 1) 

////I 
““‘L777 si 

The terms in series (m) for which m is even vanish 
<------o------ at the middle of the built-in sides where II: = a/2, 
Y 

FIG. 87 
and the value of the series, as it should, becomes 
equal to one-half that for a uniformly loaded plate 

[see Eq. (f)]. The series converges rapidly, and the value of the bending 
moment at any point of the edge can be readily obtained. Several values 
of this moment together with those of the bending moments along the 
middle line y = 0 of the plate are given in Table 30. 

Concentrated Force Acting on the Plate.1 In this cnsc again the dcflec- 
tion of the plate is obtained by superposing on the defle&ion of a simply 
supported plate (Art,. 34) the deflection produced by moment’s dist,ributed 
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TABLE 30. BENDINQ MOMENTS IN RECTANGULAR PLATES WITH HYDROSTATIC 
LOAD, Two EDGES SIMPLY SUPPORTED AND Two EDGES CLAWED (FIG. 87) 

Y = 0.3 

x = 3a/4, y = 0 L: = a/2, y = b/Z z = 3a/4, y = b/2 

$1, fif, Jf, Al y 
-~ 

0.50 0.007q&z O.OL’lynb” 0.018y06~ 0.029qob2 -0.042q”tP -0. 062qc,b2 
- 0.040q0b~ -0.045qob2 
-0.035qoa2 -0.035qou2 
-0.045q0a2 -o.o43qou* 
-0.051q0a2 -O.O48q& 
-0 .060you2 -0. 053qoa2 
-0. 063qoa2 - 0.055y0u~ 

along the clamped edges. Taking the case of a centrally loaded plate and 
assuming that the edges y = *b/2 are clamped, we obtain the following 
expression for the deflection under the load: 

i? - -- 
4 c 1 tanh? 01,, ~~~- .~- (n) 

iii sinh a, cash cy, + LY,, I 
m = 1.3,5, . . 

The first sum in the brackets corresponds to the deflection of a simply 
supported plate [see Eq. (147), page 1431, and the second represents the 
deflection due to the action of the moments along the clamped edges. 
For the ratios o/a = 2, 1, 4, and 4 the values of the expression in the 
brackets in Eq. (n) are 0.238, 0.436, 0.448, and 0.449, respectively. 

To obt,ain the maximum stress under the load we have to superpose on 
the stresses calculated for the simply supported plate the stresses pro- 
duced by the following moments: 

m 

m z= -P 
c 

h t,anh o(, 
4a sinh o(~ cash (Ye + 01, 

m= 1,3,5, . . 
[2v + (1 - Y)OL, tanh am] 

03 
Co1 

P 
c 

b tanh cym 
m, = - z sinh (Y, cash (Ye + (Y, 

m= 1.3,5, . . 
[2 - (1 - Y)(Y, tanh a,] 
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TABLE 31. CORRECTION BENDING MOMENTS AT z = a/2, y = 0, DUE TO 

CONSTRAINT AT y = &b/2 IN CASE OF A CENTRAL LOAD P (FIG. 71) 
Y = 0.3 

b/a 
m, = 02 m,, = &P 

b/a 
m, = DIP 

81 82 PI 

0 -0.0484 -0.0742 1.0 -0.0505 
0.5 -0.0504 -0.0708 1.2 -0.0120 
0.6 -0.0524 -0.0656 1.4 -0.0319 
0.7 -0.0540 -0.0580 1.6 -0.0227 
0.8 -0.0544 -0.0489 1.8 -0.0155 
0.9 -0.0532 -0.0396 2.0 -0.0101 

Putting those correction moments equal to 

m z = PIP m, = P2P 

/ - 

- 
my = BzP 

Pz 

-0.0308 
-0.0166 
-0.0075 
-0.0026 
-0.0002 
$0.0007 

(PI 

the numerical factors PI and p2 for various values of the ratio b/a are 
given in Table 31. When the central load P is distributed over the area 
of a small circle or rectangle, we have only to add the moments (p) to 
bending moments obtained for the simply supported plate by means of 
the logarithmical expressions (157) and (167)) respectively. The moment 
M, at the middle of the clamped edges of a square plate is 

M, = -0.166P 

The calculations show that this moment changes only slightly as the 
length of the clamped edges increases. It becomes equal to -0.168P 
when b/a = 0.5 and drops to the value of -0.155P when b/a = 1.2.* 

It should be noted that the clamping moment with the numerically 

ImQq: 

largest possible value of -P/T = -0.3183P is 

produced by a load concentrated near the built-in 
edge of the plate rather than by a central load (see 

c Art. 51). In the case of several movable loads the 
9/w influence surface for the clamping moment may be 

0 I 
c x used to obtain its maximum value with certainty 
I I Jwu (see Art. 76). 

LL’/?Jz477 1 

A. 43. Rectangular Plates with Three Edges Sim- 
ply Supported and One Edge Built In. Let us 

------ 0 ------ 
Y 

consider a rectangular plnt’e built in along the edge 

FIG. 88 y = b/2 and simply supported along the other edges 
(Fig. 88). The deflection of the plate under any 

lateral load can be obtained by combining the solution for the plate with 

* For further data regarding the plate with two opposite cdgcs built in, see A. 
Puchcr, Ingr.-Arch., vol. 14, p. 246, 1943-1944. 
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all sides simply supported, with solution (176) for the case where bending 
moments are distributed along one side of the plate. 

Uniformly Loaded l’lates. The slope along the edge y = b/2 produced 
by a uniformly distributed load is 

m 
2qa3 1 

y=b/2 = a4D 
2 sin 5 

n=1,3,5,... 

bm - tanh (~~(1 + a, tanh LY,)] (a) 

The moments M, = ZE, sin (max/a) distributed along the side y = 11/2 
produce the slope’ [see Eq. (176)] 

co 

dW1 

(-> 

a 

~- c 

1 
ay u=b/Z 4iTD m 

sin m$ Em(~, tanh2 elm 
m = 1,3,5, . . . 

- tanh cr, + G,, coth2 cr, - coth CY,, - 2anL) (0) 

From the condition of constraint these two slopes are equal in magnitude 
and of opposite signs. Hence 

Em = - $$ atanh2 ,rL”, t;ll;;h N;lt ;o;;2z”;;ll cy Iz2cu, (c) m m 71L J m 

and the expression for the bending moments along the side u = h/2 is 

(My)+,2 = y 2 J$ sin y 
m= 1,3.5, . . . 

@h - tanh ~~(1 + N,, tanh a,,j 
2a, - tanh o(,(o1, tanh cy, - 1) - coth CY,(CX, coth CI, - 1) (4 

Taking a square plntc, as an example, t’he magnitude of the bending 
moment at the middle of the built-in edge from expression (d) is found 
to be 

(M&,=b,w=a,e = -0.084qU2 
This moment is numerically larger t,hnn the moment -0.070qa2 which 
was found in the preceding articlc for a square plate with two edges built 
in. Several values of the moment at the middle of the built-in side for 
various values of the ratio a/b are given in Table 32. 

Substituting the values (c) of the consmnts IZ’, into expression (176), 
we obtain the deflection surface produced by the moments of constraint, 
from which the deflection at t’hc center of the plate is 

m 

a2 
(Wl).=a/2,1/=0 = FD 

c 

(- 1) (*L-l)/2 E&, ,‘ t,mh CY~ 
____-- 

m2 cod1 a, 
(e> 

m= 1,x,5, . . . 

1 Only odd numbers must bc taken for 1)~ in this symmetrical cast. 
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TABLE 32. DEFLECTIONS AND BENDING MOMENTS IN A RECTANGULAR PLATE 
WITH ONE EDGE BUILT IN AND THE THREE OTHERS SIMPLY SUPPORTED 

T 
-0.125qa’ 
-0. 122qa2 
-0.112qa2 
-0.lOUga2 
-0.104qa2 

2a 
0.0130qa”/D 0.125ya’ 

O.O093qa*/D 0.004ya~ 

1.5 0. 0064qa4/D O.OG0qa~ 
I .4 0. O058qa4/D 0.083ya2 
1.3 0 0050qa4/D 0.05Gqa2 

1.2 0.00~lSqa”/D 0.049ya2 
1.1 O.O035qa”/L~ 0 041qa2 
1.0 0. 0028ya4/D 0. 034qa2 

l/1.1 O.O032yb”/D 0 .033yb2 
l/1.2 O.O035yb”/D 0.032yb2 

l/l .3 0.003Sqb”/D 0 .031yb2 
l/l .4 0. 0010yb4/D 0. 030yb2 
l/l .5 0.0012yb4/D 0 028yb2 

0.5 0 .0049yb”/D 0.023qb2 
0 0 005‘2yb”/D O.OlRqb2 

For a square plate the first t,wo terms of t,his series give 

-0.098ya2 
-0 O!)%ya2 
-0.084qnZ 
-O.O92’lb2 
-0. 0%3yb2 

-0. 103@ 
-0.108qb2 
-O.lllqb* 
-0,122qbZ 
-0.125yb2 - 

(w1).=,z,2 ,,,= 0 = 0.00127 g 

(Fig. 88) 
Y = 0.3 

0.037qa2 

O.OJ7qu2 

0.048ya2 
O.O47ya* 
0.045QU2 

0.044qa2 
0 042yaZ 
0. o:wya2 
0 O-Gyb’ 
0.047qv 

o.o50qb* 
0 .052qb2 
0.054yb2 
0. 060yb2 
O.OG2yb’ 

Subtracting this deflection from the deflection of the simply supported 
square plate (Table S), we find that the deflec- 
tion at the cent,cr of a uniformly loaded squaw 
plate with one edge built in is 

(W)z=a,2,1,=” = 0.00279$ 

0 

P ’ Values of deflection and bending moments for 
DIN 
L 

several other values of the ratio a/D obtained in a 

------- 0 1 
similar way are given in Table 32. 

------ Plates under Hydrostatic Pressure. If the plate 
Y 

FIO. 89 
is under a hydrostatic pressure, as shown in Fig. 
89, the slope along the edge y = b/2, in the case 

of simply supported edges, is (see page 190) 
m 

aw 0 qd 
ay y=b/2 = 2B c 

(- lPf’ (a, 
m4 

- tanh CX~ - aym tanhe CX,) sin m$ (f) 
m=l 
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The slope produced by bending moments distributed along 
y = b/2 is 

195 

the edge 

iD 
c 

1 
m 

sin y Em(ti,, tanh2 01, - tanh ay, 
Vl=I 

+ a, coth2 a,,, - coth Q, - 24 (g) 

From the condition of constraint along this edge, we find by equating 
expression (g) to expression (f) with negative sign 

F = J?n %a2 (- l)m+l 
73 m3 

ffm - tanh am(l + o(~ tanh CY,) 
a,, tanh2 CY~ - tanh (Y, + CY, coth2 01, - coth CL, - ICY, 

Hence the expression for the bending moment M, along the edge y = b/2 
is 

(M”)u=b,2 = %p2 2 
- (- l)m+’ si,l EX 

m”-- a 
m = 1 

%I - tanh a,(1 + a, tanh o(,,J 
2ct, - tanh o(,(01, tanh (Y,, - 1) - coth (~,(a, coth cy,, - 17 (h) 

This series converges rapidly, and we can readily calculate the value of 
the moment at any point of the built-in edge. Taking, for example, a 
square plate and putting x = a/2, WC obtain for the moment at the middle 
of the built-in edge the value 

(M,)Y--b,2,z=a,2 = -0.042q~a2 
This is equal to one-half the value of the moment in Table 32 for a 
uniformly loaded square plate, as it should be. Values of the moment 
(Mv)v=b,2 for several points of the built-in edge and for various values of 
the ratio b/a are given in Table 33. It is seen that as the ratio b/a 
decreases, the value of M, along the built-in edge rapidly approaches the 

TABLE 33. VALTXS OF TIIE MOMENT X, ALONG THE BUILT-IN EDGE y = b/2 
OF RECTAKGULBK PLATES UNDER HYLHLOSTATIC Loau gas/a (FIG. 89) 

.I: = a/:! 

- 0 .062p,U 

-0.061q~a2 
-0 0.5&4~0~ 
- 0. O12you" 
-0. 05Gqob2 
-0 OKlynb2 
-- 0. OliL’q,b2 

-0. 055q0a2 
- 0. 053q,a2 
- 0 050qoaz 
- 0 040goa2 
- 0. 060q,b2 
-0. 073q,b1 
-0 091q,bz 
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value -qob2x/8a, which is the moment at the built-in end of a strip of 
length 11 uniformly loaded with a load of int’ensity qox/a. 

Now let us consider a plate subject’ed to a hydro&tic load just as 
before, this time, however, having t’hc edge x = a built in (Fig. 90). 

In applying the method of h4. TAvy to this case we take the deflection 
surface of the mate in the form 

m= 1,3,5, . 

X, = A, cash 7 + B, p? sinh 7 

i 
FIG. 90 + C,, sinh -zF + D, F cash 7 

Expression (i) satisfies the differential equation of the bent plate and the 
edge conditions at y = &b/2 as well. Expanding the expression in 
parentheses in Eq. (i) in the series 

m 
l,536b4 

P5 c 
(- l)(m-I)/2 -A$ cos zy b 

m=1,3,5,. . 

we obtain the coefficients A,, B,, . from the conditions on both other 
edges; i.e., 

(w),dl = 0 

(  > 

g _ = 0 (w>,=, = 0 
? 0 (  > 

$f = = 0 (j) 
z a 

Substitution of the coefficients in expression (i) makes the solution com- 
plete. Defiections and bending moments obtained from the latter equa- 
tion are given in Table 34. 

TABLE 34. DEFLECTIOXS AND BENUIXG MOMENW IN RECTANGULAR PLATES 
CLAMPED AT 1: = a AND CARRYIXG ~IYUROSTATIC LOAD (FIG. 90) 

Y = 0.3 

b/u 

2w 
1.5 
1.0 

3 
0.5 
0 

(lU),= n/2,.,=” 

O.O024qocL~/D 0 .029qua2 
0. oo23qoa4/D 0 .029q,a2 
0 0019qoa”/D 0.026qou2 
0. 0013qoa4/D 0.019q”d 

0.0030qob4/D O.O28q,b2 
0. oo45q,l~i/D 0.024q,P 
0.0065qoba/D O.O19q,b2 

0.009q~,a* -O.O67q,d 
o.ollq"u2 -0. 063q,u2 
o.o13q,u2 -0 .OBlq& 
0. 016qou2 -0.048qod 

0.034qob2 -0.071q@ 
0. 046qoh2 - 0.084qolP 
0.062qoh2 -O.l25qob* 
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44. Rectangular Plates with All Edges Built In.’ In discussing this 
problem, we use the same method as in the cases considered previously. 
We start with the solution of the problem for a simply supported rec- 
tangular plate and superpose on t.he deflection of such a plate the deflec- 
tion of the plate by moment’s distributed along 
the edges (see Art. 41). These moments we 
adjust in such a manner as to satisfy the con- m=q< 
dition awl&z = 0 at the boundary of the M * 
clamped plate. The method can be applied to 3 / i 

/ JYN 
any kind of lateral loading. // 0 /, i 

/ X 

Uniformly Loaded Plates. To simplify our 3 / ? 
5 -1-J 

discussion we begin with the case of a uniformly $, 
distributed load. The deflections and the mo- 

/ /////// 
n ---,<Yf+ 

ments in this case will be symmetrical with -z 2 2 

respect to the coordinat,e axes shown in Fig. 91. 
Y 

FIG. 91 
The deflection of a simply supportled plate, :IS 
given by Eq. (139) (page 116), is represented for the new coordinates in 
the following form: 

D 
w = !!!!l 

c 

(- 1) (m-l)/2 
cos F 1 - 

( 
CX?,~ tnnh CK,~‘ + 2 

a5D m5 2 cash o(, 
(70sll may 

a 
m-= 1.3,5, 

+ Fr-i~ll.,~- y si& 7 (a) 
m > 

1 For the mathematical literature on this snhject see “ EnayklopRdie der mnthe- 
mat,ischen JVissenschnftcn,” Yol. 4, art. 2.5 !‘rrtlon~-Timpe), pp. 165 and 186. Other 
rcfcrcnres on this subject are given in the paper by .i. E. H. Love, I’roc. London Math. 
‘SM., vol. 29, p. 189. The first numcricnl rcsl~lt,s for c:dculnt,ing stresses and dcflrct,ions 
in clamped rectangular plates were obtained by B. RI. Iioynlovich in his doctor’s 
dissertation, St,. Petersburg, 1902. Further progress ~-as made by 1. G. Boobnov, who 
calculated the tables for deflrctions and moments in uniformly loa~lc(l rectangular 
plates wit,h clamped edgrs; see his “Theory of Structures of Ships,” vol. 2, p. 46.5, St. 
Petersburg, 1914, and “Collected Papers on the Theory of l’lat,es,” p. 144, Moscow, 
1953. The same problem was discussed also by H. Hen&y in his dissertation “Der 
Spannungszustand in rechteckigen Platten,” hliinich, 1913. Hencky’s method was 
used by I. A. IVojtaszak, J. A&. Mrchmnics, vol. 4, p. 173, 1937. The numerical 
results obtained by Wojtasznk in this way for a lmiformly loaded pl:rte coincide with 
the values given in Boobnor’s table. Furt.ll?r solutions for the same plat,c and various 
cases of loading are due to H. Leitx, Z. Math. Phys., vol. 64, p. 262, 1917; A. Nhdai, 
z. angew. Math. Mech., vol. 2, p. Ii, 192 2; A. \Veinstein and L). H. Rock, &uu~t. ii&. 
Math., vol. 2, p. 262, 1!144; P. Funk and E. Hcrger, “ F’ederhofer-Girkmann-Fcst- 
schrift,” p. 199, Vienna, 1950: G. A. Grinberg, Doklad~~ Akad. Nauk. S.S.S. R., vol. 76, 
p. 661, 1951; I<. Girkmnnn and E. Tungl, &err. Bauzeitschrift, vol. 8, p. 47, 1953. 
An experimental investigation of the problem is due to l3. C. Lams, Phil. dlag., vol. 
24, p. 1072, 1937. Our further d’. lscussion makes use OC the method dcvclopcd by 
S. Timoshenko, Proc. Fifth Intern. Congr. Appl. Me&., Cambridge, Mass., 1935; the 
method is more gcncral than most of those previously mentioned; it ran bje applied to 
any l&d of lo,zding, including the case of a cc,;lcentrated load. 
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where an, = m?rb/2a. The rotation at the edge y = b/2 of the plate is 

1 
2p” =-. 

c 

(- l)(T7-I)/2 rn?rx 

r4D ns=13 5 m4 
cos _- 

a 
> ,‘1 . 

[an, - tanh CY,, (1 + a, t>anh cy,,J] 
m 

2qa3 a, =- 
T4D c 

(- l)‘“-“‘2 co9 mn.e 
m4 ‘a cod12 cl, 

- tanh o(, (b) 
n=1,3,5.. 

Let us consider now the deflection of the p&e by tho moments dis- 
tributed along the ctlges 21 = + b/2. E’rom considerations of symmetry 
we conclude that the moments can be represent,ed by the following series: 

(M,,h/=*w = c (- l)(rn-o/2 E’ m7a 
1)2 cos ~ 

a (c) 
m- 1,3,5, 

The corresponding d&&ion ~1 is obtained from expression (173) by sub- 
stituting x + a/2 for .c and taking m = 1, 3, 5, Then 

m 

a2 
WI= --.- 

c 
,,, (- 1)(+1)‘2 cos mz- ’ 

2GD im m2 cash CY~ ’ a 
sinh !?I!! 

a 
n, = I 3.3. 

- U, t,anh 01, cash 7 
> 

(4 

The rotatjion at, the edge !I = h/2, corresponding to this deflection, is 

E, (- l)(m-l)‘T cos ??? tanh o(, m a 
m= 1.3,5, . 

In our further discussion we shall need also the rotation at, the edges 
parallel to the y axis. Forming the derivative of the expression (d) with 
respect to x and putting .c = a/2, we obtain 

m 

a 
z=nj2 z -- 21rD c 

’ sinh 7 
m= 1,3,5, . . . 

m 

CY, tanh (Ye cash 7 
> 

= - 1’0 
c 

E, - 
Gosh2 CY~L 

m= 1,3,5, 

b sinh an, cash yq - 2y cash CY,, sinh mT 
> 

(f) 
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The expression in parentheses is an even function of y which vanishes 
at the edges y = +_ b/2. Such a function can be represented by the series 

m 

c 
i7Ty 

A; cos - 
2, (9) 

i= 1,3,5, 

in which the coeficients Ai are calculated by using the formula 

b sinh (Y, cash mG - 2y cash LY, sinh ?l 
> . 

cos ‘y ti!l 

from which it follows that 

Substituting this in expressions (9) and (f), we obtain 

In a similar manner expressions cau be obtained for the deflections wz 
and for the rotation at edges for the case where moments d1, are dis- 
tributed along the edges n: = i-a/2. Assuming a symmetrical distribu- 
tion and taking 

m 

(Mzj.=haiz = c (- l)(w-l)PFm cos !lp (i) 
m -- 1,3,5, 

we find for this case, by using expressions (e) and (h), that 

m 
aw2 

(6) ax F (- 1)(nz-1)‘2 m m 
cos y tauh Pm 

m= 1,3,5, . . . 

+Pm 
cosh2 pm. (A 

where pnr = mna/2b, and that 

When the moments (c) and (i) act simultaneously, the rotation at the 
edges of the plate is obtained by the method of superposition. Taking, 
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for example, the edge 21 = b/2, we find 

Having expressions (b) and (I), we can now derive the equations for 
calculating the con&ants IS,,, and P, in series (c) and (i) which represent 
the moments acting along the edges of a clamped plate. In the case of 
a clamped plate the edges do not rotate. Hence, for the edges 11 = + b/2, 
we obtain 

In a similar manner, for the edges :1: = faj2, we find 

(4 

If we substitute expressions (b) and (1) in Fq. (m) and group’ together 
the terms that cont,ain the same cos (k.r/a) as a factor and then observe 
that Eq. (nz) holds for any value of 2, WC can conclude that the coefficient 
by which cos (ks/a) is multiplied must be equal t,o zero for each value 
of i. In this manner we obtain a system t,hat consists of an infinite num- 
ber of linear equations for calculating the coefficients Ei and Fi as follows: 

4qa” 1 Q; -- 
33 i* ( 

___ 
co&3 a; 

- tnnh O(~ 
> 

Ei 
- 7 tanh CY~ + 

A similar system of equat’ions is obtained also from Eq. (n). The 
constants E,, fi3, . . . , F1, Fa, . . . can be determined in each particu- 
lar case from these two systems of equations by the method of successive 
approximations. 

To illustrate this method let us consider the case of a square plate. 
In such a case the distribution of the bending moments along all sides 
of the square is the same. IHence Ei = Fi, and the Tao systems of cqua- 

1 It is assumed that the order of summation in expression (I) is interchangeable. 
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tions, mentioned above, are identical. The form of the equations is 

Ei --7 tanh cti + 
a 

- tanh (Y~ 

Substit,uting the numerical values of the coefficients in t,hese equations 
and considering only the first four coefficients, we obtain the following 
system of four equations with four unknowns El, Ea, Es, and ET: 

1.8033E1 1 +O.O764E, +O.O188Es +O.O071E, = 0.6677K 
0.0764E1 +o.4o151i:3~+0.033035 +0.0159ET = 0.01232K 
0.0188E~ +O.O330E3 +0.225534 f0.0163E7 = 0.00160K (P) 
0.0071E1 +O.O159E, +O.O163E, +O.l558E~ = 0.00042K 

where K = -44rya2/a3. It may be seen that the terms along the diagonal 
have the largest coefficients. Hence we obtain the first approximations 
of the constant,s El, _ . . , ET by considering on the left,-hand sides of 
Eqs. (p) only the terms to the left of the heavy line. In such a way we 
obtain from the first, of the equations E 1 = 0.37OOK. Substituting this 
in the second equation, we obt,ain E 3 = -0.0395K. Substituting the 
values of El and E3 in the third equation, we find E, = -0.0180K. 
From the last equation wc then obtain ,Y7 = -0.00531~. Substitut,ing 
these first approximations in the terms to the right of the heavy line 
in Eqs. (p), we can cnlculatc the second spproximat,ions, which are 
K':I = 0.3722K, Es = -O.O380K, Bs = -O.O178K, E, = -0.0085K. 
Repeating the calculations again, we shall obtain the third approsi- 
mation, and so on. 

Substituting the calculated values of the coefficients EL, Es, . . . in 
series (c), we obtain the bending moments along the clamped edges of 
the plate. The maximum of the absolute value of these moments is at 
the middle of the sides of the square. With the four equations (p) taken, 
this value is 

The comparison of this result with Boobnov’s table, calculated with a 
much larger number of equations similar to Eqs. (p), shows that the 
error in the maximum bending moment, by taking only four equations 
(p), is less than 1 per cent. It may be seen that we obtain for the moment 
a series with alternat,ing signs, and the magnitude of the error depends on 
the magnitude of t’he last of the calculated coefficients El, Es, . . . . 

Substitut,ing the values of El, Ez, . . . in expression (d), we obtain 
the deflection of the plate produced by the moments distributed along 
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TABLE 35. DEFLECTIONS AND BENDING MOMENTS IS .4 UNIFORMLY LOADED 
RECTANGULAR PLATE WITII BUILT-IN EDGES (FIG. 91) 

P = 0.3 

1.0 0 .00126ya4/D 
1.1 O.O0150ya~/D 
1.2 0 .00172yaa/D 
1.3 0 .00191qa4/D 

1.4 0. 00207qa4/D 
1.5 0. 00220qa4/D 
1.6 0. 00230qa4/D 
1.7 O.O0238qa?/D 

1.8 0 00245qa4/D 
1.9 O.O0249qa”/D 
2.0 0.00254qa4/D 

co O.O026Oqa;‘/D 

- 

- 

(‘Jl,), -n,Y.~-il 
__~_ 

-0.0513ya2 
-0. 0581yu2 
-0. 0639qu2 
-0.0687ya2 

-0.072Gquz 
-0.0757qaz 
-0.0780qd 
-0.0799yu2 

-0.0812qa2 
-0. 0822qa2 
-0,0829qa* 
-0.0833yd 

-o.o513qa* 
-O.O538qa* 
- 0 0554ya2 
-0 0563qa2 

0.0231qa2 
0. 0264qa2 
0.0299qa2 
0.0327qa2 

W,)Z..O.,d 
___.-__ 

0.0231 c/a2 
o.o231qa* 
0.0228qu” 
0 0222qa’ 

- 0. 0568qa2 
- 0.057Oqa2 
-0.0571qa2 
-0.0571qa2 

0. 0349qa2 
0.0368qa2 
0.0381qa2 
0. 0392qa2 

0.0212ya2 
0. 0203qa2 
0.0193qa2 
O.O182qa* 

-0.057lqa2 
-0.0571qa~ 
-0.0671ya2 
-o.o571qa* 

0.0401qa3 
0. 0407qa2 
0,041 2qa2 
0.0417ya2 

0.0174qa2 
0.01 65qaz 
0.0158qa’ 
0.01 25qa2 

the edges y = +6/2. For the center of the plate (x = y = 0) this 
deflection is 

m c ]/:mL(-])(m-l)i? r!L!dEe”‘” = -0.00140 @R 
m2 cash aln D 

rn = 1,3.5 ,... 

IL)ouhling this result, to take into account the action of t,he moments dis- 
tributed along the sides x = &a/Z, and adding 
to the deflection of the simply supported square 
plate (Table 8), we obtain for the deflection at 
the center of a uniformly loaded square plate 
with clamped edges 

(to),,, = (0.00406 - 0.00280) s! = 0.0012ci $ 

62) 

Similar calculations can be made for any ratio 
Y 
FIG. 92 

of the sides of a rectangular plate. The results 
of these calculations are given in Table 35.’ 

Plates under Hydrorfatic Pressure. Reprcscnting the intensity of the 
pressure distributed according to Fig. 92 in the form 

1 The table WHS calculated by T. H. Evans; see J. Appl. Mechanics, vol. 6, p. A-7, 
1939. 
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we see that the effect of the term 90/2 on the deflections of the plate is 
already given by the previous solution. Thus it remains to cousider the 
pressure yoz/2a. The deflection surface of a simply supported plate 
carrying such a load is readily obtained by combining the expression (1~) 
on page 190 with the expression (a) on page 186. Putting q = -q0/2 iu 
this latter expressiou and replaciug z by z + a/2 in both expressions in 
accordance with new coordinates, we obtain the deflection surface 

m 

2ytia” u)=-- 
c 

< - l)m’3+-1 
iGIl ---A-- 2 - 

2 + cy, tanh 01, cash may 
cash cy, a 

nc = %,4,fi. 

symmetrical with respect to t’he .T axis and antisymmetrical wit,h respect 
to the g nsis. Conseyueutly, to eliminate the slope along the boundary 
of the plnt,c we have t,o apply edge moments of t,he following form: 

(flf2)*-fa,2 = 5 
c 

( - ] ) (T-1) iZE, COS mq 

m= lJ.5, 
m (8) 

(Mi,)ui*b,a = 
c 

(- l)nLIZ .lF, si*r mT 

WL = %,4,fi. 

Proceeding just as in the case of the uniformly distributed load, we calcu- 
late the coefficients f&,, and F,,, from a syst,em of linear equations. The 
deflections due to the simult8aneous nct,ion of the 
load qoz/2a and the moments (s) must be added, T 
finally, to the deflection:: of the clamped plat,e 
loaded uniformly with qo/2. Numerical re- Loo? P 

4-J 

sults obtained by such a procedure are given in 

iu 

x 
0 

Table 36.’ -1-J 
s 

Plates under Central Load. As a third ex- ’ 
ample let us consider the bending of a rectan- 

‘I 

gular plate with clamped edges under the action 2 P--J+ 2 

of a load P concentrated at the center (Fig. 93). 
Y 

FIN;. 93 
Again we go back to the case of a simply sup- 
ported plate. Substitut,ing into expression (146) a/2 for 4, and .V + a/2 

‘See Dana Young, J. Appl. Mechanics, vol. 7, p. A-139, 1940. More t,sterrsive 
tables were computed, by mctms of the method of finite differenws, by IX. G. Odlcy, 
J. Appl. Jfmhanics, vol. 14, p. A-289, 1947. 
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TABLE 36. DEFLZCTIONS AND BENDING MOMENTS IN R.ECTANGULAR PLATES 
WITH BUILT-IN EDGES AND HYUR~WATIC LOAD (FIG. 92) 

Y = 0.3 

b 

,’ 

0.5 0.000080 0.00198 0.00.515 -0.0115 -0.0028 
3 0.000217 0.00451 0.00817 -0.0187 -0.00GB 
1.0 O.OOOG3 0.0115 0.0115 -0.0334 -0.0179 
1.5 0.00110 0.0184 0.0102 -0.0462 -0.0295 

co 0.00130 0.0208 0.0063 -0.0500 -0.0333 

I 
2: = af2, jj = 0 12 = --n/2. 21 = 

I-- 
M, = y,qoaZ / Mz = yzqoa2 M, = 6qoaz 

z = 0. 1~ = i b/2 

-0.0104 
-0.0168 
-0.0257 
-0.0285 

for m, we arrive at the deflection surface (valid for y > 0) 
m 

Pa2 
w = FD c 

1 ma2 
G? cos a 

tanh CY, - z. 
cosh2 am 

m = 1,3,5, . 
> 

cash 7 - sinh mT 
a 

The angle of rotation along the edge y = b/2 is 
Lo 

dW (-> Pa 1 =-..- mrx CY’, tanh CY, 
a4 y=blz 27rzD c my cos 7 cash a,i, 0) 

m=1,3,5 ,... 

To calculate the bending moments along the clamped edges we proceed 
as in the case of uniform load and obtain the same two systems of Eqs. 
(m) and (n). The expressions for w1 and w2 are the same as in the former 
case, and it will be ncccssary to change only the first term of these equa- 
tions by substituting expression (t) instead of (&.u/~~),,_~,~ in Eq. (m), 
and also a corresponding expression for (dw/d.~).=,,~ in IQ. ta). 

For the particular case of a square plate, limiting ourselves to four 
equations, me find that the left-hand side of the equations will be the 
same as in Eqs. (p). The right-hand sides will be obtained from the 
expression (t), and we find 

1.803331 + ] 0.0764E3 + O.O188IS:6 + 0.0071E7 = -0.1828P 
0.0764lZl + 0.4045E'a + 10.033OE5 + 0.01591C7 = +O.O029gP 
0.0188E’1 + O.O33OE:3 + 0.225511:5 + IO.O163fi~ = -0.OOOOX1P 
O.O071E’1 + 0.0159ICs + 0.0163E5 + 0.1558E7 = +O.O00005P 
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Solving this system of equations by successive approximations, as before, 
we find 

El = -0.1025P E3 = 0.0263P 
E5 = 0.0042P ET = 0.0015P 

Substituting these values in expression (c), the bending moment for the 
middle of the side 2/ = b/2 can be obtained. A more accurate calcu- 
lation’ gives 

(M,)+,z,z=o = -0.12571’ 

Comparing this result with that for the uniformly loaded square plate, 

we conclude t’hat the uniform load produces moments at the middle of 
the sides that are less than half of that which the same load produces if 
concentrated at the ccntcr. 

Having the moments along the clamped edges, we can calculate the 
corresponding deflections by using Eq. (d). Superposing deflections pro- 
duced by the moments on the deflections of a simply supported plate, 
we obtain the deflections of the plate with built-in edges. By the same 
met,hod of superposition the other information regarding deflection of 
plates with built-in edges under a central concentrated load can be 
obtained. 2 Thus, if the load P is distributed uniformly over the area 
of a small circle or rcctsngle, the bending moments at the center of the 
loaded area x = y = 0 can be obtained by combining the results valid 
for simply supported plates [see Eqs. (157) and (167)] with some addi- 
tional moments 

m, = PIP m, = PzP 

given in Table 37 along with data regarding the maximum deflection of 
the plate and the numerically largest clamping moment. This latter 
moment, however, can reach the value of --P/r = -0.3183P, as men- 
tioned on page 192, in t,he case of a movable load. 

45. Rectangular Plates with One Edge or Two Adjacent Edges Simply 
Supported and the Other Edges Built In. Let us begin with the case of a 
plate simply supported at the edge y = 0 and clamped along the other 
edges (Fig. 94). Ko matter how the load may be distributed over the 

1 In this calculation seven equations, instead of the four equations taken above, 
were used. 

2 Calculated by Dana Young, J. Appl. Mechanics, vol. G, p. A-114, 1939. To 
obtain the moments with the four correct figures it was necessary to use in this calcula- 
tion seven coefhcients E and seven coefficients F in Eqs. (~2) and (n). Further solu- 
tions of the problem were given by H. Marcus “Die Theorie elastischer Gewebe,” 
2d ed., p. 155, Berlin, 1932; J. Barta, 2. anger. Math. Mech., vol. 17, p. 184, 1937; 
G. Pick&t, J. Appl. Mechanics, vol. 6, p. A-168,1939; C. J. Thorne and J. V. Atanasoff, 
Iown St&e (‘OK J. Sci., vol. 14, p. 333, 1940. The case was investigated experi- 
mentally by R. G. Sturm and II. L. Rloorc, J. Appl. Mechanics, vol. 4, p. A-75, 1937. 
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TABLE 37. BENDIKG MOMENTS AT THE MUIDLE OF LONGER SIDES AND 
DEFLECTIOM AND ADDITIONAL MOMENTS AT TIIE CEKTER OF 

RECTANGULAR PLATES LOADED AT THE CENTER (FIG. 93) 
Y = 0.3 

b/a 

7 .o 0.00560 
1.2 0.00647 
1.4 0.00691 
1.6 0.00712 
1.8 0.00720 
2.0 0 00722 

m 0.00725 

Correction moments 

-0.1257 
-0.1490 
-0.1604 
-0.1651 
-0.lG67 
-0.1674 
-0.168 

-0.053G -0.0536 
-0.0579 -0.05X 
-0.0618 -0.0517 
-0.0653 -0 0510 
-0 0683 -0 0504 
-0.0710 -0.0500 
-0.0742 -0.0484 

given plate sstt, we can cousider this plate as one-half of a plate rrtt hav- 
ing all edges clamped and carrying a load antisymmetrical with respect 
to the line ss. The deflections and the bending moments then are zero 
along that line. Thus the problem under consideration is reduced to the 

problem already solved in Art. 44. Some numerica, data concerning two 
cases of load distribution are given in Table 38.’ A more extensive table 

l’l’l~e tabulated rcsulls NIT due to Dana Young, J. Appl. Mechanics, vol. 7, p. 
A-139, 1940, and to C. P. Siess and N. M. Ncwmark, L’niv. Illinois ZhU., vol. 47, p. 
98, 1950. Y. S. Uflyand used quite R different method in treating this problem; see 
Dokladg Akad. Nazrk. S.S.S.K., vol. 72, p. 655, 1950. 
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TABLE 38. DEFLECTIONS AND BENDING MOMENTS IN RICCTANGULAR PLATES 

WITH ONE EDGE SIMPLY SUPPORTED AND THREE EDGES BUILT IN 

Load 

Uniform pressure (I. 

Hydrostatic pressure qoy/b 

b/a 

0.5 
0.75 
1.0 

4 
2 

0.5 
0.75 
10 

- 

(FIG. 94) 

(W)z=O.y-b/P (il/JrL=a12,Zl~hl* 

0. 00449qb4/D -0.0786qb2 
0. 00286qb4/D -0.0730qb2 
O.O0157qb”/D -0 .OBOlqb* 
0,00215qa4/D -0.0750qa2 
O.O0257qa4/D -0.0837ya2 

0. 00202q,b4/D -0.0368q,b2 
0. 00132q,b4/D -0. 0344qob2 
0. 00074qob4/D -0 .0287q,b2 

-0 1148qb’ 
-0 .0838qb2 
-0.0551qb2 
-0.0571qa2 
-O.O571qa* 

-0. 0623qob2 
-0. 0484qob2 
-o.o317qob* 

of bending moments is given on page 244 in connection with a design 
method for floor slabs. 

The rect’angular plate rsut (Fig. 95) with two adjacent edges x: = 0 and 
1/ = 0 simply supported and two other edges clamped can be regarded in 
like manner as an integral part of the plate 
bounded by 2 = +a, y = + Z, with all edges 
built, in. 

T,et us consider a load uniformly distributed 
over the nrca rsut of the given plate. l 12 checker- 
board loading distributed over the area 2n by 2b 
as shown in Fig. 95 then yields the condit’ions of a 
simply supported edge along the liues .z = 0 and 
1/ = 0. Thus the problem of bending a plate wit’h 
two adjacent edges simply supported and two Y 
others clamped is again reduced to the problem, Frc.. 95 
already solved in Art. 44, of a plate with all 
edges built in. Calculations show that the numerically largest moment 
is produced near the mid-point of the long side of the plate. The values 
of t’his clamping moment prove to bc -0.1180gb2 for b/a = 0.5 and 
-0.0694qb2 for b/a. = 1.0. The maximum bending moment near the 
center of a square plate has t#he value of 0.034ya2 (for v = 0.3) and the 
corresponding deflection is given by 0.0023qa4/D. Further numericad 
data regarding bending moments in this case are given on page 243. 

i A modification of Timoshenko’s method was applied in l~andling this case 1,) 
Siess and Yewmark, lor. cit. For use of the energy method see 11’. 13. Stilrs, 6. dpl~/ 
.llech~ics, vol. 14, p. A-55, 1947. See also M. I<. Huang and H. I). Conway, J. Appi. 
.Uwhanica, vol. 19, p. 451, 1952. 
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46. Rectangular Plates with Two Opposite Edges Simply Supported, 
the Third Edge Free, and the Fourth Edge Built In or Simply Supported.’ 

Let us assume the edges zz = 0 and x = a in Fig. 
96 as simply supported, the edge y = b as free, 
and the edge 1/ = 0 as built in. In such a case 
the boundary conditions are 

for 2 = 0 and x = a (a) 

FIG. 96 
for y = 0 (b) 

and along the free edge [see Eqs. (112), (113), page 841 

In the particular case of a uniformly distributed load we proceed as in 
Art. 30 and assume that the total deflection consists of two parts, as 
follows : 

w = WI f w2 

where w1 represents the deflection of a uniformly loaded and simply sup- 
ported strip of length a which can be expressed by the series 

m 

4qa4 
c 

1 . m?rx 
Wl = --~- GD ms sm a 

m= 1,3,5,. 

and wg is represented by the series 
m 

wz = c Y, sin y 
m= 1,3.5, . 

(4 

(e) 

where 

Series (d) and (e) satisfy the boundary conditions (a), and the four con- 
stants in expression (f) must be determined so as to satisfy the boundary 

1 This case was discussed by Boobnov; see the English translation of his work in 
Trms. Inst. A’nuaZ Arch., vol. 44, p. 15, 1902, and his “Theory of Structure of Ships,” 

vol. 2, 1 . > 545, St. l’etersburg, 1914. It was also discussed by I<. Coriupp, Ingr.-Arch., 
vol. 16, p. 77, 1947, and by V. Bogunovi6, “On the Bending of a Rectangular Plate 
with One Edge Free,” Belgrade, 1953. 
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conditions (6) and (c). Using the conditions (b), we obtain 

An = - Tp$ C, = -D, 

From the remaining two conditions (c) we find 

(3 + v) (1 - V) cosh2 Pm + 2v cash Pm 
- ~(1 - v)pm sinh Pm - (1 - v2) 

(3 + ~)(l - v) cash” Pm + (1 - v)~/$ + (1 + v)” 

(3 + v)(l - v) sinh &,, cash Pm + ~(1 + v) sinh Pm 
- ~(1 - v)&,, cash P,n - (1 - v)~&,, ~~~ 

(3 + v)(l - V) cosh2 Pm + (I - v)“P: + (1 + v)” 

where Pm = m&/a. 
Substitut,ing the constants (q) and (h) in Eo. (f) and using series (e) 

and (d), we obtain the expression for the deflection surface. The maxi- 
mum deflection occurs in this case at the middle of the unsupported edge. 
If the length b is very large in comparison with a, that is, if the free edge 
is far away from the built-in edge, the deflection of the free edge is the 
same as that of a uniformly loaded and simply supported strip of length a 
multiplied by the constant factor (3 - v)(l + v)/(3 + v). Owing to the 
presence of this factor, the maximum dcflcction is larger than that of the 
strip by 6.4 per cent for v = 0.3. This fact can be readily explained if we 
observe that near the free edge the plate has an snticlastic deflection 
surface. 

Taking another extreme case, when a is very large in comparison with b, 
the maximum deflection of the plate evidently is t,he same as for a uni- 
formly loaded strip of length 0 built in at one end and free at the other. 
Several values of the maximum deflection calculated1 for various values 
of the ratio b/a are given in Table 39. This table also gives the maxi- 
mum values of bending moments which can be readily calculated from 
the expression for the deflection surface. The calculations show that 
(IV,),,,,, occurs at the middle of the unsupported edge. The numerical 
maximum of the moment X,, occurs at the middle of the built-in edge. 

The case of the hydrostatic load distributed according to the law 
q,(l - y/b) can be treated in the same manner as the foregoing case. Let 
the deflection be expressed by m CG 4qdl - ulb)a* 1 m7r2 w = _.___ _.._~ 

7PD c ms 
sm a + 

c. 
Y, sin y (i) 

In= 1.3,5, . m= 1,3.5, 

1 This table was calculated by Boobnov, op. cit. 
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TABLE 39. DEF.LECTIOSS AND BENDING MOMENTS FOR A UNIFORMLY LOADED 
PLATE WITH Two OPPOSITE EDGES SIMPLY SUPPORTED, THE THIRD EDGE 

FREE, AXD THE FOURTH BUILT Is (Fra. 96) 

- 

0,125qb4/1) 
0. 094qb4/D 
O.O582qb4/D 
0 .0335qbn/D 
0 .0113qb4/D 
0 .0141qa4/D 
0 .0150qa4/D 
O.O152qd/D 
0 .0152qa4/D 

- 

- 

Y = 0.3 

x = ~$2, y = b 

0 
0.0078qa~ 
O.W13qa* 
0.0558qU 
0.09T2qa~ 
0.12Xqa2 
0.131qu* 

0.1 33qa2 
0.133qu2 

- 

i 

x = u/2, 2/ = 0 
- 

~... -~ 

-0.5OOqb2 
-0.198qb’ 
-O.::iOqb’ 
-0. %27yb2 
-0. I 1 Oqb’ 
-0.124qd 
-0.125qa2 
-O.l25qa* 
-0.125qu2 

in which Y, is of the form (f), only \vith the constant q. instead of y. 
Proceeding as before, we obtain the four constants A,,,, R,, , I), 
from the boundary condit,ions (a), (b), and (c). 

If the plate is bent by a load dist,ributed along the free edge, instead of 
by a load distributed over the sur- 

s 

face, the second of the boundary 
conditions (c) must be modified by 
putting t,he inl’ensity of the load 
cdistribut,ed along the free edge in- 
stead of zero WI t)he right-hand side 
of the equation. The particular 

FIG. 97 case of a concentrated force applied 
at the free edge of a very long plate 

was investigated (k‘ig. 97).’ It was found that the deflection along the 
free edge can be represented by the formula 

(w),=, = a q 

The factor (Y rapidly diminishes as the distance from the point A of app]i- 

1 See C. W. MacGregor, Me&. Eny., vol. 57, p. 225, 1935; 1). L. Holl, J. Appl. 
Mechanics, vol. 4, p. 8, 1937; T. J. Jalamillo, J. Appl. Mechanics, vol. 17, p. 67, 1950; 
and I(. Girkmann, “FlBchentragwerke,” 4th ed., p. 233, Vienna, 1956. The case of a 
cantilever plate having three edacs fret and carrying a uniformly distributed load was 
discussed by W. A. Sash, J. Appl. Mechanics, vol. 19, p. 33, 1952. See also the inves- 
tigation of such a plate by \V. T. Roiter and J. B. Alblas with numerical results given 
in Proc. Rowinld. Nrd. Akarl. Wetenschap. Am&r&m, vol. 60, p. 173, 1957. 
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cation of the load increases. Several values of this factor are given in 
Table 40. The numerically largest values of the clamping moment pro- 
duced by a load acting at the middle of the free edge of a plate of a finite 
length a are given in Table 41.’ 

',-ABLE ‘ko 

5= 0 b/4 b/2 b 2b 
___----- 

-1 
--- -_ 

U= i 0.168 0.150 0.121 0.068 0.016 
I 

TABLE 41. BEXDIXG MOMENTS N = @I', AT z = 0, 2/ = 0, Due TO A Lo.~u P 
ACTINQ AT z = 0, y = b .&ND THE EDGES z = fu/2 BEIXCI SIJWLY 

SUPPORTED (FIG. 97) 
Y = 0.3 

b/v’ 4 2 1.5 

1 ~ 

1 ’ g / 0.5 1 + 0.25 j 0 
~___-___-~~~------.~ I 

,3 = -0.000039 -0.0117 -0.0455 -0.163 -0.366 -0.436 -0.4981-0.507 -0.509 
I 1 / 

The case of a uniformly loaded rectangular plate simply supported 
adong three edges and free along the edge y = 0 (Fig. !B) can bc treated 
in the same manner as the preceding case in 
which the edge ~1 = 0 was built in. It is neces- 

~~~ 

_mL,-Free ’ -1 q pm 
sary only to replace the second of the boundary T- 
conditions (6) by the condit,ion 

[(gf) i- v(gq+ = 0 i 

Omitting the derivations, we give here only the xL 
final numerical results obtained for this case. L---+ ----; 

The maximum deflection occurs at the middle of FIG. 98 

the free edge. At the same point the maximum bending moment M, 
takes place. These values of deflections w,,,.,, and (M,),,, are given in 
t,hc second and third column of Table 42.? The last two columns give 
the bending moments at the center of the plate. 

Table 43, in a similar manner, contains the values of deflections and 
bending moments produced at the middle of the free edge and at the 
center of the plate by a hydrostatic load. 

47. Rectangular Plates with Three Edges Built In and the Fourth 
Edge Free. Plates with such boundary conditions are of particular 
interest as an integral part of rectangular tanks or retaining walls. Con- 

1 This table was calculntcd by V. Bogunovid, lot. cit. See also Art. 78. 
2 This table and Table 43 WCI’P calc~ulatecl by R. G. Galcrlrin; see Bdl. Polytech 

If&., vol. 26, p. 124, bst. Prtcrsburg, 1915. 
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TABLE 42. DEFLECTIONS AND BENUIXG MOMENTS IS UNIFORMLY LOADED 
RECTANGULAR PLATES WITH THREE EDGES SIMPLY SUPPORTED AND 

THE FOURTH EL)GE FREE (FIG. 98) 
Y = 0.3 

b/a 

4 2 
l/L 
l/l .3 
l/l .2 

l/1.1 
1 

1.1 
1.2 
1.3 

1.4 
1.5 
2 
3 
m 

7-- 
z = a/2, y = b 

- 
I I- 

-~ 

- 

U’mnr 

0.00710@/D 0.060qa2 
0. 00968qa4/D 0 .083qa2 
0. 01023qa4/D 0. 088qa2 
0 .01092qa4/D 0 094ya2 
0.01158qa4/D 0. lOOpa 

O.O1232qu~/D 0. 107qa2 
O.O1286qa~/D 0.112ya2 
0. 01341qa4/D 0.117qa2 
0 .01384qa4/D 0.121qa2 
0 .01417qa4/D 0.124qa" 

0. 01442qa4/D 0.126qa~ 
0.01 462qa4/D 0 .1 28qa2 
0. 01507qa4/D 0 1 32ya2 
O.O1520qa4/0 o,133qa* 
0.01 522cp4/D 0.133qa* 

-_ 

- 

- 

z = a/TL, y = b/2 

nf, 
O.O39qa* 0.022qa2 
0.055qa2 0.030ya2 
0. 059qa2 0. 032qa2 
0 .064qa2 O.O34qa* 
0.069qa2 O.OSGqa2 

0. 074qa2 0. O“7qaz 
0. 080qa2 0.039qu2 
0.085qd 0.040qa2 
O.O90qa* 0.041qa2 

0. 094qa2 0 042qa= 

0.098qa2 
0. 101qa2 
0. 113qa2 
0 122yd 
o,125qa* 

0. 042qa2 
0. 042qaZ 
0. 041ya2 
0. 039qaZ 
0.037qa2 

- 

TABLE 43. DEFLECTIONS ANI) BENDING MOMENTS IN HYDROSTATICALLY LOAD~I, 
RECTANGVLAI~ I'IATES WITH TIIRMC KLXES SIMPLY SU~PO~~TED AND THE 

FOURTH Ewx FREE (FIG. 99) 
Y = 0.3 

5 = a/“, q = b 1: = a/2, y = b/2 

b/a ._______ 

LO n*, w MZ M, 
--- __-- 

6 O.O0%30q,a4/D 0.0197qoa2 0_00135qoa4/D 0 .0145qoa2 0. 0120qoa2 
if 0.0030 lq,,a’/D 0. 02G5q,a2 0. 00207q0a4/D 0. 0220qoaz 0. 0156q,a2 
1 0 00368qoa4/D 0.0325qou2 0.00313qoa4/D 0.0331qoa2 0.0214yoa2 
1.5 0 00:1.47qod lD 0. 0308q,,a2 O.O0445qoa4/D 0. 0453qoa2 0. 0231qca2 
2.0 0 00291y~a4/D O.O25Sq,az O.O0533qoa4/D 0,0529q,a* 0 .0222qoa2 
00 0 0 0 .00G51y,,a4/D 0.0625qd 0.0187qoa2 
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sequently, the uniformly distributed and the hydrostatic load must be 
considered first of all in that case. 

Let the boundary of the plate be clamped at 1~ = 0 and x = +a/2 
and free along 21 = b (Fig. 100). Assuming first a uniformly distributed 
load of intensity q, the expression for deflectious may be taken in the form 

w = Wl + wz + w3 (a) 
The expressions for 

w1 _ $ux ( -lzpl)‘” _ m7rx 2 
a 

m=1,3,5, 
-a 

(b) 

and w2 = 
c 

Y,,( - 1) (m--1)‘2 cos “,“” cc, 
m= 1.3,5, 

contained in Eq. (a) are identical with expressions (d) and (e) of the 
preceding article if one considers the new position of the origin. 

A suitable form for t.he addit,ional deflections T.u:~ due to the additional 
constraint on the edges x = +-a/2 is’ 

cc 
p1,13 = !E? D c ( F n yrr tanh -yn cash ns - F, z sinh ng sin 7; 

n=1.3.d,... 
m 

+@ 

D c ( 
G, sinh y + H, m+ cash y 

7n= 1,3,5,... 

+ I, “,“” sinh ‘“,“” cos me (d) 

in which F,, . . . , I, are some constants and -yn = mra/4b. 

‘This method of solution essentially is due to Goriupp, op. cit., p. 153, 1948. 
See also W. J. Van der Eb, Ingeniew, vol. 26, p. 31, 1950. 
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As 20~ = 0 for y = 0 and z = ) a/2, the boundary conditions still to 
he satisfied by deflections (d) are the following: 

(. ;A?+ + ) = 0 u=b I a+ + (2 - v) d3W3 
asay 1 y=b = 0 

aw3 (- ) a!/ -;L 0 x,=0 L a(w,+ wz + 4 --- ax --- 1 
(e) = o i=+U/Z 

Now we expand all noncircular functions of x contained in expression (a) 
in a series of the form Xc, cos (mz~/a) and all similar functions of 1) in 
a series of the form Zb, sin (nq/2b). A set of linear equations for F,, 
Gn, . . . , I, is then readily obtained from conditions (e). Solving the 
equations we are able to express those unknown con&Ants by the known 

values of A,, . . . , D, (see page 209). 
In the case of a hydrostatic pressure 

acting in accordance with Fig. 101, we have 
to superpose solution (i) of the preceding 
article on the solution of form (d) and, 
besides that, to proceed as indicated above. 

Whatever the load, the problem can also 
be handled’ by the method of finite differ- 
ences (see Art. 83). Numerical values of 

FIG. 101 Tables 44 and 45 are computed essentially 
by that procedure.’ 

48. Rectangular Plates with Two Opposite Edges Simply Supported 
and the Other Two Edges Free or Supported 
Elastically. Let us consider the case where the 
edges x = 0 and 2 = a (Fig. 102) are simply sup- 
ported and the other two edges are supported by 
elastic beams. Assuming that the load is uni- x 
formly distributed and that the beams are iden- 
tical, the deflection surface of the plate will be 
symmetrical with respect to the x axis, and we ------- 
have to consider only the conditions along the L _______ a ___.___ 4 
side y = b/2. Assuming that the beams resist Y 
bending in vertical planes only and do not resist FIG. 102 

torsion, the boundary conditions along the edge y = O/2, by using Eq 
(114). are 

1 See A. Smotrov, “Solution for Plates Loaded According to the Law of Trapeze,” 
Moscow, 1936. 



TABLE 44. DIWLECTIOKS, RENDING MOMENTS, AND REACTIONS OF UNIFORMLY LOADED RECTANGULAR PLATES WITH THREE 
EDGES BUILT IN AND A FOURTH EDGE FREE (FIG. 100) 

v=+ 

b 

a 

0.6 
0.7 
0.8 
0.9 
1.0 
1.25 
1.5 

- 
I 

- 

- 

z = 0, y = b 
T 

W 

w’ 
= (xl--- 

D 

Nz 
= 131qa2 

w 

w’ 
= a2- 

D 

0.00271 0.0336 0.00129 
0.00292 0.0371 0.00159 
0.00308 0.0401 0.00185 
0.00323 0.0425 0.00209 
0.00333 0.0444 0.00230 
0.00345 0.0467 0.00269 
0.00335 0.0454 0 00290 

z = 0, J/ = b/2 s = a/2, !, = b I 
z = a/2, J, = b/2 .c = 0, y = 0 

ill, AU, 
= P2qaZ = &n” 

P2 2L.. ~~ 

0.0168 0.0074 
0.0212 0.0097 
0.0252 0.0116 
0.0287 0.0129 
0.0317 0.0138 
0.0374 0.0142 
0.0402 0.0118 

83 -..___ 

-0.0745 
-0.0782 
-0.0812 
-0.0836 
-0.0853 
-0.0867 
-0.0842 

v I IIf, 
= r3qa = B4qa2 

Y3 84 -___ 

0.750 -0.0365 
0.717 -0.0439 
0.685 -0.0505 
0.656 -0.0563 
0.628 -0.0614 
0.570 -0.0708 
0.527 -0.0755 

0.297 -0.0554 
0.346 -0.0545 
0.385 -0.0535 
0.414 -0.0523 
0.435 -0.0510 
0.475 -0.0470 
0.491 -0.0418 

_- 

- 

VII 
= wa 

76 

0.416 
0.413 
0.410 
0.406 
0.401 
0.388 
0.373 



TARLE 15. DEFLECTIOKS, BENDING MOMENTS, AND REACTIONS OF HYDROSTATICAI,LY LOADED RECTANGULAR PLATES WITH 
THREE EDGES BT~ILT IN AND A FOIJRTII EDGE FREE (FIG. 101) 

v=+ 

b - 
a 

0.6 0.00069 o.oos9 
0.7 0.00069 0.0093 
0.8 O.OOOG8 0.0090 
0.9 0.00067 0.0096 
1.0 0.00065 0.0095 
1.25 0.00056 0.00% 
1.5 0.00042 0.0065 

- 

z = 0, y = b/2 zc = a/2, y = b 

w 
qoa” = a?- 

D 

a2 

0.00044 
0.00058 
0.00072 
0.00085 
0.00097 
0.00121 
0.00135 

M, M, 

= B2qoa2 = p:qoaz 

P? 0; 

0.0060 0 0062 
0.0080 0.0074 
0.0100 0.0083 
0.0118 0.0090 
0.0135 0.0094 
0.0169 0.0092 
0.0191 0.0075 

iv, 

= P3q0a2 

83 
--0.0179 
-0.0172 
-0.0164 
-0.0156 
-0.0146 
-0.0119 
-0.0087 

0.093 
0.081 
0.069 
0.057 
0.045 
0.018 

-0.006 
- 

r = a/3, y = b/2 

- 
1 

97, v, 

= IB4q0a2 = Y4Qd 

84 Y4 

-0.0131 0. 136 
-0.0170 0.158 
-0.0206 0.1’77 

-0.0239 -0.0269 I 
-0.0327 

/ :::i; 
0.234 

-0.0364 0.245 

1 

- 

z = 0, y = 0 

B5 --~~ 
-0.0242 
-0.cl261 
-0.0275 
-0.0290 
-0.0290 
-0.0306 
-0.0291 

= ysqoa 

YS 

0.248 
0.262 
0.275 
0,286 
0.295 
0.309 
0.311 
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where El denotes the flexural rigidity of the supporting beams. Pro- 
ceeding as in Art. 46, we take the deflection surface in the form 

w = w1+ w2 (b) 
m 

where 
4qa4 1 . max w, = ___ 
79D c ms sm a Cc) 

WI= 1,3.5 , 
m 

and 11J.j = c Y, sin 7 
m = 1.3,5, . . . 

(4 

From symmet,ry it can be concluded that in expression (f) of Art. 46 we 
must put C, = D, = 0 and take 

(e) 

The remaining two constants fl, and B, are found from the boundary 
conditions (a), from which, using the notations 

we obtain 

mrb EI 
2a=cx, a=X 

A,(1 - V) cash 0~~ + B,,J2 cash (Y, + (1 - y)aI, sinh cy,] = ;$ 

- A,[( 1 - V) sinh LY, + maX cash (Y,] + ‘B,[( 1 f Y) sinh o(~ 
4x 

- (1 - Y)Q, cash a, - rnr&,, sinh (Y,] = ~ 
rn”d 

Solving these equations, we find 

~(1 + Y) sinh (Y, - ~(1 - Y)o(, cash (Y, - mrX(2 cash a,,, 
+ am sinh CG,J (f) 

(3 + V) (1 - V) sinh cy, cash ar, - (1 - v)%x, + 2mrrX cosh2 CY, 

13, zz 4 ~(1 - V) sinh cy, + mnX cash (Ye 
m5r5 (3 + ~)(l - V) sinh (Y, cash (Y, - (1 - v)~c~, (9) 

+ 2maX Gosh2 cy, 

The deflection surface of the plate is found by substituting these values 
of the constants in the expression 

cc 
4 

w = WI + w2 = qA D c ( 
& + A, cash 7 

m= 1,3.5. 

+ B, TES! sinh ES! sin m?r5 
a a a @I 
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If the supporting beams are absolutely rigid, X = ~0 in expressions (f) 
and (g), and A, and R, assume the same value as in ,4rt. 30 for a plate 
all four sides of which are supported on rigid supports. 

Substituting X = 0 in expressions (j) and (g), we obtain the values of 
t,he cowtants in series (h) for the case where two sides of the plate are 
simply supported and the other two are free. 

Except for the case of very small values of X the maximum deflection 
and the maximum bending moments are at the center of the plate. 
Several values of thcsc quantities calculated for a square plate and for 
various values of X are given in Table 46.’ 

Lc 
100 

30 
10 

6 

4 
2 
1 

0.5 

0 ! 
i 

0 OO-iO~qa “/ 1) 
O.O0416qa~/D 
o.o0~134qn’/l) 
0 00454qa'lI) 

0 O01i%qu4/D 
0 0052!)qa'/L) 
0 00624qd/D 

O.O0756qu'/~~ 
0.01309qn~/f~ 

I 
i 

0.0481cp 
0.0486qa~ 
0 0500pa" 
0.0514ya" 

The particular cast x = 0 of a plate with two opposite cdgps simply supported and 
the other two free dewrws some consideration. As Table 472 shows, tha deflections 
and the largrst moments 01” sw11 a plate loaded uniformly differ but little from thr: 
tleflectiow and moments of a plat,e bent to a cylindrical surface. 

49. Rectangular Plates Having Four Edges Supported Elastically or Resting on 
Corner Points with All Edges Free. Let, us consider a plate subjected to a uniform 
pressure and supported along the hound:try by four flexible beams. -411 beams arc 
supposed to II:~VV rigid supports at the corners of the plate, and two beams parallel to 
oath other nlny have t,he samr flesural rigidity (Fig. 103). 

1 The table was calculated by K. A. Cnliriev, Mem. Inst. Rngrs. Wqls Conzwtun., 
St. Petersburg. 1914. 110~ recently the problem was discussed by IX. Miillcr, 
Irqr.-Arch., vol. 2, p. 606, 1932. The tables for nonsymmetricsl cases are calculated 
in this paper. Various cases of rectangular and continuous plates supportctl by 
Hexibltt beams R-cxc discussed by 1’. I’. Jensen, Univ. lllinois Hdl., 81, 1X38. 

2 These results are due to I). I,. 11011, IOWU Stde Cd. En,y. Ecc~. Sh. 131((/. 129, 1!)3G. 
nor the case of a concent ratwl load see also R. Ohlig, Iragr.- 1 rch ., vol. 16, 1’. 5 I, IO 17. 
Hoth authors also discuss thr effect of clamping the supported edges. 
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TABLE 47. DEFLECTIONS AND BENDING MOMENTS IN UNIFORMLY LOADED 
RECTASGVLIZR PLATES WITH THE EDGES % = 0, z = a SIMPLY 

SUPW~TED AND THE OTHER Two FREE (FIG. 102) 
Y = 0.3 

0.5 0.01377 I 0.1235 0.0102 0.01443 0.1259 
1.0 0.01309 0 11’25 

~ 
0.0271 0.01509 0.1318 

2.0 / 0.01289 0.3233 ! 0 o:KLl 0.01621 0.1329 
* / f..O130% / 0 1250 I 0 .O:ii.i O.CJ1.522 / 0.1330 

By writing the defiect,ions in the form 

P --. [r(lW - %4a2.z2 + 5a4 
w = 384D(y + 6) 

) + 6(16?/’ - 24b2y2 + 5b4)] 

where 6/y and -4,,, , u,, are SOTYL~ constants and a = 1, 11, 5, , WC: satisfy the 
diffcrcntial equation ~&a = q/L) of the plate and also the conditions of symmetry.’ 
Next, let us develop the algebraic and tile hyperbolic 

-- functions contained in cxprcssion (a) in cosine series. p=====----$1, 
Then, using for 5 = a/2 and y = b/2 the edge contli- 
tions similar to conditions (a) of the preceding article, 

11 iI I 
11 II & 

me arrive at a set of equations for the constants 
‘I I 

0 /I ; 
A,, . . . , D, of expression (a). / j * x 

Making, in particular, S/-y = 0 and EhZh = M, we I/ ‘I 
‘I ] 

wo~dtl arrive at the solution of the problem already- ,, I[ -a-u 

discussed in Art. -18. /L=-== 
Let us consider now the bending of a square Plato 

==-= -J-L 

(n = b) supported by four identical beams. We hltve I Ii L---s ..-- ---t---J 

then, by symmetry, s/r = 1, and d,, = ZI,, and G 
C,, = I),,. The unknown coefficients A,, are eliminated FIG. 103 
by equating to zero the edge moments. Taking, then, 
only four terms (n = 1, 3, 5, and 7) in series (a), we arriw at four linear equations for 
C,, Ca, Cs, and CT. The results of numerical calculations carried out in this way are 
given in Table 48. 

1 This method of solution is due to B. G. Galerkin; see his “Collected Papers,” vol. 
2 , p. 15, &fos~~o~~, 1953. The boundary conditions under consideration are easily 
rcnliznble and thus appropriate for the verification of the theory by tests. See 
N. I)inlitrov, h’cntinyrnieur, vol. 32, p. 359, 1957. 
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TABLE 48. DEFLECTIONS AND BENDING MOMENTS OF A SQUARE PLATE WITH 
Fault SIDES SUPPORTED ELASTICALLY (Fig. 103) 

Y = 0.25 

EI 
-r=z 

33 

100 
50 
25 

10 
5 
4 
3 

2 
1 

0.5 
0 

z = 0, y = 0 

w=,9”4 
D 

a 

M, = M, = p,pu2 

- 
0.00406 0.0460 
0.00412 0.0462 
0.00418 0.0463 
0.00429 0.0467 

M, = bqa2 

Pz 

0 

0.0002 

0.00464 0.0477 0.0024 
0.00519 0.0494 0,0065 
0.00546 0.0502 0.0085 
0.00588 0.0515 0.0117 

0.00668 0.0539 0.0177 
0 00873 0.0601 0.0332 
0.01174 0.0691 0.0559 
0.0257 0.1109 0.1527 

- 

- 

z = 0, y = a/2 

In the particular case of El = 0 we have a square plate carrying a uniformly dis- 
tributed load and supported only at the corners. The value of v has but little influence 
on the deflections and moments at the center of the plate; its effect on the edge 
moments is more considerable. Taking, for example, Y = 0.3 the values given in the 
last line of Table 48 for P = 0.25 should be replaced by 0.249, 0.1090, and 0.1404 
respective1y.r 

The problem of bending of a centrally loaded square plate fixed only at the corners 
has also been discussed.2 If the load P is distributed uniformly over a small area of a 
rectangular or circular outline, an expression can be deducted3 for moments taking 
place at the center of the loaded area. Taking, for example, a square loaded arca 
u by U, those moments for Y = 0.3 can be expressed in the form 

M, = M, = 0.1034 log u + 0.129 P 
u > 

(6) 

Having this solution and also the solution for the uniformly loaded squarc plat,c 
supported at the corners, the problem shown in Fig. 104~ can be treated by the method 
of superposition. It is seen that if a square plate with free edges is supported by the 

1 See H. Marcus, “Die Theorie clasticher Gewebe,” 2d ed., p. 173, Berlin, 1932; 
various cases of plates fixed at points were discussed by A. Nadai, 2. angew. Math. 
Mech., vol. 2, p. 1, 1922, and also by C. J. Thorne, J. Appl. Mechanics, vol. 15, p. 73, 
1948. 

2 Set Marcus, ibid. 
3 See S. Woinowsky-Krieger, Znqr.-Arch., vol. 23, p. 349, 1955. 
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uniformly distributed reactions, the bending moments at the center are obtained by 
subtracting from expression (b) the value Al, = M, = 0.1090qa2, given above for the 
uniformly loaded square plate supported at the 
corners and having Y = 0.3. In this way we obtain r--------- o ---------I 

M, = M, = 
( 

0.1034 log t + 0.020 
) 

7 

P (c) 

valid for Y = 0.3. The distribution of bending 
moments along the middle line of the footing slab & i 

is shown in Fig. 104b for u/a = 0.1 and z&/u = 0.2. 
h uniform distribution of the pressure may be as- 
sumed for a very rigid footing slab resting on soft 
subgrade. More general hypotheses regarding the 1; A. 

law of distribution of that pressure will be postu- 
lated in Chap. 8. 

60. Semi-infinite Rectangular Plates under 
Uniform Pressure. The deflection surface and the 
stress distribution near the short side of long A- 

rectangular plates are practically the same as those 
c_rll, 

7 
P/a2 

at the ends of sem-infinite plates, as shown in Fig. 
105. It is mainly for this reason that the simple 

FIG. 104a 

theory of these latter plates deserves consideration. Let the load be uniformly dis- 

tributcd over the area of the entire plate and let the rdgcs T = 0, x = a be simply 
supported.’ 

1 The following solutions of the problem are ~IIP t,o .I. NBdai; see his book “Elas- 
tische Platten,” p. 72, Berlin, 1925. 
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The deflection surface of the plate may be expressed by 

(a) w = Wl +wz 
in which 

m 
1 

W, = &D (r* - 2nx3 + ass) = s 
c 

1 mlrx 
- s1n - 
It16 

@) 
a 

m = 1,3,5, 

is the particular solution of the equation A&w = p/U, 4 being the intensity of the load, 
nnd 

m 

4ga4 
202 = _ 

T5D c ( 
-;I,,, + B, mall 

a > 
ee77*?r2/la sin !!kE (cl 

a 
m= 1.3,s. . . 

is a solution of the equation AAw = 0, yielding zero deflections at 2/ = M. The 

0 ( 

1 

x 

---a.- 

(0) (b) 

Fro. 105 

--_ -- 

1 

x 

--w- 

(cl 

coefficients A, and B,, which are still at our 
disposal, must be determined so as to satisfy 
the rcspectivc conditions along the edge 1/ = 0 
of the plate. The following three cases may 
be considcrcd. 

The edge y = 0 is simply wpporied (Piy. 105cL). 
The particular conditions to be fulfilled are 
w = 0 and azw/a1/2 = 0 for v = 0. Substitn- 
tion of the series expressing w = WI + wz in 
those conditions yirlds the values A, = - l/m5 
and H,, = A,,,/2 for the coeflicicnts. Thus we 
arrive at the dcfkction surface 

in which wi is given by Eq. (b). 
Of particular intcrcst are the hending moments Al, of the plate. Along the middle 

lint z = a/2 of the plate we have, by clifferent,iation, 

Making use of t,hc condition a.lJ!,jau = 0 and taking into account the first term of the 
rapidly convergent series, we conclude that IIT!, hecomes a maximum at 

a1+v 
:J=--- 7rl--v 

Table 49 gives the largest values of bending moments together with the largest values 
of the edge reactions l’,, and the forces I< acting downward at the corners of the plate. 

It should be noted that the ve,lue 0.03G.4ga2 exceeds by 45 per cent the value 
t).l)250qn2 of the largest moment M, of an infinitely long plate, the value of Poisson’s 
constant being the same in both cases. 
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TABLE 49. LARGEST BENDIXG M~XENTS AND REACTIONS OF A UNIFORMLY 
LOADED SEIXII-INFISITE PLATE WITII ALL EDGES SIMPLY SUPPORTED 

(FIG. 105~) 

The edge y = 0 is built in (Pig. 105b). Following the general procedure described 
above, but using this time the edge conditions w = 0, aw/ay = 0 on y = 0, we obtain, 
instead of csprcssion (d), the result, 

in which wuit again is given by IQ. (b). The corresponding bending moment 

bceomcs a maximum at, .z = (I/L’ and ~1 = Ztr/r(l - v). .4ssuming Y = 0.3 we obtain 
y = 0.9ln and (M,),,,,, = O.O42iqa2, mhewns t,hc nssunrpt,ion of Y = 0.2 yields the 
values of O.OXZq~r’ and ~1 = O.SOa, rcspectivcly. It can he shown, also, that the 
variation of the clumping moments along the short side y = 0 of the plate obeys the 
simple law 

(M,).=, = - 9 (ax - 22) 

Observing that at large values of y the deflection surface of the plate can be assumed 
cylindrical, we have there 

M, = 5 (ax - x2) M, = v; (ax - X2) 

Thus, the distribution of the edge moments (9) is identical with the distribution of the 
monlcnts AT, across the pl:rt,c at y = m but with opposite sign. 

The edge y = 0 is free (Fig. 106~). If the condit,ions prcscribcd at y = 0 are 

a2w * 
.-+==o 

a3t0 CFW 
a22 ag yp+(2-Y)~=o aPay 

then, making use of expressions (a), (b), and (c), we arrive at the deflection surface 

(h) 
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The deflection and the bending moment M, are largest at the middle of the free edge. 
It can be proved that 

and (M&/4 = 

%ul and (M,)r being the deficctions and the moments of an infinite simply supported 
plate. iVe have therefore 

0 
/ x / 

: 

/ 

2 2 

/ 
Y 

FIQ. 106 

As a last example, leading to a different form of solution, 
let us consider a uniformly loaded semi-infinite plate with 
the edge y = 0 simply supported and the edges z = *a/2 
built in (Fig. 106). The solution can be obtained by suh- 
stituting b = m in a suitably chosen expression for the 
deflections of a finite rectangular plate simply supported on 
the edges y = 0, b and clamped on the edges z = *a/2. 
The result of such a derivation, which is omitted here, is 

m 

4qa4 

/’ [- 

1 
w=- 

7rD 0 2 

PP B 
sinh 2 + 2 cash 2 

sinh p + p 

1)iffcrcntiating expression (i) and observing that 

.I 

m 

sin py dp 
a n- ____ =- for y > 0 

0 B 2 

we obtain 

Thus the differential equation for bending of plates is satisfied. It can be shown that 
the required boundary conditions at y = 0 and z = +a/2 are also satisfied by solu- 
tion (i). 

The expressions for the bending moments of the plate again involvr infinite integrals, 
which can be evaluated. Once more the moments M, are of interest. Assuming, for 
example, Y = 0.2, we arrive at a value of (M,),,,,, = 0.0174qa2, occurring at y = 0.3a, 
whereas the moment M, = qa2/24 of an infinite plate does not exceed 0.00833qa2 for 
the same value of P. 

It should be noted that the properties of the scm-infinite plates can be used as 
a basis for calculating the deflections and bending moments of fiuite rectangular 
plates with simply supported or built-in edges in any given combination.’ 

1 For this approach to the theory of rectangular plates see \V. Koepcke, Ingr.-Arch., 
vol. 18, p. 106, 1950. 
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61. Semi-infinite Rectangular Plates under Concentrated Loads. Assuming the 
edges z = 0 and z = a of the plate to be simply supported, let us consider, regarding 
the third side (y = 0), the following two cases: (1) the edge y = 0 is simply supported, 
and (2) the edge y = 0 is clamped. 

The edge y = 0 is simply supported (Fig. 107). Assuming that the given load P is 
applied at point z = i, y = 7 (Fig. 107), WC first consider an infinite plate supported 
only at the edges z = 0 and x = a. In order to use the method of images (see page 
156), we assume a second load -P acting at the point z = 6, y = -7 of the infinite 
plate. The line y = 0 becomes then a nodal lint of the deflection surface of the plate. 
Thus the required bending of the semi-infinite plate is obtained by superposing the 

- - - - -  0 - - - - - .  

Lood-P 

Load +P 

I 
_-_ E ---+j 

P 
7- 

6 

--x 

i 

F 

P 

deflections [see Eq. (148), page 1451 produced in the infinite plate by both concen- 
trated loads. In this may we arrive at the deflection surface 

or, after some rearrangcrnrnt, 

an expression valid for 0 5 y I q and yielding w1 = 0, i)*wl/ayz = 0 at y = 0. The 
deflections in the range of y > 7 may be obtained in a similar manner. 

If we distribute the single load over a small area, the moments 31, at the center of 
that area and the corresponding dell&ions prove to be smaller than those of an 
infinite plate without the transverse edge at y = 0. Rut the moment M, is again an 
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exception. Let us write this moment in the form M, = MU0 + m,, where M,, is the 
moment of the infinite plate. The correction m,, representing the effect of the load -P 
in Fig. 107, is then readily found by means of the second of the equations (151) (see 
page 145). Assuming, for example, Y = 0.3 we obtain my = 0.0065P as the largest 
value of the correction, the corresponding position of the load being given by z = a/2, 
y = 0.453a. 

The edge y = 0 is built in, (Fig. 108). JVe begin with the calculation of the slope 
of the elastic surface (a) at !/ = 0, for which differentiation gives 

Next let US submit the simply supported semi-infinite plate to couples distributed 
along the edge 23 = 0 in accordance with the Ian 

m 

(Jf,Lo = J(x) = 
2 

E, sin =’ 
a 

m=l 

The corresponding deflect,ions, vanishing art !I = m , we take in the form 

The coefficients A, and B, in this expression are readily ohtained from the conditions 

(WZ)Y4 = 0 
CPWZ 

-D 7 ( ) = f(x) 
t/-cl 

This yields A,,, = 0, B, = E,a/2mrD, and, finally, 

(D 
w2 = -2 

2 
Eme--m*UIQ rnrx 
___ sin - 

2*D m a 
m=l 

(4 

(4 
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Since we have to eliminate the slope (b), the edge condition is 

Substitution of expressions (b) and (e) in Eq. (f) gives 

and expression (e) becomes accordingly 

m 

PY?1 

c 

c 
-ycY+d 

rn*f mrx 
w2 = - - -~~___ sin _ sm _ 

TD m a a 
Wb=i 

(f) 

(9) 

The deflection surface of the semi-infinite plate clamped on 1~ = 0 then is given by 

w = WI + w2 (h) 

where wi denotes expression (a). As for the series (g), it can bc represented in a 
closed form. \Ve have only to express the sine functions contained in (g) in terms of 
the exponential functions 

&m?r~i/e) and &.(mrzile) 

and to observe the expansion 
ez2 

log (1 * ez) = +ez - 7 * $ - . . . 

If we proceed in this manner, expression (g) finally appears in the simpler form 

PYtl 
cosh~ (y + q) - cos ; (X - 4) 

w2 = 4,n log 
cos11; (y + 77) - co,; (1: + $) 

(4 

The value of the clamping moments at y = 0 is readily obtained by differentiation of 
expression (i), and the result is 

P? 
(MJyso = -  -  s1nlr “‘? 

1 1 

2a 
(j) 

a 
cash y - cos ; (z - 4) cash y - cos ; (x + 

When the concentrated load approaches the built-in edge r/ = 0, the value given by 
expression (j) tends to eero in general. If, however, < = 5 and 17 + 0 simultaneously, 
then Eq. (j) yields 

(M,),,,, = - lim 

2lrx 
1 - cos - 

a P = -- 
2m 

cash ” - cos - 
R 

a a 11’0 

@I 

If, finally, q = 0, the moment M, becomes zero. 
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In conclusion let us consider a single load P (RF;. 109) uniformly distributed over a 
straight-line segment of some length u. The moment caused by such a load at the 
mid-point of the built-in edge is readily found by means of expression (j). Substitut- 

-----FE 

FIG. 109 

ing z = 012 and l’d$/u for P in this expression and integrating vie obtain for the 
required moment 

s 

(a+u)/2 
2p7l . 

sin 9 d< 

iM,).,- - - Slll l l z 
a 

IL,?.y-” = -. .- ~__ 
au a 2q ‘L?r< 

(a-u)/2 cash - + cos .--- 
a Q 

2p7l 
sin “u 

2a 
= - - nrctan - 

7ru sinh 2 
a 

Table 50 gives the position of the load producing the numerically largest clamping 
moment and the value of that moment for various values of the ratio U/U. 

TABLE 50. LARGEST C~a~rIxc, MOMEXTS AT 1: = CL/ 2 l)UE TO A slXOG-2 hAI) 

DIsTRlnI:Tmu OvElt A h:NGTa u (FIG. 109) 

u/n 0 0.1 0.2 I 
I 

0.4 : (I.6 / 0.8 1 .o 

7/a 0 0.147 0.203 0.27% 0.312 0.321 0.343 
Jf,/p -0.318 -0.296 -0.275 -0.237 -0.201 -0.172 1 -0.1?3 



CHAPTER 7 

CONTINUOUS RECTANGULAR PLATES 

62. Simply Supported Continuous Plates. Floor slabs used in build- 
ings, besides being supported by exterior walls, often have intermediate 
supports in the form of beams and partitions or in the form of columus. 
In the first case we have t#o deal lvith proper continuous plates; in the 
case of colunms without intJcrmediate beams we have to deal with jlat 
slabs. The floor slab is usually subdivided by its supports into several 

panels. Only continuous plates with panels of rectangular shape will be 
considered in this chapter. 

We begin with a case allowing a rigorous solution by methods already 
used in the foregoing chapter. A rectangular plate of width b and length 
al + uz + ~3, supported along the edges and also along the intermediate 
lines ss and tt, as shown in Fig. 110, forms a simply supported continuous 
plate over three spans. We suppose that the intermediate supports 
neither yield to the pressure in the transverse direction nor offer any 
resistance to the rotation of the plate with respect to the axes ss and tt. 
With these assumptions, the bending of each span of the plate ca,n be 
readily investigated by combining the known solutions for laterally 
loaded, simply supported rectangular plates with those for rectangular 
plates bent by moments distributed along the edges. 

229 
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Let us begin with the symmetrical case in which 

al = a2 = a3 = a 

:II~ t,he middle span is uniformly loaded while the side spans are without 
load (Fig. 110b). Considering the middle span as a simply supported 
rectangular plate and using expression (b) of Art. 44 (see page lW), we 
conclude that the slope of the deflection surface along the edge x2 = a/2 is 

t3W C-1 8x2 cc,?42 cc 
2qb” ( - 1) (m-l)/2 *w Bm =y= -~ 
a4D c -~...- cos ~ 

m4 b 
-- - tanh Pm 
cosh2 /3,,, 

(a) 
m= 1,3.5, . 

where Pm = maa/2b. Owing to the continuity of the plate, bending 
moments M, are distributed along the edges .x2 = &a/2. From sym- 
metry it is seen t,hat these moments can be represented by the following 
series : m 

(hfz) =*=*a, 2 = 
c 

(- 1) cm-1)/Z& cos ‘mpy 
b @I 

n = 1,3,5, 

The deflections w1 produced by these rnomenk can be obtained from 
Eq. (173), and the correspondin, m slope along the edge x2 = a,,/2 [see 
Eq. (e), page 1981 is 

cc 
dw1 

(.-> 

b 
~~ c = - 27rlI 

E (- 1)‘v-l”2 

(3X 
m 

2 2,=a/2 m 
m = 1.3,.5. 

cos 7 8”? tank fin + -~--- cosh2 p,,L (cl 

From the condition of continuity we conclude that the sum of expres- 
sions (a) and (c) representing the slope of the plate along the line x2 = a/2 
must be equal to the slope along the same line of the deflection surface 
of the plate in the adjacent, span. Considering this latter span as a 
simply supported rectangular plntc bent by the moments (b) distributed 
along the edge x3 = -a/a, we find the corresponding dcflcction wz of 
the plate by using Eq. (17ti) (see page 185), from which follows 

m 
b” 

*2 = ‘&qj c 
F cos mrry (- l)(*L--l)‘? 
J?n ___-~~~ 

b m2 
m=1,3,5.... 

m7rx3 
pm. tanh fl,,, cash *F - b sinh *F 

) 
1 

smh plrr 
a,,, coth Pm sinh zy? - in? cash 

m’Ir.2’3 
b id 
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The corresponding slope along the edge x3 = -a/2 is 
m 

b 
=--  

zr=-n/2 471-D c 
m=l,3,5,... 

cash y tanh &,, + coth & + & - A 
I. m smh2 & > 

(e) 

The equation for calculating the coefficients E, is 

(i)z,-.i* + (Eq.,-./, = (ii)%, =+, 2 
Since this equation holds for any value of y, we obtain for each value of 
m the following equation: 

from which 

It is seen that E, decreases rapidly as m increases and approaches the 
value - 2yb2ja”m3. Having the coeficients E,,L calculated from (g), we 
obtain the values of the bending moments Al, along the line tt from 
expression (b). The value of this moment at y = 0, that is, at, the 
middle of the width of the plate, is 

m 

Taking, as an example, b = a, we have &. = mr/2, :~nd the formula (8) 
gives 

(M,).,+%,?,,,O = -0.0381qa” 

The bending moments at the center of the middle span can be readily 
obtained by combining bendin g moments of a simply supported plate, 
bent by uniform load, with moments corresponding to the deflections ~1. 
Taking, for example, a = b and v = 0.2, which is a convenient value for 
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concrete, we get for the first of these moments the values of 

(M,), = (Ill,), = 0.0479 x g ya2 = 0.0442qa” 

(see Table 8, page 120) and for the second moments the values 

(MI) 1 = -0.0067qa2 and (M,) 1 = -0.0125qa2 

Therefore 

(M,).,=,,~,=, = o.o375qa* ( (M,).,=,,,dl = 0.0317qa2 

If a side span is uniformly loaded, as shown in Fig. llOc, the deflection 
surface is no longer symmetrical with respect to the vertical axis of sym- 
metry of the plate, and the bendin, 0‘ moment distributions along the lines 
ss and tt are not identical. Let 

m 
(Mz)z,=a*/z = c 

mw (- l)(m--1)‘2E, cos ~ 
b 

m = 1.3,5. . 

(A!!,) z,=a*,2 = 
mw (- l)+l)Dp, cos ~ 

b 
m = 1,3,5, . 

@I 

To calculate the coefficients I?‘, and F, we derive two systems of eoun- 
tions from the conditions of continuity of the deflection surface of the 
plate along the lines ss and tt. Considering the loaded span and using 
expressions (a) and (e), we find that the slope of the deflection surface 
at the points of the support ss, for al = a2 = aa = a, is 

m 

2qb3 
T4D c 

(- 1)(+1)‘2 cos mv Pm 
m4 ‘1) COSh” pm 

_ tnnh p m x,=alZ 
7n= 1,3,5, . 

cc 

b 
47rD c 

B, (- 1)(4)/~ 
m 

m = l&5, . 

Considering now the middle span as a rcctangulnr plate hcnt by the 
moments M, distribut,ed along the lines ss and tt and given by the series 
(h), we find, by using Ec.1. (175) (see page IN), 

m 

f3W 

( - )  

(- l)b-n/2 
ax 2 zz=-42 m 

m= 1.3.6. . . . ,Bm 
Gosh2 /3m 

+ tank & + (E, - F,) coth &,, - &F )I (j) m 
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From expressions (i) and (j) we obtain the following system of equations 
for calculating coeflicients E, and F,: 

+ C,) = -&(I<, + F,) - C,(E, - ill’,) (k) 

where t,he following notations are used: 

A, = .A - tsnh pm & = - &I ___ 
Gosh2 @m cost12 pm 

+ tanh /3m 

c, = Pm 
(0 

~ - coth Pm 
sinh2 Pm 

The slope of the deflection surface of the middle span at the supporting 
line tt, by using expression (j), is 

D 
aw 

(6) 
b 

ax 2 z2-a,2 4rrD 
m=1.3,5,... 

Pm ___ 
cosh2 ,I$,, 

This slope must be equal to the slope in the adjacent unloaded span 
which is obtained from expression (c) by subst,itut,ing F,,) for fS:,. In this 
wa,y we find the second system of equations which, using notations (Z), 
can be written in the following form: 

B,(E, + F,) + C,(F, - E:,,) = -(EL + C,)r(:, (ml 

From this equation we obtain 
(’ - Rm ~.~ F?n = Em q;;ml,, + (Y,) 

Substitut,ing in Eq. (Ii), we find 

(n) 

E = A Fla2 2(&l + cm> 
w “71”m”(c,I EL&)2 - 4(Bm + c&J2 (4 

Substituting in each particular case for A,, B,, and C, their numerical 
values, obtained from Eqs. (I), we find the coefhcients E, and F,; and 
then, from cspressions (h), we obtain the bending moments along the 
lines ss and tt. Take, as an example, b = a. Then Pm = mir/2, and we 
find from Eqs. (1) 

AI = -0.6677 f31 = -1.1667 Cl = -0.7936 
Aa = -0.9983 II, = - 1.0013 Ca = -0.9987 

F’or m larger t,han 3 we can take with sufhcicnt, accuracy 

A,=B,=C,= -1 
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Subst,ituting these values in Eq. (o), we obtain 

E 1 = -8qazo 1720 
7r3 . 

jj? 
3 

= - %g (),%qJ(i 
+:$.i 

E 6 = - sua" 0.2,500 
&ja 

The moment at the middle of t’he support ss is 

(ilf,)21=a,2,u=o = El - E3 + ES - . . . = -0.0424qa2 
Par the middle of the support tt we obtain 

(illx)z2=a12,~,=0 = F1 - Fa + F, - . . = 0.0042qa" 
Having the bending momeuts along the lines of support, the deflections 
of the plate in each span can readily be obtained by superposing on 
the deflections produced by the lateral load the deflections due to the 
moments at the supports. 

The bending moments in the panels of t’he continuous plate can be 
obtained in a similar manner. Calculat’ing, for example, the moments 
at the center of the middle span and takiug v = 0.2, we arrive at the 

values 

The equations obtained for three 

expanded for the case of any number of 

L spans. In this way an equation similar 
9i 
,A- 

i C 4 L h 
-k 

4 9i+l to t,he three-moment equation of con- 
A 

(b) 
tinuous beams will be obtained.’ Let 

F1c:. 111 
us consider two adjacent spans i and 
i + 1 of the length ai and ai+l, rcspec- 

tively (Fig. I1 I). The corresponding values of the functions (I) are 
denoted by A:,,, Rb,, (7k, and &l, rZ?l, C>,+l. The bending moments along 
the thrw consecutive lines of support can be represented by the series 

m 

fili,-1 z 
c 

(- 1)‘“L-l”zE’il COS y! 

na- 1.3,5. . . . 
m M; = c m7ry 

(- 1)+-1)‘2Ek cos b 
m=1.3,5.... m 

Jfi+l zz z c 
(- 1)(m-WQ-n+1 cos y! 

m= 1,3,6, . . 

1 This problem in :t somewhat diflerent way was discussrd by B. (2. Galcrlrin; see his 
“ Collected Papers,” vol. 2, p. 410, Moscow, 1953. 
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Considering the span i + 1 and using expressions (a) and (j), we find m 
2qi+a3 

z,+,=-(a,+,)/~ = - r4D c 
(- l)h-1112 

m4 
cos ?!y &l 

m = I ,3.5. 

In the same manner, considering the span i, we obtain 

From the condition of continuity we conclude that 

dW (E> aw 
( > 

- 
a.k+l z,+,=--(a,+,)12 = a32 z,=a,12 

Substituting expressions (p) and (9) in this equation o,nd observing that 
it must be satisfied for any value of /J, we obtain the following equation 
for calculating Pi;.I-‘, @,,, and E$l: 

Equations (1~) and (rr~), which we obtained previously, are particular cases 
of this cquntion. We can write as many Eqs. (177) as thcrc are inter- 
mediate supports, and there is no difficulty in calculating the moments 
at the intermediate supports if the ends of the plate are simply supportBed. 
The left-hand side of Eq. (177) holds not only for uniform load but also 
for any type of loading that is symmetrical in each span with respect to 
the x and y axes. The right-hand side of Eq. (177), however, has a 
different value for each type of loading, as in the three-moment equa- 
tion for beams. 

The problem of continuous plates carrying single loads can be treated 
in a similar manner. In the particular cnsc of an infinite number of 
equal spans with a single load applied at any point of only one span, the 
deflection of the plate may bc obtained by resolving an equation with 
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finite differences for the unknown coefficient EA as functions of the 
index i.’ 

If the intermediate supports are elastic, the magnitude of the coeffi- 
cients E6 is governed by the five-term equations, similar to the five- 
moment equations of the theory of continuous beams.* The torsional 
rigidity of supporting beams, tending to reduce the rot’ations of the plate 
along the support, can also be taken into account in considering the 
bending of continuous plates. S 

As the simplest example of a continuous plate carrying a concentrated load, let us 
consider an infinitely long plate simply supported along the sides 2 = 0, z = a, con- 
tinuous over the support y = 0, and submitted to a concentrated load I-’ at some point 
z = 5. u = n (Fig. 112a). The load and boundary conditions under consideration 
can be readily satisfied by superposition 

Y 
(0) (b) 

FIG. 112 

and the moments along t!lc rtlgt: 1, = 0 become equal t,o one-half of the clamping 

of cases shown in Fig. 112b and c. In the 
case of Fig. 112b each panel of the plate is 
simply supported along the line y = 0, and 
the elastic surface is given by the expression 
iw1/2, in which the sign must be chosen 

according to whether y is greater or less 
than zero, w1 denotes the deflections (n) of 
Art. 51, and Iyj 5 171. In the caseshown in 
Fig. 112c, each panel is clamped along the 
edge y = 0, and the corresponding deflec- 
tions are w/2, w being given by expression 
(h) in Art. 51. We have therefore 

w =w1+y for ‘I 2 y > 0 

WP 

2 
for y < 0 

moments of a semi-infinitjc plate with one edge built in, thcsc latter morncnts being 
given by expression (j) of Art. 51. 

63. Approximate Design of Continuous Plates with Equal Spans.4 
The layout of a floor slab usually involves continuity not only in one 
direction, as assumed in Art. 52, but, rather in two perpendicular direc- 
tions. A continuous slab of this kind is shown in Fig. 113. The spans 
and the thickness of the plate are equal for all rectaugular panels. Each 

i See S. Woinowsky-Krieger, Imp.-Arch., vol. 9, p. 396, 1938. 
2 Continuous plates on elastic beams were considered by V. 1’. Jensen, Univ. Illinois 

Bull. 81, 1938, and by N. M. Newmark, Uniz>. Illinois Bull. 84, 1938. 
J See K. Girkmann, “ Fliichentragwerke,” 4th cd., p. 274, Vienna, 195G. 
4 The method given below is substantially due to II. XIarcus; see his book “ JXe 

vcrcinfachtc Bcrcchnung biegsamcr I’lstten,” Berlin, 1929. The coefficients of Tables 
51 to 56 arc, however, based on solutions considered in Chap. 6 and on the value of 
Poisson’s ratio Y = 0.2, whcrcas Marcus uses for the same purpose a simplified theory 
of rectangular plates and assumes Y = 0. 
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panel may carry a dead load qo and, 
possibly, a live load p, both distri- 
buted uniformly over the area of 

c(o 

the panel, the largest intensity of ,rx ” Yrx 
the load being q = qo -I- p. 

Let us begin with the computation 0 t,b @ () @ 

of bending moments at the inter- 
mediate supports of the floor plate. 

,ry yrx vrx 
Calculations show that these mo- w (tJ w 
ments depend principally on the r X 
loading of the two adjacent panels, 
and the effect of loading panels 
farther on is negligible. It is justi- 

z & z 

r x 
fiuble, therefore, to calculate the 
moments on supports by assuming 

Y 

the load q uniformly distributed Fm. 113 

237 

@ -I r Y v x 

over the entire floor slab (Fig. 114~). Neglecting, at first, the rotations 
of the plate along the intermediate supports, each panel in Fig. 114~ will 
have the same conditions as a rectangular plate clamped along the inter- 
mediate supports and simply supported at the external boundary of the 
floor slab. 

over the entire floor slab (Fig. 114~). Neglecting, at first, the rotations 
of the plate along the intermediate supports, each panel in Fig. 114~ will 
have the same conditions as a rectangular plate clamped along the inter- 
mediate supports and simply supported at the external boundary of the 
floor slab. 

Cc) 
Fro. 114 
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The maximum bending moments for plates with such boundary con- 
ditions haye been tabulated (see Tables 51 to 56). Six possible combi- 
nations of simply supported and built-in edges of a rectangular plate are 
shown at t,he head of these tables. The direction of the z and y axes in 
each panel of the slab (Fig. 113) must be chosen in accordance with Figs. 
116 to 121; span u must be measured in the direction of the I% axis and 
span b in the direction of the y axis of the respective panel. The six 
cases shown in Figs. 116 to 121 may be numbered 1 to 6, and the corre- 
sponding indices are attached to the coefficients of Tables 51 to 56. 

To illustrate the application of the tables, let us calculate the bending 
moment at the middle of the support tw (Fig. 113). We calculat’e for 
this purpose the clamping moment of both panels adjacent to the sup- 
port. For panel 2 we have to use the formula 

&/ = &qP (a> 

and Table 52, 1 being t,he smaller of spans a and 6 of the panel. In a 
similar manner we obtain t’he clamping moment of panel 6 from the 
expression 

ll/;TGZ = yfjq12 @I 

by making use of Table 56. The moment in question now is given with 
sufficient accuracy by 

Mtzo = +(l& + lv6z) cc> 

and the moments on other intermediate supports are obtainable in a sim- 
ilar manner. 

It should be noted that Eq. (c) expresses nothing else than a moment- 
distribution procedure in its simplest form, i.e., a procedure in which the 
“carried-over” moments from other supports, as well as any difference 
in the stiffness values of both adjacent panels, are neglected. Such a 
simplified procedure is far more justified in the cast of a continuous plate 
than in the case of a continuous beam. 

Kext’, let us consider the bending moments at the center of panel 6 
(Fig. 113) as an example. The load distribution most unfavorable for 
these moments can be obtained by superposition of loa.ds shown in Fig. 
114b and c. 

The contribution of the uniformly distributed load q. + p/2 to the 
values of t,he moments is obtained by use of Table 56, which gives 

1 denoting the smaller of both spans of panel 6. 
Let us consider now the effect of the checkerboard loading as shown in 

Fig. 114~. The boundary condit’ions of each panel hcrc it1.e the same ax 
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those of a simply supported plate, and the moments at the center are 
readily computed by means of Table 51 for case 1. The load +p/2 
acting in panel G yields 

and the largest moments at the center of panel 6 are 

In order to calculate the largest nega- 
tive moments at the same point wc 
have only to alter the sign of the load 
in Pig. 114~. Still using results (cl) and 
(e), we then have 

As a second example of the application of 
the approximate mrthod, let us compute 
the bending moments of the continuous 
plate shown in Fig. 115, which was treated 
rigorously in Art. 52. 

First me choose the direction of the z and 
?/ axes in accordance with Figs. 117 and 118. 
Assuming next a load q = q. f p uniformly 
distrihutcd over the entire surface of the 
plate (Fig. 115b) and using the coefficients 
given in Tables 5’2 and 53 for casts 2 snd 3, 
with b/a = 1, we obtain at the center of the 
support ss the moment 

II 0.0840 4 0.0697 , 
d,., = -  ~__ 

‘2 
tqo + p)d = -O.O7fW(q, + p)d (h) 

t,he procedure being the same as in the foregoing rsamplc [Eq. (c)l. Using the rigorous 
solution, the numrrically largest momrnt at ss is produced by the load distribution 
shown in Fig. 115,. &lperposing the hrnding nromrnt obtained on page 231 upon 
t,hose calculated on pngr 234, the exact rninimunr value of the moment M,, proves 
to be 

M,, = -[0.0381(q0 + p) + O.O424(qo + p) - 0.001‘y&’ 
Or M,, = -(O.O805qo + 0.0763p)d (4 

Putting, for instance, qo = q/3, p = 2q/3, the result (i) yields -0.0777qa2 as compared 
with the value -O.Oi’GOqn2 obt,aincd by the approximate method. 

Finally, let us calculate the largest bending moment at the center of the middle 
panel, the most unfavorable load distribution king such as shown in Fig. 115d. 
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FIG. 116 

TABLE 51. BENDING MOMENTS FOR UNIFORMLY LOADEI) PLATES IN CASE 1 
Y = 0.2, I = the smaller of spans a and h 

0 0.0250’ 
0.5 0.0367 
0.6 0.0406 
0.7 0.0436 
0.8 0.0446 
0 9 0.0449 

131 - 

0.1250 
0.0999 
0.0868 
0.0742 
0 0627 
0.0526 

1 .o 0.0442 0.0442 
1.1 0.051i 0.0449 
1.2 0.05'32 0.0449 
1.3 0.0660 0.0444 
1.4 0.0723 0.0439 
1 .Fi 0 0784 0.0426 

1.6 0.0836 0.0414 
1.7 0.0885 0.0402 
1.8 0.0927 0.0391 
1.9 0.0966 0 0378 
2.0 0.0999 0.0367 

M 0.1250 0.0250t 

- 

- 

Center of plate 

w, = a,qP 

a-1 ~.- 

- 

M, = p1q12 
Factor 

qlP 

- 0.0364qb2 at 0.4% from the short edge. 
0.0364qa2 at 0.4% from the short edge. 

Combining the load in accordance with Fig. 115e and f and using the coefficients a 
snd @ of Tables 53 and 51, we arrive at the following expressions for these moments: 

iti!, = [O.O2l6(,, + 'z) + 0.0442#z2 = (0.0216qo + 0.032'Jp)cG 

M, = ju.0316 (qo + 5) + 0.0442 ;] n2 = (0.0316qu + 0.0379p)uz 

(i) 

' 
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FIG. Iii 

TABLE 52. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 2 

Y = 0.2; 1 = the smaller of spans a and 0 

b/a 

0 
0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 

l.G 
1.7 
1.8 
1.9 
2.0 

co 

-  

1 

-  

Center of plate 

VI, = cu*yP ill, = p2q12 n?, = &?ql? 

-- 
0.0125 0.06‘25 -0. 1250 
0.0177 0.0595 -0.1210 
0.0214 0.0562 -0.1156 
0.0249 0.0514 -0.1086 
0.0272 0.0465 -0.1009 
0.02’34 0.0315 -0.0922 

0.0307 0.0367 -0.0840 
0.0378 0.0391 -0.0916 
0.0151 0.0404 -0.0953 
0.0525 0.0415 -0.1040 
0.0594 0.0418 -0.1084 
0 0661 0.0418 -0.1121 

0.0722 0.0‘114 -0.1148 
0.0780 0.0408 -0.1172 
0.0831 0.0399 -0.1189 
0.0879 0.0390 -0.1204 
0.0921 0.0382 -0.1216 
0.1250 0.0250* -0.1250 

- 

Middle of 
fixed edge 

Factor 

pa2 

* M,,, = 0.0337qaz at 0.80n from the built.-in cdgc. 

It is of inter& to verify the foregoing approximate values by use of the results 
obtained on pages 232 and 234. Distributing the load again as shown in Fig. 115tl 
and interchanging the indices z and ?/ in the results mentioned above, we have 

iv, = 0.0317(q0 + p)a2 - (0.0051 + 0.0051)q0a2 
= (0.0215qo + o.o317p)a* 

M, = 0.0375(q0 + p)a2 - (0.0039 + 0.0039)qoa2 
= (0.0297qo + 0.0R75p)na 

(k) 

Setting again q0 = q/3 and p = 2q/3, we obtain for the moments the exact values 
of 0.0283qa2 and 0.0349qaz, respectively. Eqs. (j) yield for the same moments the 
approximate values of 0.02Qlqaa and 0.0358qa2. 
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Y 
Fro. 118 

TABLE 53. BENDING Mo~c~s~rs FOR UMFORMLY LOADED PLATES IN CASE 3 
Y = 0.2, 1 = the smaller of spans a and 6 

b/a 

0 0.0083* 0.0417 -0.0833 
0.5 0.0100 0.0418 -0.0842 
0.6 0.0121 0.0410 -0.0834 
0.7 0.0152 0.0393 -0.0814 
0.8 0.0173 0.0371 -0.0783 
0.9 0.0196 0.0344 -0.0743 

1.0 0.0216 0.0316 -0.0697 
1.1 0.0276 0.0349 -0.0787 
1.2 0.0344 0.0372 -0.0868 
1.3 0.0414 0.0391 -0.0938 
1.4 0.0482 0.0405 -0.0998 
1.5 0.0.554 0.0411 -0.1049 

1.6 0.0620 0.0413 -0.1090 
1.7 0.0683 0.0412 -0.1122 
1.8 0.0741 0.0408 -0.1152 
1.9 O.Oi95 0.0401 -0.1174 
2.0 0.0846 0.0394 -0.1191 

cc 0.1250 0.0250f --0.1250 

- 

i 

- 

Center of plate 

!2 1 

-  

N, = p3q1= 

03 

I Middle of 
fixed edge ! 1 Factor 

* M,,, = 0.0174qb2 at 0.3Ob from the supported edge. 
tMm.x = 0,0387qa* at 0.80~ from the built-in edge. 

The largest error of the approximate method ensues from the fact that the largest 
positive moments do not always occur at the center of the panel. This is especially 
far from being true in the case of distinctly oblong rectangular panels. If b, for 
example, is much larger t,han a, the largest moment M, occurs near the short side of 
the rectangular plate. Some values of these largest moments are given in footnotes to 
the tables, and they should be considered as the least possible values of the corre- 
sponding columns, regardless of the actual ratio b/a. 

It should be noted, finally, tQat in the unsymmetrical case 4 neither M, nor Af, 
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TABLE 54. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 4* 
Y = 0.2, I = the smaller of spans a and b 

b/a 

0.5 0.0191 0.0574 
0.6 0.0228 0.0522 
0.7 0 0257 0.0460 
0.8 0.0275 0.0396 

-Ya -___ 

-0.0787 
-0.0781 
-0.0767 
-0.0746 

-0.1180 
-0. 1093 
-0.0991 
-0.0882 

0.9 0.0282 0.0336 -0.0715 -0.0775 
1.0 0.0281 0.0281 -0.0678 -0.0678 
1.1 0.0330 0.0283 -0.0766 -0.0709 
12 0.0376 0.0279 -0.0845 -0.0736 

1 3 0.0416 0.0270 
1.4 0.0451 0.0260 
1.5 0.0481 0.0248 
1.6 0.0507 0.0236 

l.T 0.0529 0.0224 
1.8 0.0546 0.0213 
1.9 0.0561 0.0202 
2.0 0.057-t 0.0191 

-0.0915 
-0.0975 
-0.1028 
-0.1068 

-0.1104 
-0.1134 
-0.1160 
-0.1380 

-0.0754 
-0.0765 
-0.0772 
-0.0778 

-0.0782 
-0.0785 
-0.0786 
-0.0787 

- 

Center of plate I- 

Al, = p-1ql’ 

s4 _____ 

- 

&riddle of fixed edge 

Mz = yrqlZ 

T 
At x = O.la 

1, = O.lb 

Al mux = E&l 

c4 - 

0.0662 
0.0570 
0.0501 
0.0430 

0.0363 
0.0305 
0.0358 
0.0407 

0.0452 
0.0491 
0.0524 
0.0553 

0.0586 
0.0608 
0.0636 
0.0662 

- 

/ 
Factor 

qbz 

-- 

qa” 

* The authors arc indebted to the National Research Council of Canada for a grant 
which greatly facilitated the computation of the table. 

is the largest bending moment at the center of the plate. Table 54 shows, however, 
that the difference between M,,, and the largest of the values of M, and M, does not, 
exceed 10 per cent of the Iatt,cr values and that the general procedure described on 
page 235 is justified in case 4 as well. 

For the purpose of the design of isolated panels without continuity (Fig. 119), 
Table 54 contains the values of the largest moments iJI,,, acting at z = O.la, y = 0.1 b; 
for rectangular plates the direction of c,,,*~ is practically that of the shorter span an<1 
for square plates that of the diagonal x = --y. For the sake of a greater security 
those values of Al,,,,,, may also bc used in calculating continuonw pan&of oblong shape. 
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Y 
FIG. 120 

TABLE 55. BBEN~ISC: ~IOMENTS FOR UNIFORMLY LOADED PLATES IN CASIG 6* 

v = 0.2, 1 = smaller of spans a and b 

T- 

b/u 

__- 

0.5 
0.6 
0.7 
0.8 

0 .9 
1.0 
1.1 
1.2 

1.3 
1.4 
1 5 
1.6 

1.7 
1.8 
1.9 
2.0 

& 

I-- 
l: 

i 

center of p1atc 

II, = a&P 

0.0206 0.0554 -0.0783 -0.114 
0.0245 0.0-481 -0.0773 -0 102 
0.0268 0.0409 -0.0749 -0.0907 
0.0277 0.0335 -0.0708 -0.0778 

0.0274 0.0271 -0.0657 -0.0658 
0.0261 0.0213 -0.0600 -0.0547 
0.0294 0.0204 -0.0659 -0.0566 
0.0323 0.0192 -0.0705 -0.0573 

0.0346 0.0179 -0.0743 -0.0574 
0.0364 0.0166 -0.0770 -0.0576 
0.0378 0.0154 -0.0788 -0.0569 
0.0390 0.0143 -0.0803 -0.0568 

0.0398 
0.0405 
0.0410 
0.0411 

-0.0815 -0.0567 
-0 0825 -0.0567 
-0.0831 -0.0.X6 
-0.0833 -0.0566 

0.0417 

0.0133 
0.0125 
0.0118 
0.0110 

0.0083 -0.0833 -0.05GB 
- 

Middle of fiscd edge 

- 
I 

Factor 

qb2 

’ ‘I’hc data of this txhie arc due substantially to F. Czerny, Uu~tech.-Arch., vol. 11, 
p. 33, W. Ernst & Sohn, Berlin, 1955. 

The method given in this article is still applicable if the spans, the flexural rigidities, 
or the intensity of the load differs only slightly from panel to panel of the continuous 
plate. Otherwise more exact methods should be used. 

It should be noted, however, that the application of the rigorous methods to the 
design of continuous floor slabs often leads to cumbersome calculations and that the 
accuracy thus obtained is illusory on account of many more or less indeterminable 
factors affecting the magnitude of the moments of the plate. Such factors are, for 
example, the flexibility and the torsional rigidity of the supporting beams, the restrain- 
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FIG. 121 

TABLE 56. BENIIING MOMENTS FOR UNIFORMLY LOADED I'LATES IN CASE 6 
Y = 0.2, I = the smaller of spans a and b 

b/a 
iv, = asql Al, = Lbql 

Ps 

0 0.0083 0.0417 -0.0571 
0.5 0.0118 0.0408 -0.0.571 
0.6 0.0150 0.0381 -0.u571 
0.7 0.0178 0.0344 -0.0569 
0.8 0.0198 0.0299 -0.0559 
0.9 0.0209 0.0252 -0.0540 

1.0 0.0213 
1.1 0.0248 
1.2 0.0284 
1.3 0.0313 
1.4 0.0337 
1.5 0.0358 

-0.0513 
-0.0581 
-0.0639 
-0.0687 
-0.0726 
-0.0757 

1.6 0.0372 
1.7 0.0385 
1.8 0.0395 
1.9 0.0402 
2.0 0.0408 

cc 0.0417 

0.0213 
0.0210 
0.0203 
0.0193 
0.0181 
0.0169 

0.0157 
0.0146 
0.0136 
0.0126 
0.0118 
0.0083 

-0.0780 
-0.0799 
-0.0812 
-0.0822 
-0.0829 
-0.0833 

- 

- 

- 

Center of plate Xiddle of fixed edge T 
I@, = &ql’ 

Factor 

6s 

-0.0833 
-0.0829 
-0.0793 
-0.0736 
-0.0664 
-0.0588 

qbP 

-0.0513 
-0.0538 
-0.0554 
-0.0563 
-0.0568 
-0.0570 

- 

w2 

!- 

-0.0571 
-0.0571 
-0.0571 
-0.0571 
-0.0571 
-0.0571 

ing cffcct of t)he surrounding walls, the anisotropy of the platr itself, and the inaccuracy 
in cstimsting the value of such constants as the Poisson ratio V. 

However, we can simplify the procedure of calculation by restricting the Fourier 
series, reprcscnting a bending moment in the plate, to its initial term or by replacing 
the actual values of moments or slopes along some support of the plate by their 
average values or, finally, by use of a moment distribution procedure.1 

64. Bending of Plates Supported by Rows of Equidistant Columns- 
(Flat Slabs). If the dimensions of the plate are large in comparison with 

1 For such methods see C. P. Siess and N. M. New-mark, I;ni~. Illinois Bull. 43, 
1950, where a further bibliography on the subject is given. See also the paper of 
I-I. M. Westergaard, Proc. Am. Concrete Inst., vol. 22, 1926, which contains valuable 
conclusions regarding the design of continuous floor slabs. 
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the distances a and b between the columns (Fig. 122) and the lateral load 
is uniformly distributed, it can be concluded that the bending in all 
panels, which are not close to the boundary of t,he plate, may be assumed 
to be identical, so that we can limit the problem to the bending of one 
panel only. Taking t’he coordinate axes parallel to the rows of columns 
and the origin at the center of a panel, we may consider this panel as a 
uniformly loaded rectangular plate with sides a and h. From symmetry 
we conclude thal, the dcflcction surface of the plate is as shown by the 
dashed lines in Fig. 122b. The maximum deflection is at the center of 
the plate, and t’he deflect’ion at t)he corners is zero. To simplify the 
problem we assume t’hat the cross-sectional dimensions of the columns 
are small and can be negleclcd in so far as deflection and moments at 

. . . . 

‘Y 
- - 

(al 

p’xc. 122 

t.he center of the plate are concerned.1 We then have a uniformly loaded 
rectangular plate supported at the corners, and we conclude from sym- 
met,ry that the slope of the deflection surface in the direction of the 
normal to the boundary and the shearing force are zero at all pointIs 
along the edges of the plate except at the corners.’ 

Proceeding as in the case of a simply supported plate (Art. SO), we 
take t’he tot>al deflection w in t,he form 

where 
(4 
@) 

i In this simplified Corm the problem was cliscllssctl by several authors; see, for 
example, A. Nlidai, iiher die Hiegung durchlaufendcr J’latten, Z. anyew. Math. 
Mech., vol. 2, p. I, 1922, and 13. G. Gale&in, “C~ollcc:t.cd Papers,” vol. 2, p. 29, Mos- 
cow, 1953. 

2 The equating to zero of the twisting moment M 213 along the boundary follows from 
the fact that the slope in the direction of the normal to the boundary is zero. 
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represents the deflection of a uniformly loaded &rip clamped at the ends 
!/ = +_ b/2 and satisfies the differential equation (103) of the plate as well 
as t)hc boundary conditjions 

The deflection We is taken in the form of the series 

m 

wq = ilo + 
2 

Y, cos 7 
rn = 2,4,8, 

(4 

each term of which satisfies the conditions (c). The functions Ii,L must 
be chosen so as to satisfy the homogeneous equation 

AAwz = 0 (e) 

and so as t,o make w sat,isfy the boundary conditions at the edges 
y = &b/2. Equation (e) and the conditions of symmetry are satisfied 
by taking series (tr) in the form 

whcro the constants Ao, A,, and B,, arc to be determined from the 
boundary conditions along the edge y = b/2. From the condition con- 
cerning the slope, Liz., that 

me readily find that 

H,,, = -- J ,,: A!&% 
LY, + tanh cy,,, (9) 

in which, as before, 
IrLd 

Nm = - 2a (h) 

Considering now the boundary condition concerning the shearing force, 
we see that on a normal section nn (Fig. 122b) of the plate infinitely 
close to the boundary y = b/2, the shearing force Q, is equal to zero at 
all points except those which are close to the column, and at these points 
Q, must be infinitely large in order to transmit the finite load +qab to the 
column (Fig. 122~) along an inliuitcly small distance between z = a/2 - c 
and z = a/2 + c. Reprcscnting Q, by a trigonometric series which, from 
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symmetry, has the form m 
Q, = co + c c, cos m<z 

m = 2,4,6, . 
(4 

and observing that’ 

Qv = 0 forO<1:<:-c 

and 

we find, by applying the usual method of calculation, that 

and 

c 0 = clab - _ I’ 
2a 2a 

c,,, = ; oa’2 Q, s COS 7 &y = - ; (- 1)42 
where P = qab is the total load on one panel of the plate. Substituting 
these values of the coefficients Co and 6, in series (i), the required bound- 
ary condition takes the following form: 

(Qdv=w = - n $ + $& 
(. .) 

,,~h,2 
T 

I’ 
- c 

(- ])““‘” m7rx P 
a cosT- - ZIE 

m = 2,4,6, . . . 

Substituting expression (a) for w and observing that, the second term in 
parentheses vanishes, on account of the boundary condition 8w/du = 0, 
we obtain m 

c C-1) mn-x InI2 cos ~ 
a 

m = 2,4,6, 

from which, by using expression (j), we find that 

D F [(Am + :3R,,,) sinh a, + Bmn, cash (Y,] = p (- 1)“/2 (ii) 

Solving Eqs. (9) aud (j) for t’he constants A, and R,, we obtain 

(k) 

(- 1),,2 am + tanh 01, 
sinh (Y, tanh cy, 

B, = gD (- 1)“12 -r& 
?n 
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The deflection of the plate takes the form 
co 

C-1) 

m7rx ln’2 cos - 

c 
a 

m3 sinh CY, tanh CX, 
m=2,4,6,... 

- (CY, + tanh ar,) cash y (I) 

The constant A0 can now be dctcrmined from the condition that the 
deflection vanishes at the corners of the plate. Hence 

(W)z=a,2,!,=h,2 = 0 
D 

and (ml 
m=2,4,6.... 

The deflection at any point of the plate can be calculated by using expres- 
sions (1) and (m). The maximum deflection is evidently at the center of 
the plate, at which point we have 

m 

(w) 
qb* qa3b (- l)?dZ CY, + tanh CY, 

z-o,u=o = 384n - Qi 
c m3 sinh oi, tanh a, 

m=2,4,6,... 
m 

Values of this deflection calculated for several values of the ratio b/a are 
given in Table 57. Values of the bending moments (M,)z=O,y=O and 
(Ja,),=o,,~o calculated by using formulas (101) and expression (I) for 
deflection are also given. It is seen that for b > a the maximum bend- 

TABLE 57. DEFLECTIONS ANU MOMENTS AT THE CENTER OF A PANEL (Fig. 122) 
Y  = 0.2 

1 
1.1 
1.2 
1.3 
1.4 
1.5 
2.0 

T 

0.0331 
0.0352 
0.0363 
0.0375 
0.0384 
0.0387 
0.0411 

0.0417 
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ing moment at the center of the plate does not differ much from the 
moment at the middle of a uniformly loaded strip of length b clamped 
at the ends. 

Concentrated reactions are acting at the points of support of the plate, and the 
moments calculated from expression (1) become infinitely large. We can, however, 
assume the reactive forces to be distributed uniformly over the area of a circle rcpre- 
scnting the cross section of the column. The bending moments arising at the center 
of the supporting area remain finite in such a case and can be calculated by a pro- 
ccdurc similar to that used in the case of rectangular plates and described on page 147. 
With reference to Fig. 122, the result can be expressed by the formulas1 

(Ms)rd12,y~blP = 

Mo= -f (1 fV)lOR 
[ 

n 

2nc(l - &‘(l - 44)’ 
+1 

I 

Q = e-abl” and c denotes the radius of the circle, supposed to be small compared 
with spans CL and h of the panel. Carrying out the required calculations, we can 
reduce Eqs. (0) to the form 

in which a and 0 are coeflicients given for several values of the ratio D/a in Table 58. 

The bending moments corresponding to the centers of columns of rec- 
tangular cross section also can be calculated by assuming that the reac- 
tions are uniformly distributed over the rectangles, shown shaded in l?ig. 

* Given by A. Nadai in his book “Elastische Platten,” p. 154, Berlin, 1926. 



CONTINUOUS RECTANGULAR PLATES 251 

TABLE 59. BEXDINC MOMENTS AND LARGEST SHEAR FORCE OF A SQUARK 
PANEL OF A UNIPOR~CLY LOADED PLATE (Fig. 123) 

Y = 0.2 

70:19, 
-0.131 
-0.0933 
-0.OG78 
-0.0487 

0.0331 -0.0185 0.0512 
0.0329 -0.0182 0.0508 
0.0321 -0.0178 0.0489 
0.0308 -0.0170 0.0458 
0.0289 -0.0158 0.0415 
0.0205 -0.0140 0.0361 

2.;3 

0.842 

0.419 

123, that represent the cross sections of the co1umns.l In the case of 
square panels and square columns we have u/a = v/b = k, and t’hc 
moments at the ccntcrs of the columns and at the centers of the panels 
are given by the following formulas: 

(Mz)2=u=a/2 = (l~P!,).w4? = - 
(1 + V)@ (1 - k)(2 - k) 

1 12 
m 

c 
2 --~ sinh !T$ co& m+A sin mTk] 

m3 sinh rnr 
(q) 

m=l 
(M,),+dl = (M!,),,?@ 

The values of these moments, to- 
gether wit,h values of moments at 
half a distance between columns, ob- 
tained from the same solution and 
calculated for various values of k and 
for v = 0.2, are given in Table 59. 

It is seen that the moments at the 
columns are much larger than the 
moments at the panel center and that k- 
their magnitude depends very much 
on the cross-sectional dimensions of 
the columns. The moments at the 
panel center remain practically con- FIG. 123 

stnnt for ratios up to k = 0.2. Hence the previous solution, obtained on 
* This case was investigated by S. Woinowsky-Krieger; see 2. anger. Math. Me&., 

vol. 11, p. 13, 1931. See also the papers by V. Lewe, Rrzuingenieur, vol. 1, p. 631, 
1920, n11d by K. Frey, Rnuingeniew, vol. 7, p. 21, 1926. 
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the ;tsnumption that t#he reactions are concentrated at the panel corners, 
is suficient,ly accurate for the central portion of the panel. 

An approximate calculation of moments given by Eq. (q) in the form of a series can 
also be made by means of expressions (p). Using for this purpose Eq. (c), Art. 37, 
we substitute 

i.e., the radius of a circle equi\Jalent to the given sc~u:trc area u by U, in Eqs. (p). In 
the particular cast of square panels numerical results obtained in this manner are but 
slightly different, from those given in the scrond column of Table 59. 

The shearing forces have their rnnximwl~ value at the middle of the 
sides of the columns, at points m in Fig. 123. This value, for the case of 
square panels, depends on the value of the r:Lt’io k and can be represented 
by the formula Q = yqn2. Several numerical values of the factor y are 
given in Table 59. It, is interesting to note that there is a difference of 
only about 10 per cent between these values and the average values 
obt’ained by dividing the t,ot,al column load ya2(1 - /c”) by the perimeter 

rrrrrrrllrr++rrlrli~p 
(b) 

4ka of the cross section of the column. 
Uniform loading of the entire plate 

gives the most unfavorable condition 
at the columns. To get the maxi- 
mum bending moment at the center 
of a panel, the load must, be clistri- 
butcd as shown by the shaded areas 
in Fig. 124~. The solution for this 
case is readily obtained by combining 
the uniform load distribution of in- 
tensity q/2 shown in Fig. 124b with 
the load q/2 alternating in sign in 
consecut,ive spans shown in Fig. 124~. 
The deflection surface for the latter 
case is evidently the same as that 
for a uniformly loaded strip of length 
a simply supported at the ends. 

Taking, as an cxnmple, the case of square pan& and using the values in 
Table 57, we find for the center of a panel (Fig. 124~~): 

(?U),+o = ; g 0.00581 “D’ + &; $ = 0.00942 g 

(Mz),=,,=, = ; q . 0.0331a2 + & (JCL2 = 0.0791qu2 

(AI,),,,,,, -= ; y . o.o3:31u2 + O& qu” = O.W291$ 



CONTINUOUS RECTANGULAR PLATES 253 

From Table 59 we conclude, furthermore, that 

(11~.&=0,~,=b,2 = +q . 0.0512a2 + &Jqa2 = 0.0881qa2 

The foregoing results are obtained in assuming that the plate is free to 
rotate at the points of support. Usually the columns are in rigid COW 
nection with the plat’e, and, in the case of the load distribution shown in 
Fig. 124, they produce not only vertical reactions but also couples with a 
restraining eflect of those couples on the bending of the panels. A frame 
analysis extended on the flat slab and the columns as a joint structure 
therefore becomes necessary in order to obtain 
more accurate values of bending moments under 
alternate 1oad.l 

The case in which one panel is uniformly 
loaded while the four adjacent panels are not 
loaded is obtained by superposing on a uniform 
load q/2 the load q/2, the sign of which alter- 
nates as shown in Fig. 125. In this latter case 
each panel is in the same condition as a simply Fro. 125 
supported plate, and all necessary information 
regarding bending can be taken from Table 8. Taking t,he case of a 
square panel, we find for the center of a panel that 

(w)~=~=~ = $q. 0.00581% + ; q. 0.00406$ = 0.00494% 

(M,).=,=, = (M,).=,=o = ;q. 0.0331a2 +; q. 0.0479 $ a* = 0.0387qu2 

The cast of an infinitely large slab subjected to equal concentrated 
loads centrally applied in all panels can be handled substantially in the 
same manner as in the preceding case, i.e., by using the double periodicity 

in the deflections of the plate.2 
The problem of bending of a uniformly loaded flat slab with skew 

panels has also been discussed.3 
55. Flat Slab Having Nine Panels and Slab with Two Edges Free. 

So far, an infinite extension of the slab has always been assumed. Now 
let us consider a plate simply supported by exterior walls, forming the 
square boundary of the plate, together with four intermediate columns 
(Fig. 126). From symmetry we conclude that a uniformly distribut,ed 

1 The procedure to be used is discussed in several publications; see, for instance, 
H. Marcus, “Die Theorie clastischer Gewcbe,” p. 310, Berlin, 1932. 

2 This problem was discussed by V. Lewe in his book “ Pilsdecken und audere 
trligerlose Eiserlbctonplatterr,” Berlin, 1926, and also by I’. Pozzsti, h’iv. wuth. IJni/‘. 
Parma vol. 2 p. 123, 1951. 

3 Se: V. I. blokll, Dolilud~ ALad. NUU~G S.S.8.R., n. R., vol. 73, p. 45, 1950. 
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‘-9 

q- 

Y 
(c) 

FIG. 12(i 

In the case of a partial loading, 
such as shown in Fig. 126b and c, we 
have to superpose one-half of the 
moments previously obtained on the 
moments of a simply supported plate 
with the area a by 3a, carrying a 
uniformly distributed load f q/2. 
Calculations of this kind carried out 
by Marcus’ led to the values of bcnd- 
ing moments given in Table 60. The 
reaction of a column is R = 1.196qa? 
in this case. The bending of an in- 
finite plate which is supported not 
only along both its parallel sides 

’ “Die Theoric clastischer Gewebe”; see 
also Lewe, op. cit. The case of a square plate with one intcrmcdiate support was 
discussed by N. J. Nielsen, “Bestemmelse af Sprendinger I Pladcr,” p. 217, Coprn- 
hagen, 1920. 

-x 

load of intensity p produces equal 
column reactions R, which we may 
consider as redundant in the given 
statically indeterminate structure. 
Removing all columns, we obtain a 
simply supported square plate carry- 
ing merely the given load 4. The 
deflections w. produced by this load 
at the center of the columns can 
easily be calculated by means of the 
theory given in Chap. 5. Next, re- 
moving the load q and distributing a 
load R = 1 (acting downward) uni- 
formly over each area u by U, we 
obtain some new deflections w1 at the 
same points 2 = f a/2, y = *a/2 
as before. From the condition that in 
the actual case these points do not de- 
flect, we conclude that wo - Rwl = 0, 
which yields R = wo/wl. Now it 

remains only to combine the effect 
of the uniform load q with the effect 
of four known reactions on the bend- 
ing moments of the square plate of 
the size 3a by 3~. 
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TABLE 60. COEFFICIENTS p FOR CALCULATION OF BENDING MOMENTS M = pqa2 
OF A SIXPLY SUPPORTED SQUARE PLATE WITH FOUR INTERMEDIATE 

COLUMNS (Fig. 126) 
u/a = 0.25, Y = 0.2 

- 

z - 
a 

0 
0.5 
1.0 

0 
0.5 

1.0 
0 
0.5 
10 

- 
I T 

-- 

- 

Load a Load b Load c 
I/ - 
a 

0 
0 
0 
0.5 
05 

0 5 
I .o 
1.0 
1.0 

Point .- 

- 

- 

Af, M!4 MZ Ml! 
.- 

0.021 0.021 
-0.040 0.038 

0.069 0.025 
0.038 -0.040 

-0.140 -0.140 

0.074 -0.004 
0.025 0.069 

-0.004 0.074 
0.053 0.053 

-0.048 -0.004 0.069 
-0.020 0.019 -0.020 

0.093 0.027 -0.024 
-0.036 -0.036 0.074 
-0.070 -0.070 -0.070 

0.092 
-0.028 
-0.002 

0.066 

0.014 
0.017 
0.037 
0.044 

-0.018 
0.052 

-0.002 
-0.013 

0.025 
0.019 

-0.002 
-0.004 
-0.070 

-0.018 
0.052 
0.037 
0.009 1 - 

but also by one or several rows of equidistant columns1 can be discussed 
iu a similar manner. 

The case of bending of a long rectangular plate supported only by the 
two parallel rows of equidistant columns (Fig. 127) can also be solved 
without any difficulty for several types of loading. We begin with the case 
in which the plate is bent by the moments M, represented by the series m 

WA,=w = MO + c E, cos m$ 
m = 2,4,6, . . . 

Since there is no lateral load, the deflection surface of the plate can be 
t,aken in the form of the series 

m + c ( A,,, cash y + B, 7 sinh 7 cos 7 (b) 

m = 2,4,6, 

the coefficients of which are to be determined from the following boundary 
conditions: 

m 

c 
m = 2,4,6, . . . 

= 0 
sI=+bi2 

cc> 

1 This problem has been considered by K. Grcin, “Pilzdecken,” Berlin, 1948. 
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and from the condition that the deflection vanishes at the columns. 
Substituting series (b) in Eqs. (c), we find that 

a”E, (1 + Y) sinh cym - (1 - V)LY, cash cy, 
A, = - &?n (3 + ~)(l - V) sinh LY, cash (Y, - oc,(l - Y)~ -___ (4 

a2E, B,= -~ sinh Q~ 
$m2D (3 + V) sinh o(~ cash LY, - a,( I - V) 

Combining this solution with solution (I), Art. 54, we can investigate the 
bending of the plate shown in Fig. 127a under the action of a uniformly 

k--a --34 (a) 

bl 
FIG. 127 

distributed load. For this purpose we calculate the bending moments 
M, from expression (I) by using formula (101) and obtain 

(MlLfb,2 = - g 
m 

quo 
c 

(- l)T’@ 1 + v a,(1 - v> 
2a m tanh CY, - -&h?~~ I 

cos 7 (e) 
n=2,4,6,. . . 

Equating this mornent to the moment (a) taken with the negative sign, 
we obtain the values of M. and E, which are to be substituted in Eqs. 
(d) for the constants AI, A,, and 13, in expression (5). Adding expres- 
sion (b) with these values of the constants to expression (Z), Art. 54, we 
obtain the desired solution for the uniformly loaded plate shown in Fig. 
127~. 

Combining this solution with that for a uniformly loaded and simply 
supported strip of length b which is given by the equation 

we obtain the solution for the case in which the plate is bent by the load 
uniformly distributed along the edges of the plate as shown in Fig. 127b. 
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66. Effect of a Rigid Connection with Column on Moments of the Flat Slab. In 
discussing the bending of a flat slab it has always been assumed that the column 
reactions are concentrated at some points or distributed uniformly over some areas 
corresponding to the cross section of the columns or their capitals. As a rule, however, 
concrete slabs are rigidly connected with the columns, as shown in Fig. 128. 

In discussing moments at such rigid joints, let us begin with the case of a circular 
column and let c be the radius of its cross section. The calculation of bending 

b----0.220---+/ 

k--2c--4 
Fro. 128 

moments using cspression (I) in Art. 54 shows’ that, in the case of a square panel 
(a = b) and small values of c/a, the bending moments in the radial direction practically 
vanish along a circle of radius e = 0.22~ (Fig. 122~). Thus the portion of the plate 
around the column and inside such a circle is in the state of an annular plate simply 
supported along the circle T = 0.22~ and clamped along the circle T = c, with a 
transverse displacement of one circle with respect to the other. Hence the maximum 

FIG. 129 
i 

FIG. 130 

bending stress around the column can bc obtained by using formulas (75), previously 
derived for circular plates (see page 61), and combining cases 3 and 8 in Fig. 36. 

A more elaborate discussion of the same problem is due to F. Tiilke.2 Numerical 
results obtained by F. Tolke for a square panel and c/a = 0.1 (Fig. 129) are given in 
Table 61, together with values of bending moments calculated for the same case on the 

1 Such calculations were made by A. Nadai; see his book “Elastische Platten,” p. 
156, Berlin, 1925. 

2 F. Tolkc, Zngr.-A&., vol. 5, p. 187, 1934. 
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basis of the customary theory. It is seen that a rigid connection between slab and 
column tends to increase numerically the moments on support and to reduce the posi- 
tive moments of the slab. 

TABLE 61. COEFFIVIENTS p FOR CALCULATION 01: Bsrvnrso MOMENTS M = &a2 
OF A UNIFORMLY LOADED S~r:,~nr: I’ASEL OF A FMT SLAB 

v = 0.2 

l%cnding 
rnomcnt 

Location 

z = a/2, y = a/2 
s = a/2, y = 0 
I = a/a, 1/ = 0 

%: = 0, y = 0 
I = l&/2, y = 0 

x = 11/2, y = u/2 
r =c 

- 

- 

- 

Circular column 
(Fig. 129) 

Rigid 
connection 

with 
WlllIll~l 

0 .(I298 
0.0399 1 

-~0.0161 

-0: ;& 

Cust.omary 
theory 

0.0323 
0. 0494 

-0.0170 
-0.143 

Square column 
(Fig. 130) 

Rigid 
,>onnection Customary 

with theory 
column 

0.0321 
0.0487 

-0.0178 
-0.131 
-0.0803 
-0.0480 

The same table also gives moments for a flat slab rigidly connected with a column 
of a square cross section1 (Fig. 130). The infinitely large stresses occurring at the 
corners of columns in this case are of a highly localized character. Practically, they 
arc limited by a cracking of concrete in tension and a local yielding of the steel 
reinforcement. 

From this discussion WC may conclude that (1) the actual values of bending moments 
of a flat slab at the columns generally lie between the values given in Table 61 for the 
rigid connection and those given by the usual theory, and (2) circular columns sccnrc 
a more uniform distribution of clamping moments than columns with a square-shaped 
supporting area.2 

1 See S. JVoinowsky-Krieger, J. Appl. Mechanics, vol. 21, p. 263, 1954. 
2 See T. Haas, “Conception et calcul des planchets a dalles champignon,” Paris, 

1950, The distribution of stresses in a flat slab has been investigated experimentally 
by M. RoS and A. Eichinger, Proc. (longr. Concr.ete ccnd IZcitlforced Concrete, I&c, 
1930; by R. Can~inndc and R. L’Hermite, Ann. inst. tech. blitirnent et trau. pub/., 
February, 1936; and more rcccntly by J. G. Hagernan, Ingeniew, vol. 65, June, 1953. 



CHAPTER 8 

PLATES ON ELASTIC FOUNDATION 

67. Bending Symmetrical with Respect to a Center. A lat,crully 
loaded plate may rest on an elastic foundation, as in the case of a con- 
crete road, an airport runway, or a mat. WC begin the discussion of such 
problems with the simplest assumption that the intensity of the reaction 
of the subgrade is proportional to the deflections w of the plate. This 
intensity is then given by the expression kw. The constant k, expressed 
in pounds per square inch per inch of deflection, is called the modulus of 
the foundation. The numerical value of the modulus depends largely 
on the properties of the subgrndc; in the case of a pnvemcnt slab or a 
mat of greater extension this value may be estimated by means of the 
diagram in Table 62.’ 

TABLE 62. VALUES 01" TIIE MOD~JLUS OB SUBGRADE 

# 
100 170 

Modulus “k” in Ib/sq in/in. 

290 250 560 / 
1 

800 

General soil rotinq OS subsrode. subbase or base 

P-Poorly graded 

MIMo:very fine saod,silt 

F - Fines, material 
less than O.lmm 

Let us begin with the case of a circular plate in which the load is dis- 
tributed symmetrically with respect to the center. In using Ey. (S), 

1 Based on Casagrande’s soil classification. The table should not be regarded as a 
substitute for plate bearing tests. For further information see TWWLS. Am. Sot. Civ. 
Engrs., vol. 113, p. 901, 1948. See also K. Terzaghi, Geotechniyue, vol. 5, p. 297, 1955 
(Harvard Soil 1Slwhanics Series, no. 51). 

259 
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we add the load -kw, due to the reaction of the subgrade, to the given 
lateral load q. Thus we arrive at the following differential equation for 
the bent plate: 

(~+L!L)(4?;+!~)=~+ (178) 

In the particular case of a plate loaded at the center with a load P,* 
q is equal to zero over the entire surface of the plate except at the center. 
By introducing the notation 

Ic 1 -=- 
D l4 (a) 

Eq. (178) becomes 

Since k is measured in pounds per cubic inch and D in pound-inches, the 
quantity 1 has the dimension of length. To simplify our further dis- 
cussion it is advantageous to introduce dimensionless quantities by using 
the following notations : 

W r 
-=z -=2 
1 1 

(cl 

Then Eq. (b) becomes 

(4 

Using the symbol A for 

we then write 
AAz + z = 0 (e> 

This is a linear differential equation of the fourth order, the general solu- 
tion of which can be represented in the following form: 

x = AI-XI(X) + A&Y&) + AZ&) + A4X4(2) (.f) 

where AI, . . . , A4 are constants of integration and the functions 
Xl, . . , X4 are four independent solutions of Eq. (e). 

We shall now try to find a solution of Eq. (e) in the form of a power 

* This problem was discussed by H. Hertz, Wiedemann’s Ann. Phys. u. Chem., vol. 
22, p. 449, 1884; see also his “ Gesammelte JVerke,” vol. 1, p. 288, 1895, and A. FKppl, 
“Vorlesungen iiber technische Mechanik,“vol. 5, p. 103, 1922. It is worth noting that 
Hertz’s investigation deals with the problem of a floating plate rather than with that 
of a plate on an elastic foundation. Thus, in this case the assumption regarding the 
constancy of k is fulfilled, k being the unit weight of the liquid. 
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series. Let anon be a term of this series. Then, by differentiation, we 
find 

A(a,P) = n(n - l)u,P-’ + ‘12cz,~P-~ = n2u~xn-2 
and AA(u,‘P) = n2(n - 2)2u9$-4 

To sat,isfy Eq. (e) it is necessary that each term U,JY in the series have a 
corresponding term u~--~P-~ such that 

nyn - 2)2U&+-4 + c&%-43?-4 = 0 (9) 

Following this condition, all terms cancel when the series is substituted in 
Eq. (e) ; hence the series, if it is a convergent one, represents a particular 
solution of the equation. From Eq. (g) it follows that 

G-4 u, = - n2(n - 32 (h) 
Observing also that 

AA = 0 and AA(u2x2) = 0 (9 
we can conclude tjhat there are two series satisfying Eq. (e), viz., 

Xl(X) = 1 - g@ + mq;yY@ 

X12 - 2‘2 .42 . 62 . 82 . 102 . 122 + * * - 
and (.i> 

X,(.x) = x2 - ~ 4”: (j2 I5 + 
Xl0 

42 . 62 . 82 . 102 

Xl4 
- 42 . 62 . gz . 102 . 122 . 14” + - * - 

It may be seen from the notations (c) that for small values of the dis- 
tance r, that is, for points that are close to the point of application of the 
load P, the quantity z is small, and series (j) are rapidly convergent, 
It may be seen also that the consecutive derivatives of series (j) remain 
finite at the point of application of the load (z = 0). This indicates that 
these series alone are not sufficient to represent the stress conditions at 
t,he point of application of the load where, as we know from previously 
discussed cases, the bending moments become infinitely large. 

For this reason the particular solution X3 of Eq. (e) will be taken in 
the following form: 

x3 = Xl log II: + F&r) (k) 

in which F3(x) is a function of x which can again be represented by a 
power series. By differentiation we find 

AAX, J = !!d3X1 __ + log x AAX, + AAF&) 
x dx” 
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and substituting X3 for x in Eq. (e), we obtain 

; ‘3 + log .r(AAX, + X,) + AAF,(.rj + F&r) = 0 

Since X1 satisfies Eq. (c) :~nd is represented by the first of the series (j), 
we obtain the following equation for determining F:%(x) : 

( 

2.3.4 
AAF&) + F,(z) = - ; ‘2 = -4 - -___ 22 .42 

+ 
(j.7.8.x" 10. 11 . 12. x8 

22 . 42 . 62 . 82 22 .42. 62. 82. 102. 122 
+. > 

(0 

‘leaking F3(r) in t#he form of the series 

F3(,r) = 64.1.' + b&' + hlgl" + . . . (ml 

and subst,itut,ing this series in ICq. (I), WC determine the coeflicients by, 
bs, b12, . . . so that the resulting equation will be satisfied. Observing 
that 

AA = ‘f2 . 22 . b4 

we find, by equating to zero the sum of the terms that do not contain x, 
that 

Or 
b =24.42 3 

4 ~ = c- 
2” . 44 128 

Equating to zero the sum of the terms containing x4, we find 

In general, we find 

25 
'a = - 1,760,472 

b,, = (- 1)fL’4-1 iTcn+2 
[ 

n(n - l)(n - 2) 
bR-4 + 22.42.6" . . . %‘2 1 

Thus the third particular solution of Eq. (e) is 

3 .4 - x3 = Xl log x + F* L 25 
1,7(x9,472 

x8 + . . 

The fourth particular integral Xq of Eq. (e) is obtained in a similar 
manner by taking 

4.5.6 
xq = x2 log x + F4(.z) = x2 log x + 4 * -q-c x6 

1 4 . 5 . (j 
- 109:$32 4. TqzjT + 

10.9.8 icln . . . 
42.62. . 102 + (0' 
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By substituting the particular solutions (j), (n), and (0) in expression 
(.f) we obtain the general solution of Eq. (e) in the following form: 

It remains now to det,ermine in each particular case the constants of inte- 
gration A,, . . . , Aq so as to satisfy the boundary conditions. 

Let us consider the case in which the edge of a circular plate of radius a 
is cntircly free. Making use of expression (52) for the radial moments 
and expression (55) for the radial shear force QT, we write the boundary 
conditions as 

( 

d2W 
@+A;; =o 

) r=,i 

11 
~ ;z+;g 

( > 

(9) 

=() 
r--a 

In addition to these two conditions we have two more conditions that 
hold at the center of the plate; z~ix., the deflection at the center of the 
plate must be finite, alld the sum of the shearing forces distributed over 
the lateral surface of an infinitesimal circular cylinder cut out of the plate 
at it,s center must balance the concentrated force P. From the first of 
these two conditions it follows that the constant A3 in the gcncral solu- 
tion (p) vanishes. The second condition gives 

or, by using notation (a), 

2ne + P = 0 
r=L 

where e is the radius of the infinitesimal cylinder. Substituting lz for w 
in this equation and using for x expression (p), we find that for an infinitely 
small value of z equal to E/Z the equation reduces to 

4A 
--k1442m + P = 0 

16 
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from which 
P 

A4 = 83diP 0) 

Having the values of the constants A, and Ad, the remaining two con- 
stants A, and A2 can be found from Eqs. (n). For given dimensions of 
the plate and given moduli of the plate and of the foundation these equa- 
tions furnish two linear equations in A1 and AZ. 

Let us take, as an example, a plate of radius a = 5 in. and of such rigidity that 

l= 

We apply at the center a load P such that 

P 
Aa = - 

81rkP 
= 102 . 10-s 

Using this value of Ad and substituting lz for w, we find, by using expression (p) and 
taking z = a/l = 1, that Eqs. (n) give 

0.500111 + 0.250A, = 4.062.44 = 4.062 102 . 10-S 
0.68741 - 8.483A2 = 11.09Aa = 11.09. 102. lo-6 

These equations give 

A, = 86 lo-“ A, = -64 lo-6 

Substituting these values in expression (p) and retaining only the terms that contain 
.C to a power not larger than the fourth, we obtain the following expression for the 
deflection: 

w=lt=5[8640-“(l-~)-6440-C2+10240-~;c’10gx 

The deflection at the center (zr = 0) is then 

wmax = 43 1O-3 in. 

and the deflection at the boundary (CZ = 1) is 

‘wLL’,in = 39.1 10m3 in. 

The difference of these deflections is comparatively small, and the pressure distribution 
over the foundation difiers only slightly from a uniform distribution. 

If we take the radius of the plate two times larger (a = 10 in.) and retain the 
previous values for the rigidities D and k, x becomes equal to 2 at the boundary, and 
Eqs. (CJ) reduce to 

0.82681 + 1.98OAz = 1.208A4 
2.665A, - 5.74542 = 16.3784 

These equations give 

A, = 3.93Aa = 400. IO-& A2 = --1.03A4 = -105. 1O-5 (u) 
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The deflection is obtained from expression (p) as 

The deflections at the center and at the boundary of the plate are, respectively, 

w max = 2.1OW in. and wmia = 0.88 . 1OF in. 

It is thus seen that, if the radius of the plate is twice as large as the quantity 1, the 
distribution of prcssure over the foundation is already far from uniform. The applica- 
tion of the strain energy method to the problem of bending of a plate on elastic sub- 
grade will bc shown in Art. 80. 

68. Application of Bessel Functions to the Problem of the Circular Plate. The 
general solution (S) of Eq. (e) in the preceding article can also be represented in terms 
of Bessel functions. To this end we introduce into Eq. (e) a new variable 5 = z 4;; 
thus we arrive at the equation 

A’A’z - z = 0 (4 

in which the symbol A’ st.ands for 

Now Eq. (a) is equivalent to equation 

A’(A’z fz) - (A’z +z) = 0 
and also to 

A’(A’z - z) + (A’z - z) = (1 

IIcnce Eq. (a) is satisfied by the solutions of the Bessel differential equation 

as well as by the solutions of lhc equation 

@I 

Cc) 

which is transformable into Eq. (d) by substituting $i for E. Thus the comhincd solu- 
tion of Eqs. I((/) and (e) can be written as 

z = B,Z,,(z 4, + B2Z,,(zi 4, + BaKo(z 4, + IllZiO(Zi l/i, (f) 
lo and K0 being Bessel functions of the first and second kind, respectively, and of 
imaginary argument, whcrrns B1, B2, . . . are arbitrary constants. The argument 
z being real, all functions contained in Eq. (f) appear in a complex form. To single 
out the real part of the solution, it is convenient to introduce four other functions, first 
used by Lord Kelvin and defined by the relationsi 

ZO(Z d +i) = bcr z + bei z 

Ko(.z l/z) = ker z f kei z 
(9) 

1 See, for instance, G. N. Watson, “Theory of Bessel Functions,” p. 81, Cambridge, 
1948. 



mi THEORY OF PLATES AND SHELLS 

Setting, furthermore, 

B, + B2 = C,l Bl - BP = -Czil 
Bs + B, = Cal BB - Bq = -Cd 

where the new constants Cl, CP, are real, we obtain the following expression for 
the deflections of the plate: 

w = C, ber 1: + C, bci z + Ca kci z + (I, kcr 5 (h! 

All functions herein contained arc tabulated functions,’ real for real values of thr 
argument. 

For small values of the argument WC have 

bcr s = 1 - x4/64 + . 
bei .r = x2/4 - x6/2,304 + . . 
ker z = - log 5 + log 2 - y + xx2/10 + . (i) 

kei z = -(ZIG/~) log z - r/4 + (1 + log 2 - y)s*/4 + 

in which y = 0.5i72157 . is Euler’s constant and log 2 - y = 0.11503 
For large values of the argument the following asymptotic expressions hold: 

(8 

in which c = Z/ &. 
The general solution (h) can be used for the analysis of any symmetrical bending of 

a circular plate with or without a holo, resting on an elastic foundation. The four 
constants C, corresponding in the most general case to four boundary conditions, must 
be determined in each particular case.2 

1 See “Tables of Rcssel Functions Jo(z) and Jl(z) for Complex Arguments,” 
Columhia University Press, New York, 1943, and “Tables of Bessel Functions 
YO(z) and Yr(z) for Complex Arguments,” Columbia University Press, New York, 
1950. We have 

ker x = - 5 R.e [Yo(~e~~‘~)] - % Im [.J~(zE~~‘~)] 
I 

7r 

kei z = f Im [Yo(seir’J)] - - R.e [JO(rei”l”)] 
2 

* Many particular solutions of this problem arc given by F. Schleicher in his 
book “lireisplatten auf elastischer Unterlagc,” Berlin, 1026, which also contains 
tables of functions Z,(z) = bcr z, Z”(X) = - bei 2, Z,(z) = -(2/r) kei z, and 
Z,(s) = - (2/x) ker z as well as the first derivatives of those functions. An sbbrevi- 
ated tahlc of t,hc functions 17 and their first dcrivat,ives is given in Art. 118, where 
t,hey arc denoted by the symbol +. 
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We shall confine ourselves to the case of an infinitely extended plate carrying a 
single load P at the point z = 0. Now, from the four functions forming solution (IL), 
the first two functions increase indefinitely with increasing argument in accordance 
with Eqs. (j); and the function ker z becomes infinitely large at the origin, as we can 
conclude from Eqs. (i). Accordingly, setting Cl = Cz = Cd = 0, solution (h) is 
reduced to 

‘10 = CX kei 2 ik) 

In order to determine the constant CZ, WC calculate, by means of I,:qs. ii), the shearing 
force [SW Eqs. (193)] 

r\s 1: decreases, the value of Qr tends to C~D/13x = C&/Pr. On the other hand, upon 
distributing the load P uniformly over the circumference with radius T, we have 
Qv = -!‘/%I-. Equating both expressions obtained for Q1, we have 

Substitution of CS into Ey. (1~) yields, finally, the complete solution of Hertz’s problem 
in the form 

wD 
and the corresponding reaction of the subgrade is given by p = kw = 7. The 

variation of these quantilics along a mcridionai section through the deflection 
surface of the plate is shown in Fig. 131, together with similar curves based on a theory 
which \vill be discussed in Art. 61. 

At the origin we have: kci z = -r/4 and the deflection under the load becomes 

For the reaction of the subgrnde at the same point we obtain 

1’ 

pmax = iis 
(181) 

If we take an infinitely large plate with the conditions of rigidity and loading assumed 
on page 264, the deflection under thr load becomes 

I?12 P 
w,,,~ = 8~ = 8~2 = dA4 = (3,14)(5)(102 10-6) = 0.016 in. 

Y 

as compared with the value of 0.02 in. obtained for a finite circular plate with the 
radius n = 21. 

The diat,ribution of t.hc bending morncnt,s due to tho concentrated load is shown in 
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r/Lo= x0 
r/L =x 

6 + r&=x0 
+ * r/L = x 

3- 3- , 
,-Mr ,-Mr 

, )- )- : 
4 4 5 5 

: x=x0 
6 6 

x=x0 

I 
(cl (cl 

FIG. 131 FIG. 131 

Fig. 131~. It is seen that the radial moments become negative at some distance from 
t,he load, their numerically largest value being about -0.02P. The positive moments 
are infinitely large at the origin, but at a small’ distance from t,hc point of application 
of the load they can be easily calculated by taking the function kei z in the form (i). 
Upon applying formulas (52) and (53) to exmcssion (170), WC arrive at the results 

1 As compared with the characteristic length 1 = qr,/lc. 
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A comparison of the foregoing expressions with Eqs. (90) and (91) shows that the 
stress condition in a plate in t)he vicinity of the load in Hertz’s case is identical with 
that of a simply supported circular plate with a radius a = 2Ze-7 = 1.1231, except for 

a moment Ar: = ;U; = - g (1 - v), which is superimposed on the moments of the 

circular plate. 
Let us consider now the case in which the load P is distributed over the area of a 

circle with a radius c, small in comparison with 1. The bending moment,s at the center 
of a circular plate carrying such a load arr 

AldL=-g (l+v)logQ+l 
I c I 

(?I11 

This results from Eq. (83), if we neglect there the term c2/u2 against unity. By 
substitut,ing a = 21~7 into Eq. (m) and adding the moment --P/%(1 - v), we obt,ain 
at the center of the loaded circle of the infinitely large plate the moments 

M 
(1 + VII’ 

r‘lRX = --- 
47r ( 

log; - y + ; 
) 

(4 

or 

Stresses resulting from Eq. (183) must bc corrected by means of the thick-plate theory 
in the case of a highly concentrated load. Such a corrected stress formula is given on 
page 275. 

In the case of a load uniformly distributed over the area of a small rectangle, we may 
proceed as described in Art. 37. The equivalent of a square arca, in particular, is a 
circle with the radius c = 0.5774 u being the length of the side of the square (see page 
162). Subst,ituting this into Eq. (183) we obtain 

1+u A~,,, = __ P 
47r ( 

log 4 + 1.177 
u ) 

(0) 

The effect of any group of concentrated loads on the deflections of the infinitely 
large plate can be calculated by summing up the deflections produced by each load 
separately. 

69. Rectangular and Continuous Plates on Elastic Foundation. An 
example of a plate resting on elastic subgrade and supported at the same 
time along a rectangular boundary is shown in Fig. 132, which represents 
a beam of a rectangular tubular cross section pressed into an elastic 
foundation by the loads P. The bottom plate of the beam, loaded by 
t,he elastic reactions of the foundntjion, is supported by the vertical sides 
of the tube and by the transverse diaphragms indicated in the figure by 



270 THEORY OF PLATES AND SHELLS 

dashed lines. It is assumed again that the intensity of the reaction p at 
any point of the bottom plate is proportional to the deflection w at that 
point, so that p = Icw, li being the modulus of the foundation. 

In accordance with this assumption, the differential equation for the 
deflection, written in rectangular coordinates, becomes 

----- 

El 

-7 ---a -- Ale4 

0 -J-x 

DoIN 
----- .A 

Y 

FIG. 132 

where cl, as before, is the intensity of the lateral 
load. 

Let us begin with the case shown in Fig. 1~. 
If wo denotes the deflection of the edges of the 
bottom plate, and w the deflection of this plate 
with respect to the plane of its boundary, the 
intensity of the reaction of the foundation :tt 
any point is k(wO - w), and I&l. (a) becomes 

ii 
AAw = n (w, - w) @I 

Taking the coordinate axes as shown in the 
figure and assuming that, the edges of the plate 

parallel to the y axis are simply supported and the other two cdgcs arc 
clamped, the boundary conditions are 

(W)z=I”,r=a = 0 ( 2 > = 0 2=Or ,- a 
(W)p*h/2 = 0 

dW 

( > d?/ = 
0 

g=*t8/2 

The deflection w can be taken in the form of a series: 

The first series on the right-hand side is a particular solution of Eq. (6) 
representing the deflection of a simply supported strip resting on an 
elastic foundation. The second series is the solution of the homogenc- 
ous equation 

AAw+;w=O (.f) 

Hence the functions Y, have to satisfy the ordinary differential equation 
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Using notations 

and taking the solution of Eq. (g) in the form erg, we obtain for r the 
following four roots: 

P + ir -P + ir B - +/ -p - i-y 

The corresponding four independent particular solutions of Eq. (g) are 

efi,,g cos y,ny e-o’,zu cos y&J e”mp sin yrny e--B,*y sin yrny (j) 

which can be taken also in the following form: 

cash /%,y cos yT,Ly sinh &,J cos yTrLy 
cash Pm?/ sin ynzy sinh &y sin -ymy (k) 

From symmetry it can be concluded that Y, in our case is an even func- 
tion of y. Hence, by usin g integrals (Ic), we obtain 

Y, = A,,‘ cash &,JJ cos ylny i- B, sinh /A,$/ sin -y&j 

and the deflection of t,he plate is 

This esprc&on satisfies the boundary conditions (c). To satisfy con- 
diGons (d) we must choose the constants A, and B,, so as to satisfy the 
equations 

+ B, sinh @ sin g = 0 2 2 Cm) 
(A p + B nz m y ) rinh @ cos ?& m m . 2 2 

Pmh . ymh - (Amy, - B,Pm) cash - sm ~~~~- = 0 
2 2 

Substituting these values of gm and B, in expression (Z), we obtain the 
required deflection of the plate. 

The problem of the plate with all four edges simply supported can be 
solved by using Eq. (a). Taking the coordinate axes :LS shown in Fig. .j!J 
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(page 105) and using the N>avier solution, the deflection of the plate is 
m cc 

w= cc A,, sin m$ sin nq 
n=l n=l 

In similar manner let the series 

m m 
(/ = cc umn sin 

mnx . 

‘a sm 
nrv 

b 
m=l n=l 

represent the distribution of the given load, and the series p=kw= cc kA,, sin y sin y (P) 

represent the reaction of the subgrade. Substituting the series (n) in 
the left-hand side and the series (o) and (p) in the right-hand side of 
Eq. (a), we obtain 

As an example, let us consider the bending of the plate by a force P 
concentrated at some point (&?I). In such a case 

by Eq. (b) on page 111. By substitution of expressions (n) and (r) into 
Eq. (r~) we finally obtain 

m m 
wd!!Z 

ab (*) 

Having the deflection of the plate produced by a concentrated force, 
the deflection produced by any kind of lateral loading is obtained by the 
method of superposition. Take, as an example, the case of a uniformly 
distributed load of the intensity q. Substituting 9 di dq for P in expres- 
sion (s) and integrating between the limits 0 and a kand between 0 and b, 
we obtain 
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When k is equal to zero, this deflection reduces to that given in Navier 
solution (131) for the deflection of a uniformly loaded plate.’ 

Let us consider now the case represented in Fig. 133. -4 large plate 
which rests on an elastic foundation is loaded at equidistant points along 
the x axis by forces P.* We shall take the coordinate axes as shown in 

FIG. 133 

the figure and use Eq. (,J”), since there is no distributed lateral load. Let 
us consider a solution of this equation in the form of the series 

m 

in which the first term 

(u) 

represent.s the deflection of an infinitely lon g strip of unit width parallel 
to the ?I axis loaded at 21 = 0 by a load P/a [see Eq. (283), page 4711. 
The other terms of the series satisfy the requirement of symmetry that 
t,he tangent to thr, deflection surface in t)hc :L direction shall have a, zero 
SkJpe at the landed points :~nd at the points mid\vny bet,~veen the loads. 
We t&e for functions Y, those of the particular integrals (,j) which 
vanish for infinite values of ?I. Hence, 

Y m = AmedQ cos -ymy + Bmc+~~ sin yrn~ 

To satisfy the symmetry condition (aw/~Q),=~ = 0 \ve must take in this 
expression 

l The csase of a rccta.ngular plate with prescribed deflections and nlorncnts on two 
opposite edges and various boundary conditions on two others was diacusscd by H. J. 
Fletcher and C. J. Thorne, J. Appl. Mechanics, vol. 19, p. 361, 1952. ,Many graphs 
are given in that paper. 

* This problem has been discussed by H. M. Westergaard; see I~ngen$ren, vol. 32, 
p. 513, 1923. Practical applications of the solution of this problem in concrete road 
design are discussed by H. M. Wcstergsard in the journ:ll I’~l)/ic I~‘nnrl.s, vol. 7, p. 25, 
1926; vol. 10, p. 05, 1929; and vol. 14, p. 185, 10x3. 
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Hence, by introducing the new constants AL = A,/y,,,, we represent the 
deflections (u) in the following form: 

w=wo+ 
c 

AL cos 7 e-Bmu (ym cos -ymy + Pm sin y,,,l~) (v) 
m=2.4,6,. . . 

In order to express the constants A: in terms of the magnitude of loads 
P, we consider the shearing force Q, acting along the normal section of 
the plate through the x axis. From symmetry we conclude that this 
force vanishes at all points except the points of application of the loads 
P, at which points the shearing forces must give resultants equal to 
-P/2. It was shown in the discussion of a similar distribution of 
shearing forces in Art. 54 (see page 248) that the shear forces can be 
represented by the series 

c 
(E-1) 

rnrx 
d2 cos ~ 

a 
m=2,4,6,. . . 

The shearing force, as calculated from expression (v), is 

=--- 
2a 

20 
2 

X,&rm(P~ + -ii) cos 7 
m = 2,4,6 , 

Comparing these two expressions for the shearing force, we find 
p( - 1p/2 

ALL = ~yT,Jj$& + y;, 
or, by using notations (i), 

p( - l)w2 

Substituting this in expression (v), we finally obtain 

+ Pm sin rd/) (2~) 
The maximum deflection is evidently under the loads P and is obtained 
by substituting z = a/2, y = 0 in expression (w), which gives 

(184) 
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The deflection in the particular case of one isolated load P acting ou 
an infinitely large plate can also be obtained by setting a = 00 in formula 
(184). In such a case the first term in the formula vanishes, and by using 
notations (i) we obtain I%” 
W *ax = -~ 

2 d/z Tfi 
m = 2,4,G, . . , _____- 

Using the substitution 

we find 

(185) 

in accordance with the result (180). With this magnitude of the deflec- 
tion, the maximum pressure on the elastic foundation is 

The maximum tensile stress is at the bottom of the plate under the point 
of application of the load. The theory developed above gives an infinite 
value for the bending moment at this point, and recourse should be had 
to the theory of thick plates (see Art. 26). In the above-mentioned 
investigation by Westergaard the following formula for calculating maxi- 
mum tensile stress at the bottom of the plate is established by using the 
thick-plate theory : 

(Up),,, = 0.275(1 + V) A: log,, ;;; 

Here h denotes t>he thickness of t#hc plate, and 

0 = &.6c2 + h,* - 0.6’73 when C < 1.724h 
=c when c > 1.7‘24h 

where c is the radius of the circular area over which the load P is assumed 
to be uniformly distributed. For c = 0 the case of the concentrated 
force is obtained. 

In the case of a square loaded area u by u, we have to replace c by 
0.57u (see p:1g;‘: lG2). 

The c*;lse uf equidistant loads 1’ :applied along the edge of a semi-infinite 
plate, :LS showrl it1 Fig. 131, cun ids0 be treated in a similar w:~y. Th 6’ 
final form& for the maximum tensile stress at, the bottom of t,he plate 
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under the load when the distance u is large is 

\vhere 6 is calculated as in the prkous case, and c is the radius of the 
semicircular area over which the load P is assumed to he uniformly 
distributed. Formulas (x) and (.y) have proved very useful in the design 
of concrete roads, in which case t’he 
circle of radius c represents the area 
of contact of the wheel tire with the 
road surface.’ 

60. Plate Carrying Rows of Equidistant 
Columns. As :I last example, let us con- 
sider nn infinite plate or mat resting on 
elastic subgrade and carrying equidistant 
and equal loads P, each load being distrib- 
uted uniformly over the area u by v of a 
rectangle, as shown in Fig. 135. The 

Y 
FIG. 134 FIG. 135 

bending of such a “reversed Aat slab” may be treated by means of the previously dis- 
cussed Westergasrd’s solut,ion, using simple series.2 Much simpler, however, and, 
except for the case of a highly conrentratcd load, also adequate is the solution in 
double series, making use of Navicr’s method. 

Conditions of symmetry cornpcl us t,o represent the lateral load due to t,he columns 
in form of a cosine series: 

9 m 2??mx 2my q= a,,,,, cos --- cos ~ 
b 

ifI! 
a 

,,L = 0 n = n 

The intensity of the given load is equal to P/M within the shadowrd rectangles in 
Fig. 1X and is zero clscwhere. Thus, proceeding in 1 hc usual manner, ix., multiplyir,g 

2mm 
Eq. (a) by C”S __ 

2nq/ 
c’os ~ dx o!!/ and integrating between the limits --cl/S, +a/2 

0. b 

1 The problem of stress distribution near the load applied at a corner of a large platcx 
has not yet been solved with the same reliability as the problems discussed above. 
Several empiric and semiempiric stress formulas regarding that case may be found in 
“Concrete Pavcmcnt Design,” p. 79, Portland Cement Association, Chicago, 1951. 
Not,eworthy cxpcrimcnt,al results concerning this problcmwere obtained by M. Dantu, 
4nn. pods et chausskes, voL.122, p. 337, 1952. See also L. D. Black, Trans. Eng. 
Inst. Canadu, vol. 2, p. 129, 1958, and D. E. Nevel, ibid., p. 132. 

2 See W. Rliillcr, lnqr.-Arch., vol. 20, p, 278, 1952, and &err. Inyr.-Arch., vol. 6, 
p. 404, 1952. 
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for x; -b/Z, i-b/Z for y, we have 

4PewL, . m*u . n?rv 
a mn = - sin a sin r, 

&wnuv 
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(b) 

where E”~,~ = 1 for WL # 0, 12 # 0 
Emn = + for m = 0, n # 0 or mtfO,n =O 
Emn = $ for 111 = fi = 0 

In the particular case of 1,~ = 0 or n = 0 the cocflicient itself is readily obtained as a 
limit value of the expression (b). 

Now, in accordance with l?q. ia) ICC t&c for deflections the series 

and the relation between t,ht: coefficients a,,, and A,,,, is easily established by the same 
reasoning as before (src page 272). Thus, using the notation 

we obtain 

Substituting this in the series (c) and observing Rq. (b) we have the final result’ 

(e) 

(f) 

The bending moments of the plate are now obtained by the usual differentiation, and 
the distribution of the pressure between the plate and the subgrade is found by multi- 
plication of expression (f) by the modulus k. 

The particular case k = 0 correspouds to a uniformly distributed reaction of the 
subgrade, i.e., to the case of a “reversed flat slab” uniformly loaded with q = P/ah. 
It is seen from Eq. (f) that t,he introduction of the modulus tends to reduce the deflec- 
tions and also the bending moments of t,he plate. 

The case of a rectangular plate of finite dimensions resting on an elastic foundation 
:md submitted to the action of a concernrated load has been discussed by H. Happel.2 
The Ritz method (see pag; 314) has been used to determine the deflections of this 
plate, and it was shown in the partjicrilar esnmplc of a centrally loaded square plate 
that, the series representing the deflection converges rapidly and t,hat the deflection 
c;tn be calculated with sufficient accuracy by I.alring only t,he first few icrms of thus 
scrics3 

I Ihe t,o V. Lewe, Haz~ingeni~r, vol. 3, p. 453, 1923. 
2 Malh. z., vol. 6, p. 203, 1920. See also F. Halbritter, Bautechnik, vol. 26, p. 181: 

1949. 
3 The problem of a square plate on an elastic foundat,ion has also been investig-xkd 

experimentally: see the paper by J. Vint and W. N. Elgood, Phil. .llnq., ser. 7, vol. 19. 
p, 1, 1935; and that by G. Murphy, lvwa State Coil. Eng. Erpt. Sk. Hu/(. 135, 1937. 
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61. Bending of Plates Resting on a Semi-infinite Elastic Solid. So far, the settling 
of the subgrade at some point of its surface has been assumed as proportional to the 
pressure between the plate and the subgrade at the same point, and consequently as 
independent of the pressure elsewhere. This is correct in the case of a floating plate, 
considered by Hertz (see page 2GO), but in the case of a coherent subgradc such a 
hypothesis approximates but crudely the actual behavior of the subgrade; a better 
approximation can sometimes be obtained on the basis of the following assumptions: 

1. The founda,tion has the properties of a semi-infinite elastic body. 
2. The plate rests on t*he subgrade without friction. 
3. A perfect contact bctwecn the plate and foundation also exists in the case of a 

ncgativc mutual pressure. 
This last supposition appears arbitrary; however, a negative prrssure between plate 

and subgrade actually is compensated, more or less, by the weight of the plate. 
The elastic properties of the elastic foundation may bc characterized, if isotropy is 

assumed, by a Young modulus E’o ancl a Poisson ratio Y,). The approximate numerical 
values’ ol’ these constants, dcpcnding on the nature of the subgrade and based 011 
results of dynamical tests, are given in Table 63, together with the value of the 
constant 

used in the following. 

EO 
ko = ___ 

2(1 - Yi, 

Subgrade 

Clay 
Loess and clay. 
Medium sand. 
Sand and gravel. 
Liassic plastic clay 
The (air-slaked). 
Sandstone. 

i -. 

- 

Ii,, psi 
-- 

11,000 
13,000 

14,000-18,500 
40,000 
38,000 

165,000-190,000 
1,600,000 

0.17 
0.42 

0.334.23 
0.31 
0.44 

0 ‘3” 0 ‘38 .I ., 
0.26 

- 

-- 

- 

(a) 

ko, psi 
~_.. .~~ 

5,ioo 
T,YOO 

7,900-9,800 
22,000 
23,500 

92,000-110,000 
860,000 

We restrict the further considerat,ion to the case of an infinitely large plate in a state 
of axial symmr,try. Using polar coordinates T, 0, we can write the plate equation as 

I)AAW(T) = cl(r) - p(r) OJ) 

where p(r) denotes the given surface loading and p(r) the reaction of the suhgradc. 
I,et Ko(r,p,rp) be the deflection at the point (r,O) of the subgrade surface due to a 

normal unit load applied on this surface (p,~). The form of the “influence function ” 
I<, depends merely upon the nature of the foundation. Making use of some propertirs 
of the Bessel functions, it can be shown2 that Eq. (b) is satisfied by the expression 

* Q(a)K(cY)Jo(cu)a da 
w(r) = ______ 

/ 0 1 + IMK(a) 
(cl 

1 Due to E. Schultze and H. Muhs, “ Bodenuntersuchungen fiir Ingenieurbauten,” 
Berlin, 1050. See also VeGJentl. Degebo, Heft 4, p. 37, 1930. 

z The solution of the problem in this general form is due to D. L. Holl, Proc. P(fth 
Intern. Congr. Appl. Me&., Cambridge, Mass., 1938. 
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In Eq. (c) J0 denotes the Bessel function of zero order; the term depending on the 
nature of the subgrade is 

Kb) = IO- a?rsKcJ(s)Jo(~s) d%FJ 

in which the form of Ka is defined by 

Ko(s) = K,[(r2 + p2 - 2rp cos p)S] 

s being the distance between points (r,O) and (p,~). Finally 

Q(a) = /o” Y(PVO(W)P dp (4 

is the term depending on the intensity q(p) of the symmetrical loading at P = p. 
In the particular case of a load P uniformly distributed along the periphery of a 

circle with a radius c, we have 

P 
Q(a) = -JJo(uc) 2* (f) 

In the case of the load P distributed uniformly over the area of the same circIe, Eq. 
(e) yields 

where the Bessel function is of the or&r one. Fina.lly, where a load is concentrated 
at t,he origin (p = 0), we obtain from Eq. (.I) 

(h) 

As for the distribution of the reactive pressure, tht: respective function p(r) is 
obtnincd front Eq. (b), thr term 

being previously expressed through it,s Fourier-Bessel transform (e). Thus, we ohtain 

s 

- Q(cx)J,(,r)a da 
p(r) = --~ 7 

0 1 + Da”h(cx) 

Now let us consider two particular cases with respect to the physical nature of the 
subgrade. For a/bating plute (Art. 57) the influence function K@(s) is zero everywhere 
except at s = 0, where the unit force is applied. With regard to Eq. (d) the quan- 
tity K,(a) then must be a constant. In order to get from Eq. (c) the expression 
W(T) = p(r)/k, this in accordance with the definition of the modulus, we have to 
assume K”(N) = l/k. Using the previous notation 1 4 = D/k (pagr 260), we obtain 
from Eq. (c) the expression 

which actually sat.isfies t.he diffcrcntial equation (178) of the float,ing plate. 
In the case of an isotropic semi-infinite medium we have, by a result due to Bous- 
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sinesq,’ Ko(s) = (1 - v$/?rEos and, by Eq. (d), K(a) = 2(1 - v~)/EwY, or 

where k. is the elastic constant defined by ICq. (a). Writing for brevity, 

we finally obtain the solution (c) in the more special form2 

W(T) = 1 
s 

- &(a)Jo(ar) da 

ko 0 -1 + oL31; Cm) 

In the part,icular case of a load concentra,ted at t,he origin, expression (m) in con- 
nect,ion with (h) yields 

m 
hr 

Pli 
Jo - dx 

J’ ( )  

10 
w=iiz 0 

--___ 
1 +A3 

where x is written for &. Therefore, the deflection under the load is 

(187) 

(188) 

against the result O.l%F’l”/D of Hcr1.z. The distribution of the pressure is readily 
obtained front the general csprcssion (j). \Ye hnvr :LI any point 

and especially under the load P m Xdk pti P 
pm,, = --,; s -=----=“.1g2- %*I;, 0 1 + x” !,I; 1" 0 

(190) 

in comparison with the value of O.l25P/P obtained by Hertz. If we assume equal 
values of w,,,,~, in both cases, formula (190) yields a value for p,,,,, which is 2.37 times 
as large as the value from Hertz’s formula (181). In such a cast the relation 
I = 1.24110 must hold, and curves of the respective deflections as calculated from 
Eqs. (179) and (187) are shown in Fig. i31a. Figure 131b shows in like manner the 
variation of the pressllrc; this time, in order to obtain equal values for p,,, in both 
cases, it must be assumed that I = 0.80610. 

It can be shown, finally, that the magnitude of bending moments in the vicinity of 

‘See, for example, S. Timoshenko and J. N. Goodier, “Theory of ElasCcity,” 
2d ed., p. 365, New York, 1951. 

2 For this result see also S. Woinowsky-Ilriey;er, Zngr.-Arch., vol. 3, p. 250, 1932, and 
vol. 17, p. 142, 1949; I(. Marguerre, Z. anyew. Math. Me&., vol. 17, p. 229, 1937; 
A. H. A. Hogg, Phil. Mag., vol. 25, p. 576, 1938. 
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the concentrated load is the same for foundations of both kinds if expressed in terms 
of the dimensionless argument x = r/L and z = r/lo, respectively. We conclude from 
this fact that expressions for bending moments, such as given by Eq. (183), can also be 
used for a plate resling on an isotropic elastic medium if we replace 1 by lo. Proceeding 
in this manner with the stress formula (r) of Westcrgaard (page 275), we arrive at the 
formula 

(n) 

in which ko is given by Eq. (a), and b denotes the same quantity as on page 275. 
The problem of the bending of a fiuite circular plate leads to an irrfinitc set of linear 

equations for the coefficients of the series, which has to represent the deflections of 
such a plate.’ 

The use of the method of finite differences should also be considered in handling the 
problem of finit,e circular plates.’ 

The bending of an infinite plate supported by an elastic layer, which rests in its turn 
on a perfectly rigid base,3 and the problem of a semi-infinite pavement slab4 have also 
been discussed. 

Stresses due to a highly concentrated surface load should be corrected in accordance 
with the general theory of thick plates. However, a special theory of thick plates 
supported elastically has also been estab1ished.j 

1 See H. Borowicka, Zngr.-Arch., vol. 10, p. 113, 1939; -4. G. Ishkova, DokZad~/ 
.!tkad. Na& S.S.S.R., vol. 56, p. 129, 1947; G. Pickett and F. J. McCormick, Proc. 
li’irst U.S. Natl. Congo. Appl. Me&., p. 331, Chicago, 1951. The effect of raising the 
outer portion of the plate submitted to a central load was discussed by II. Jung, 
Zngr.-Arch., vol. 20, p. 8, 1952. For bcliding of rectangular plates see M. I. Gor- 
bounov-Posadov, Priklad. Mat. Mekhun., vol. 1, p. 68, 1910. 

? A. Hnbcl, Ba~in.g~nieur, vol. 18, p. 188, 1937; for application to rectangular plates 
see G. Picket& W. C. Jancs, M. E:. Ravillc, and F. J. McCormick, Kansas State C’oll. 
Eng. Ezpt. Sta. Rd. 65, 1951. 

3 A. H. zA. Hogg, Phil. Mag., vol. 3.5, p. X5, 1914. 
4 G. Pickett and S. Badaruddin, I>?oc. Ninth In,tfrn. Congr.. Bppl. Mech., vol. 6, 

p. 396, Brussels, 1957. 
5 The first discussion of the statical and dynamical behavior of such plates is due to 

K. Marguerre, Zngr.-Arch., vol. 4, p. 33’ 2, 1933; see also I. Szabo, Z%gr.-Arch., vol. 19, 
pp. 128, 342, 1951; 2. angeur. Math. ATech., vol. 32, p. 145, 1952. For application of 
l?. Reissner’s theory see P. M. Naghdi and J. C. Rowley, Proc. First Midwest Conf. 

Solid .1fech. (Univ. Illinois), 1953, p. 119, and D. Frederick, J. Bppl. &l&a&s, 
vol. 23, p. 195, 1956. 



CHAPTER 9 

PLATES OF VARIOUS SHAPES 

62. Equations of Bending of Plates in Polar Coordinates. In the 
discussion of symmetrical bending of circular plates polar coordinates 
were used (Chap. 3). The same coordinates can also be used to advan- 
tage in the general case of bending of circular plates. 

If the T and 0 coordinates are taken, as shown in Fig. lJGa, the relation 
between the polar and cnrt,esian coordinates is given by the equations 

fI‘? = x2 + y2 

from which it follows that 

e = arctan J! L ‘ x (a> 

dr z 
- = cos 0 z=r 

ar y - = - = sin (j 
d!J 1 

r36 ?J sin 6 at) x COY 0 (6) 
-~ z=-p=- 1 - :y= - = ..~ 

a!/ r? r 

Using these expressions, we obtain the slope of the deflection surface of a 
plate in the .T direction as 

0 
a;11 -= 
aJ 

(c) 

(a) (b) 
A similar expression can be written 

FIG. IX for the slope in the y direction. 
To obtain the expression for curva- 

t,ure in polar coordinates the second derivatives are required. Repeating 
twice the operation indicated in expression (c), we find 
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In a similar manner we obt$ain 

@W d2w a2w sin 0 cos 9 
dy2 dr” 

sin2 e + 2 - 
de at- T 

+$tE$J? 

_ 2 dw sin e cos e a”~ ~0~2 e 
de 7-2 + dB” ~2 __ (e) 

d2W a2w PW cos 28 a~ cos 28 __- 
ax ay 

= dr’L sin e cos e + ----- 
arae r ae r2 

dw sin e cos e --~~~ - 
ar r 

!$ ?!!I$%! (,f) 

With this transformation of coordinates we obtain 

Repeating this operation twice, the differential equation (103) for the 
deflection surface of a laterally loaded plate transforms in polar coordi- 
nates to the following form: 

AAw = 
)( 

Wheu the load is symmetrically distributed with respect to the center of 
the plat.e, the deflection w is independent of e, and Sq. (191) coincides 
with Eq. (58) (see page %I), which was obtained in the case of sym- 
metrically loacled circular plates. 

Let) us consider an element cut out of the plate by two adjacent axial 
planes forming an angle de and by two cylindrical surfaces of radii T and 
r + dr, respectively (Fig. 13%). We denote the bending and twisting 
moments acting on the element per unit length by MT, M,, and Mr2 and 
take their positive directions as shown in the figure. To express these 
moments by the deflection w of the plate we assume that the x axis coin- 
cides with the radius r. The momentIs M,, M,, and MVt then have the 
same values as the moments M,, M,, and M,, at the same point, and by 
substituting B = 0 in expressions (d), (e), and (f), we obtain 

In ii similar manner, from formulas (108), we obtain the expressions for 
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the shearing forces’ 

Q7 = -D $ (Aw) and (193) 

where Aw is given by expression (g). 
In the case of a clamped edge the boundary conditions of a circular 

plate of radius a are 

(w),=, = 0 

0 

g = = 0 
r  a 

(h) 

In the case of a simply supported edge 

(w),,, = 0 (M,L, = 0 (4 
In the case of a free edge (see page 87) 

(ill.),=,, = 0 V=(Q,-$$zmn=O 

The general solution of Ey. (191) can be taken, as before, in the form 
of a sum 

‘W = WIJ + w, (12) 

in which wO is a particular solution of Eq. (191) and w1 is the solution of 
the homogeneous equation 

This latter solution we take in the form of the following series? 

m I 

‘WI = Ru -I- c R, cos me + 
c 

RL sin m0 (195) 
‘nl = 1 nZ=l 

in which Ro, RI, . . . , R{, Ri, . . . are functions of the radial distance 
r only. Substituting this series in Eq. (lo), we obtain for each of these 
functions an ordinary differential equation of the following kind: 

The general solution of this equation for m > 1 is 

R, = A,F + B,T-~ -j- C,rm+2 + Dmr-@f (0 

1 The direction of Qr in Fig. 136b is opposite to that used in Fig. 28. This explains 
the minus sign in Eq. (193). 

2This solution was given by A. Clebsch in his “Theorie der Elasticit& fester 
F&per,” 1862: 
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For 172 = 0 and m = 1 the solutions a,re 

R. = A0 + BOr2 + CO log r + DO+ log r 
and RI = Aa + Blr3 + Clr-l + Dir log r 

285 

Cm) 

Similar expressions can be written for the functions Rk. Substituting 
these expressions for the functions R, and Rk in series (195), we obtain 
the general solution of Eq. (194). The constants A,, B,, . . . , D, in 
each particular case must be determined so as to satisfy the boundary 
conditions. The solution Ro, which is independent of the angle 8, repre- 
sents symmetrical bending of circular plates. Several particular cases 
of this kind have already been discussed in 
Chap. 3. 

63. Circular Plates under a Linearly 
Varying Load. If a circular plate is acted 
upon by a load distributed as shown in Fig. 
137, this load can always be divided into 
two parts: (1) a uniformly distributed load 
of intensity +(pz + pl) and (2) a linearly 
varying load having zero intensity along the 
diameter CD of the plate and the int,ensities 
- p and +p at the ends A and B of the 
diameter AL?. The case of uniform load 
ha,s already been discussed in Chap. 3. We 
have to consider here only the nonuniform FIG. 137 

load represented in the figure by the two shaded trisngles.1 
The intensity of the load q at any point with coordinates r and 8 is 

q - Pr cos 0 
a (a> 

The particular solution of Eq. (191) can thus be taken in the following 
form: 

w. = A 11T” ‘OS * 
a 

This, after substitution in Eq. (191), gives 

1 
A = 1920 

Hence 
w 

0 
= pr5 cos e 

192aD @) 

As the solution of the homogeneous equation (194) we take only the term 
of series (195) that contains the function RI and assume 

wl = (Air + B@ + Clr-l + D,r log r) cos 0 Cc) 

1 This problem has been discussed by TV. Fliigge, I3auingeniwr, vol. 10, p. 221, 1929. 
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Since it is advantageous to work with dimensionless quantities, we intro- 
duce, in place of r, the ratio 

With this new notation the deflection of the plate becomes 

w = wg + WI = ~~. ,;;; (P” + AP + Bp3 + Cp-’ + Dp log p) cos o (cl) 

where p varies from zero to unity. The constants A, B, . . in this 
expression must now be determined from the boundary conditions. 

Let us begin with the case of a simply supported plate (Fig. 137). In 
this case the deflection w and the bending moment AI, at the boundary 
vanish, and we obtain 

(W)&?=l = 0 (MT),-1 = 0 (e) 
At the center of the plate (p = 0) the deflection w and the moment 111, 
must be finite. From this it follows at once that the constants (I and D 
in expression (d) are equal to zero. The remaining two constants A and 
B will now be found from Eqs. (e), which give 

(W),=l = & (I + A + B) cos 13 = 0 

(M,)+ = - f$ [4(5 + 4 + 2(3 + M-1 cos e = 0 

Since these equations must be fulfilled for any value of 8, the factors 
before cos 0 must vanish. This gives 

l+A+B=O 
4(5 + v) + 2(3 + v)B = 0 

and we obtain 
B = _ 2(5 + ‘1 

3-i-V 
A z 3 

V 

Substituting these values in expression (d), we obtain the deflection w 
of the plate in the following form: 

,~ _ p4Pu -  P ” )  

lij2cg-+T i7 + ’ - C3 + v)P”l coS e 

For calculntBing the bending moments and the shearing forces we substi- 
tute expression (f) in Eqs. (192) and (193), from which 

MT = ;;: (5 + v)p(l - p2) cos 0 
(9) 

M, = 4,(:‘$;) P[(5 + v)(l + 3v) - (l + 5v)(3 + v>P21 CO8 e 
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Qv = 24(;a+ v) [2(5 + v> - WJ + Y)P21 0x3 0 

Qt = - 22(iy Y) 

(h‘l 
p[2(5 + Y) - 3(3 + v)p2] sin 0 

It is seen that (jlfT)mnx occurs at p = l/ & and is erlual to 

The maximum value of AI, occurs at 

P = 2/(5t-/d3(1 + 5V)(3 + V) 

and is equal to 

The value of the intensity of the vertical reaction at the boundary is’ 

-Ii = -(Jr + aG = $ cos e 

The moment of this reaction with respect to the diameter CD of the 
plate (Fig. 137) is 

This moment balances the moment of the load distributed over the plate 
with respect to the same diameter. 

As a second example, let us consider the case of a circular plate with a 
free boundary. Such a condition is encountered in the case of a circular 
foundation slab supporting a chimney. AS the result of mind pressure, 
a moment M will be transmitted to the 
slab (Fig. 138). Assuming that the reac- 
tions corresponding to this moment are 
distributed following a linear law, as -7 

7 

shown in the figure, we obtain the same Y- 2 

kind of loading as in the previous case; 
Frc;. 138 

and the general solution can be taken in the same form (cl) as’ before. 
The boundary conditions at the outer boundary of the plate, which is 
free from forces, are 

(X,),=1 = 0 (V),,, = (Qr - f$$_, = 0 

The inner portion of the plate of radius b is considered absolutely rigid. 
It is also assumed that the edge of the plate is clamped along the circle 

1 The reaction in the upward direction is taken as positive. 
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of radius b. Hence for p = b/a = p the following boundary condition 
must be satisfied: 

Substituting expression (d) in Eqs. (i) and (j), we obtain the following 
equations for the determination of the constants: 

4(5 + Y) + 2(3 + Y)B + 2(1 - Y)C + (1 + V)D = 0 
4(17 + V) + 2(3 + v)B + 2(1 - V)C - (3 - Y)D = 0 

4fi4 + 2P2B - 2p-2C + D = 0 
From these equations 

4(2 + ~1 + (1 - v)P2(3 + P”) 
B = -2 ---(3 + v) + (1 - V)P” 

c = -2 4(2 + v)P” - (3 + y)P2(3 + 6”) 
(3 + v) + (1 - v)P” 

D = 12 

Substituting these values in expression (d) and using Eqs. (192) and (193)) 
we can obtain the values of the moments and of the shearing forces. The 
constant A does not appear in these equations. The corresponding term 

A* (a) 

+ 
(b) M 

(cl 
FIG. 139 

in expression (d) represents the rotation of 
the plate as a rigid body with respect to the 
diameter perpendicular to the plane of Fig. 
138. Provided the modulus of the founda- 
tion is known, the angle of rotation can be 
calculated from the condition of equilibrium 
of the given moment M and the reactions of 
the foundation. 

Using expression (d), the case of a simply 
supported circular plate loaded by a moment 
M at the center (Fig. 139a) can be readily 
solved. In this case we have to omit the 
term containing p5, which represents the dis- 
tributed load. The constant C must be taken 

equal to zero to eliminate an infinitely large deflection at the center. 
Expression (d) thus reduces to 

w = (Ap + Bp3 + Dp log /J) cos e (k) 

The three constants il, R, and D will now be determined from the follow- 
ing boundary conditions: 

(w)p,, = 0 (M,),_, = 0 

-a 
J -T (MTt)Pz~ sin 0 d0 + a2 1-y (Qr)P=l cos 0 d0 + M = 0 (‘) 

The first two of these equations represent the conditions at a simply sup- 
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ported edge; the last states the condition of equilibrium of the forces and 
moments acting at the boundary of the plate and the external moment M. 
From Eqs. (I) we obtain 

A = _ I-tie ___ - 
3 + V8RD 

B=l+uMa 
3+v8rD 

D = - z”$ 
n 

Hence 
Ma 

w = - 8aD(3 + v) ___ p[(i + ~)(l - ,4 + 2(3 + 4 log PI ~0s 0 (4 

Because of the logarithmic term in the brackets, the slope of the deflec- 
tion surface calculated from expression (m) becomes infinitely large. To 
eliminate this difficulty the central portion of radius b of the plate may 
be considered as absolutely rigid.l Assuming the plate to be clamped 
along this inner boundary, which rotates under the action of the moment 
M (Fig. 139b), we find 

w = GqJj&q (1 _ &))@“] i -[Cl + v> + (1 - V)P41P3 

+ (1 + 4u - mp + w3 + 4 + (1 - wip log p 
- P”[(l + VP” - (3 + v)lp-l} cos e (n) 

where p = b/a. When 0 is equal to zero, Eq. (n) reduces to Eq. (m), 
previously obtained. By substitutin g expression (n) in Eq. (192) the 
bending moments M, and M, can be calculated. 

The case in which the outer boundary of the plate is clamped (Fig. 
139c) can be discussed in a similar manner. This case is of practical 
interest in the design of elastic couplings of shafts.2 The maximum 
radial stresses at the inner and at the outer boundaries and the angle of 
rotation cp of the cent,ral rigid portion for this case are 

where the constants o(, al, and 01% have the values given in Table 64. 

TABLE 64 

P=b/a CY 011 ’ a2 

0.5 14.17 7.10 : 12.40 
0.6 19.54 12.85 ) 28.48 

0.7 36.25 25.65 ~ 77.90 
0.8 82.26 / 66.50 i 314.00 

1 Experiments with such plates were made by R. J. Roark, Univ. Wisconsin Bull. 
74, 1932. 

* H. Reissner, Zngr.-Arch., vol. 1, p. 72, 1929. 
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64. Circular Plates under a Concentrated Load. The case of a load 
applied at the center of the plate has already been discussed in Art. 19. 
Here we shall assume that the load P is applied at point A at distance b 
from t)he cent,er 0 of the plate (Fig. 14O).l Dividing the plate into two 
parts by the cylindrical section of radius b as shown in the figure by the 
dashed line, we can apply solut’ion (195) for each of these portions of the 
plate. If t#he angle 0 is measured from the radius OA, only the terms 
containing cos me should be retained. Hence for the outer part of the 
plate we obtain 

where 

m 
w=Ro+ 

2 
R, cos m6’ 

W&=1 
Ro= Ao+B0r2+COlogr+D#logr 

RI = Alr + Blr3 + Clr-1 + Dir log r 
., 

R, = A,,rm + B,r-” + C,rm+2 + D,r-“i2 

(a> 

(b) 

Similar expressions can also be written for the functions Rh, Ri, R:,, 

corresponding t,o the inner portion of the plate. Using the symbols Ah, 
B’ lI.insteadofA .l? . ..for.thecon- 
stynts of the latter por%n ii the plate from the 
condltlon that the deflectlon, the slope, and the 
moments must be finite at the center of the plate, 
WC obtain 

CA = D; = 0 

c; = n; = 0 

cek Hence for each term of series (a) we have to 
PIG. l-10 determine four constants for the outer portion of 

the plate and two for the inner portion. 
The six equations necessary for this determination can be obtained 

from the boundary conditions at the edge of the plate and from the 
continuit,y conditions along the circle of radius b. If the outer edge of 
the plate is assumed to be clamped, the corresponding boundary con- 

1 This problem was solved by Clebsch, op. cit. See also A. FGppl, Sitzber. bayer. 
dkad. Wiss., Jahrg., 1912, p. 155. The discussion of the same problem by using 
bipolar coordinates was given by E. Melan, Eisenbau, 1920, p. 190, and by W. Fliigge, 
“Die strenge Berechnrmg von Kreisplatten unter Einzellasten,” Berlin, 1928. See 
also the paper by H. Schmidt, Ingr.-Arch., vol. 1, p. 147, 1930, and \V. Xliiller, Ingr.- 
Arch., vol. 13, p. 355, 1943. 
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ditions are 

(WL = 0 
aw 

( > ar rza = 0 cc> 
Denoting the deflection of the inner portion of the plate by w1 and 
observing that there are no external moments applied along the circle of 
radius b, we write the continuity conditions along that circle as 

w=p"l d!c.~L a'~ azt.0 a2wl 
ar ar a+ ar? 

for r = b (4 

The last equation is obtained from a consideration of the shearing force 
Qr along t’he dividing circle. This force is continuous at all points of the 
circle except point A, Tvhere it has a discont,inuity due to concent’rated 
force P. Using for this force the representation in form of the series1 

s(;+ 2 cosmo) (e> 
vn= 1 

and for the shearing force the first of the expressions (193), we obtain 

D $ (Aw),.,, - D $ (AwI),,~ = ” (f> 
rn=l 

From the six equations (c), (d), and (f), the six constants can be calcu- 
lated, and the functions R, and Rh, can be represented in the following 
form : 

(T2 + b2) log r 1 (a2 + b2)(a2 -- 
a 

(~2 + $7;2 _ 
1 

bZ)- 
(r2 + b2) log ; + -.-p---2a1--p 

6-b3 
R1 = - 16aD r -[‘+ 

2(n2 - b’)r _ @a2 - b2)r3 J Ir 
a2b2 a4b2 - p log 9 

I 
“‘“.2s2”” + ‘!kbv _ $ log ; 

R ‘rn (m - 1)b2 - ma’ + (m - I)? 

Rl, = 

r? m- 1 - ----~ i,2 
m+ 1 > I I 

II 
1 This series is analogous to the series that was used in the case of continuous plates 

(see p. 248). 
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Using these functions, we obtain the deflection under the load as 

For 0 = 0 this formula coincides with formula (92) for a centrally loaded 
plate. The case of the plate with simply sup- 

ported edge can be treated in a similar 
manner. 

The problem in which a circular ring plate 
is clamped along the inner edge (T = b) and 

FIG. 141 loaded by a concentrated force P at the outer 
boundary (Fig. 141) can also be solved by 

using series (a). In this case the boundary conditions for the clamped 
inner boundary are 

(W),& = 0 ( > g 7=b = 0 
For the outer boundary, which is loaded only in one point, the conditions 
are 

(M,),=, = 0 5 

(v)/&(;+ 2 cosme) 4 

m=l 

@I 3 

Calculations made for a particular 
case b/a = + show’ that the largest T 2 
bending moment M,. at the inner 
boundary is 

““$$ 

I 

(M,),=b,e=n = -4.45 g 

a 
The variation of the moment along 
the inner edge and also along a 
circle of radius 1’ = 5a/6 is shown 
in Fig. 142. It can be seen that 

FIG. 142 

this moment diminishes rapidly as the angle 8, measured from the point 
of application of the load, increases. 

The general solution of the form (a) may be used to advantage in 
handling circular plates with a system of single loads distributed sym- 
metrically with respect to the center of the plate,2 and also in the case of 

1 H. Reissner, Zoc. cit. 
2 By combining such reactive loads with a given uniform loading, me may solve the 

problem of a flat slab bounded by a circle; see K. Hajnal-Konyi, “13erechnung von 
kreisf6rmig begrenzten Pilzdecken,” Berlin, 1929. 
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annular plates. For circular plates having no hole and carrying but one 
eccentric load, simpler solutions ca,n be obtained by the method of com- 
plex variables,’ or, when the plate is clamped, by the method of inversion.” 
In this latter case the deflection surface of the plate is obtained in the form 

UJ = ED [(l - “c2)(1 - c;“) 

x2 + p - a.c.$ cos 0 
+ w + t2 - 2xt cos 0) 1% 1 + ,2,p _ c@ cos o 

I 
(197) 

where 2 = r/a and 4 = b/a (Fig. 140). Expression (197) holds through- 
out the whole plate and yields for :I: = E, 0 = 0, that is, under the load, 
the value (196), previously obtained by the series method. 

66. Circular Plates Supported at Several Points along 
the case of a load symmetrically distributed with respect 
take the general expression for the deflection surface 
in the following form!3 

w = wll +w, (a) 

in which wo is the deflection of a plate simply sup- 
ported along the entire boundary, and ~1 satisfies the 
homogeneous differential equation 

the Boundary. Considering 
to the center of the plate, we 

Denoting 
support 1 

the concentrated reactions at the points of 
, 2, 3, . . by Nr, Ne, . , Ni and using 

FIG. 143 

series (h) of the previous article for representation of concentrated forces, we 
for each reaction Ni the expression 

AAw, = 0 

where 

g; + 2 cosmei) 

m=l 

Oi = e - yi 

have 

(cl 

7i being the angle defining the position of the support i (Fig. 143). The intensity 
of the reactive forces at any point of the boundary is then given by the expression 

I The simply supported plate was treated in that manner by E. Reissner, Math. 
9nn., vol. 111, p. 777, 1935; for the application of Muscheligvili’s method see A. I. 
Lourye, Bull. Polytech. Imt., Leningrad, vol. 31, p. 305, 1928, and Priklad. Mat. 
Mekhan., vol. 4, p. 93, 1940. See also K. Nasitta, Zngr.-Arch., vol. 23, p. 85, 1955, and 
R. J. Roark, Wisconsin Univ. Eng. Ezpl. Sta. Bull. 74, 1932. 

2 J. 11. Michell, Proc. London Math. Sot., vol. 34, p. 223, 1902. 
3 Several problems of this kind were discussed by A. NBdai, Z. Physik, vol. 23, p. 

366, 1922. Plates supported at several points were also discussed by W. A. Bassali, 
Proc. Cambridge Phil. Sot., vol. 53, p. 728, 1957, and circular plates with mixed bound- 
ary conditions by G. M. L. Gladwell, Quart. J. Mech. Appl. Math., vol. 11, p. 159, 
1958. 
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in which the sulnmation is extended over all the concentrated reactions (c). 

The general solution of the homogeneous equation (b) is given by expression (195) 
(page 281). Assuming that the plate is solid and omitting the terms that give infinite 
deflections and moments at, the center, WC obtain from expression (195) 

WI = A0 + I?“? + 
c 

(A,9 + C,T~+~) cos me 

m=l 

+ 2 (A),T”’ + C~rmf2) sin ~0 (e) 

m=l 

For determining the constants we have the following conditions at the boundary: 

in which M,, and Q, are given by Eqs. (192) and (193). 
Let us consitlrr a particular case in which the plate is supporlcd at two points which 

are the ends of a diameter. \Vc shall measure 0 from this diameter. Then -J, = 0, 
yz = z, and we obtain 

m 
c [ 

1 2(1 + Y) - 
m(m - 1) + (1 - ,)(n1 - l)n12 - .,(,p; 1)] p’ll cos ne] (9) 

n=2.4,6.. 

in which luO is the deflection of the simply supported and symmetrically loaded plate, 
P is the total load on the plate, and p = r/a. IThen the load is applied at the center, 
we obtain from expression (g), by assuming v = 0.25, 

(w) p-0 = o.l16p~ 

Pa2 
(w)p&ed12 = 0.118 7 

For a uniformly loaded plate we obtain 

(w)+.o = 0.269 g 

(W)p-Led/P = 0.371 ET 
D 
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By combining two solutions of the type (g), the case shown in Fig. 144 can also be 
obtained. 

When a circular plate is supported at three points 
120” apart, the deflection produced at the center of the 

plate, when the load is applied at the center, is 
yr?J 

FIG. 144 

When the load is uniformly distributed, the defiection at the center is 

(w)~--o = 0.0362!$ 

where P = m2q. 
The case of a circular plate supported at three points was investigated by experi- 

ments with glass plates. These experiments showed a very satisfactory agreement 
with the theory.’ 

66. Plates in the Form of a Sector. The general solution dewlopcd for circular 
plat,cs (Art. 62) can also be adapted for a plate 
in the form of a sector, the straight edges of 

,_--._ 
/’ ‘\ which are simply supported.2 Take, as an ex- 

/ ‘\ 
/ \ 

\ 

J 

ample, a plate in the form of a semicircle simply 

\ 

8 lB F-i f--+$fy g 

supported along the diameter AR and uni- 
formly loaded (Fig. 145). The deflection of this 
plate is evidently the same as that of the circular 
plate indicated by the dashed line and loaded as 
shown in Fig. 145b. The distributed load is 
represented in such a case by the series 

m 
Cd) (b) 

FIG. 145 9= 
c 

4q . - sm me (a) m7r 
m = 1.3,5. 

and the differential equation of the deflection surface is 

1 
AAw = - 

D c 

4q . - srn rite 
m7r @I 

m = 1.3.5, 

The particular solution of this equat,ion that satisfies the boundary conditions along 
the diameter AB is 

The solution of the homogeneous differential equation (194) that sat,isfics the condi- 

1 These experiments were made by Nadai, ibid. 
2 Problems of this kind were discussed by Nadai, 2. VW. c&t. Ing., vol. 59, p. 169, 

1915. See also B. G. Galerkin, “Collected Papers,” vol. 2, p. 320, Moscow, 1053, 
which gives numerical tables for such cases. 
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tions along the diameter AB is m 
WI = c (A,P + B,t-m+2) sin me (4 

m= 1,3,5, . . . 

Combining expressions (c) and (d), we obtain the complete expression for the deflection 
w of a semicircular plate. The constants A, and B, are determined in each particular 
case from the conditions along the circular boundary of the plate. 

In the case of a simply supported plate we have 

(WL., = 0 
SW 

[ ( 
1 aw 1 &u 

$T+y ;z+G$ =O )I ?--(I (4 

Substituting the sum of series (c) and (d) for w in these equations, we obtain the 
following equations for calculating A, and B,: 

A,am + Bma’n+2 = - 
4qd 

mx(l6 - m2)(4 - m2)D 

A,am[m(m - 1) - .m(m - l)] + B,a’n+2(m + l)[m + 2 + ~(2 - m)] 

4quZ[12 + ~(4 - m’)] 
=- 

From these equations, 

mr(l6 - m2)(4 - m2)D 

A,,, = 
qaYm + 5 + V) 

a”m?r(lG - m2)(2 + m)[nl -++(l + Y)]D 

B, = - 
qnym + 3 + Y) 

cL*~+%aa(4 7 7x)(4 - m2)[rn + *(I + Y)]D 

With these values 
becomes 

m 

w4 20 = - 
D c 

m-1.3.5.. 

of the constants the expression for the deflection of the plate 

4r4 1 

2 rm(16 - m”)(4 - rn”) 

P m+5+v 

+ S m7~(16 - m2)(2 + m)[m + +(l + v)] 
pla+2 mf3fv -__ 
amfZ mr(4 + m)(4 - m*)[m + +(l + v)] I- ‘ln me 

With this expression for the deflection, the bending moments are readily obtained 
from Eqs. (192). 

In a similar manner we can obtain the solution for any sector with an angle r/k, k 
being a given integer. The final expressions for the deflections and bending moments 
at a given point can be represented in each particular case by the following formulas: 
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in which CI, & and jz?i are numerica, factors. Several values of these factors for points 
taken on the axis of symmetry of a sector arc given in Table 65. 

TABLE 65. VALUES OF THE FACTORS a, 0, AND p1 FOR VARIOUS ANGLES r/k 
OF A SECTOR SIMPLY SUPPORTED AT THE BOUNDARY 

Y = 0.3 
- 

r/a = f 

r/k -___~~ 

a 

_ --___ 

11/4 0. OOOOG 
r/3 0.00019 
r/2 0.00092 

* 0.00589 

r/a = + r/a = f r/a = 1 
~--..___ ___~ 

I 
PI81 a B 81 a $ 81 

__-____ 

0.00049 0.0161 0.0109 0 0 0.0025 
0.00092 0.0243 0.0213 0 O! 0.0044 
0.00203 0.0381 0.0286 0 0 0.0088 
0.00560 0.0617 0.0468 0 0 0.0221 

The case in which a plate in the form of a sector is clamped along the circular 
boundary and simply supported along the straight edges can he treated by the same 
method of solution as t)hat used in the preceding case. ‘lhc values of the coefficients 
a and fl for the points taken along the axis of symmetry of the sector are given in 
Table 66. 

TABLE 66. VALUES OF THE COEFFICIENTS OL AND @ FOR VARIOUS ANGLES r/k 
OF A SECTOR CLAMPEI) ALONG THE CIRCULAR BOUNDARY AND SMPLY 

SI-PPOR~YW ALOX(G TIIE STRAIGHT EDGES 

*lk 

r/a = $. 

a B 

0.00005 -0.0008 
0.00017 -0.OOOG 
0.00063 0.0068 
0.00293 0.0473 

Y = 0.3 

T/U = 6 

a 
--- 

0.00026 
0.00057 
0.00132 
0.00337 

I- 
i 

T 

0.0087 
0.0143 
0.0272 
0.0446 

_- 

- 

r/a = 2 I 
-_I__ 

a 

0.00028 0.0107 
0.00047 0.0123 
0.00082 0.0113 
0.00153 0.0016 

- 

r/a = 1 
- 

T a 

0 
0 
0 
0 

- - 

_. 

P 

-0.0250 
-0.0340 
-0.0488 
-0.0756 

It can be seen that in this case the maximum bending stress occurs at the mid-point. 
of the circular edge of the sector. 

If the circular edge of a uniformly loaded plate having the form of a sector is entirely 
free, the maximum deflection occurs at the mid-point of the unsupported circular edge. 
For the case when r/k = ~12 we obtain 

W mnx = 0.0633 $ 

The bending moment at the same point is 

Mf = 0.1331qu* 

In the general case of a plate having the form of a circular sector with radial edges 
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clamped or fret, approximate methods must be applied.’ However, the particular 
problem of a wedge-shaped plate carrying a lateral load can be solved rigorously (see 
Art. 78). Another problem which allows an exact solution is that, of bending of a 
plate clamped along two circular arcs.2 Bipolar coordinates must be introduced in 
that case and data regarding the clamped semicircular plate in particular are given 
in Table 67. 

TABLE 67. TT~IAJE~ ov THE FACTORS 01, p, .~ND PI [EQs. (f)] FOR A SEMICIRCULAR 
l’L.4TE CLAI\lI’ED ALONG THE BnuNoARY (Fig. 145~2) 

P = 0.3 

Load distribution r/a = 0 r/a = 0.383 r/a = 0.486 / r/a = 0.525 r/a = 1 

~____ 
Uniformloadq l-0.07311 

/ -0.0276/ 

0.0355 0.00202 0.0194 -0.0584 
Hydrostatic load qy/a . -0.0355 

Bipolar coordinates can also be used to advantage in case of a plate clamped between 
an outer and an inner (eccentric) circle and carrying a single load.3 

67. Circular Plates of Nonuniform Thickness. Circular plates of nonuniform 
thickness are sometimes encountered in the design of machine parts, such as dia- 
phragms of steam turbines and pistons of reciprocating engines. The thickness of 
such plates is usually a function of the radial distance, and the acting load is sym- 

metrical with respect to the center of the plate. We shall limit our further discussion 
to this symmetrical case. 

Proceeding as explained in Art. 15 and using the notations of that article, from the 
condition of equilibrium of an clement as shown in Fig. 28 (page 52) we derive the 
following equation : 

1 See G. F. Carrier and F. S. Shaw, Proc. Sy!nposia Appl. &f&h., vol. 3, p. 125, 1950; 
H. D. Conway and M. K. Huang, J. Rppl. nfechanics, vol. 19, p. 5, 1952; H. R. Has&, 
Quart. iWe&. ilppl. dlath., vol. 3, p. 271, 1950. The case of a concentrated load has 
been discussed by T. Sckiya and A. Saito, Proc. Fourth, Japan. Congr. Appl. Mrch., 
1954, p. 195. For pIates bounded by two radii and two arcs and cIamped see G. F. 
Carrier, J. Sppl. Mechanics, vol. 11, p. A-134, 1944. The same problem with various 
edge condit,ions was discussed by L. I. Devcrall and C. J. Thorne, J. dppl. &rechanics, 
vol. 18, p. 359, 1951. The bending of a uniformly loaded semicircular plate simply 
support.ed around the curved edge and free along the diameter (a ‘Ldiaphragm” of a 
steam turbine) has been discussed in detail by D. F. Muster and hl. A. Sadowsky, 
J. Appl. jtfechanics, vol. 23, p. 329, 1956. A similar case, howrvcr, with a curved 
edge clamped, has been handled by H. Miiggenburg, Ingr.-Arch., vol. 24, p. 308, 19.56. 

2 Green’s function for these boundary conditions has been obtained by A. C. Dixon, 
Proc. London il1ath. Sot., vol. 19, p. 373, 1920. For an interesting limiting case see 
W. R. Dean, Proc. Crmhridge Phil. Sot., vol. 49, p. 319, 1953. In handling distributed 
loads the use of the rather cumbersome Green function may be avoided; see S. 
Woinowsky-Krieger, J. Appl. Mechanics, vol. 22, p. 129, 1955, and Ingr.-Arch., vol. 24, 
p. 48, 1956. 

3 This problem was discussed by N. V. Kudriavtzev, L)oUad,y illcad. Nauk S.S.S.R., 
vol. 53, p. 203, 1946. 



in which, as before, 

where 

PLATES OF VARIOUS SHAPES 

dw 

‘p=-z 
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and Q is the shearing force per unit length of a circular section of radius T. In the case 
of a solid plate, Q is given by t,he equation 

(4 

in which p is the intensity of the lateral load. 
Substituting expressions (h), (c), and (d) in Eq. (a) and observing that the flexural 

rigidity D is no longer constant but varies with the radial distance T, we obtain the 
following equation: 

(4 

Thus the problem of bending of circular symmetrically loaded plates reduces to the 
solution of a differential equation (e) of the second order with variable coefficients. 
To represent the equation in dimensionless form, we introduce the following notations: 

a = outer radius of plate 
h = thickness of plate at any point 
ho = thickness of plate at center 

r h 
-=5 
a 

-=?J 
ho df) 

We also assume that the load is uniformly distributed. Using the notation 

6(1 - +P~ 
’ = - Epic, (s) 

Eq. (e) then becomes 

In many cases the variation of the plate thickness can be represented with sufficient 
accuracy by the equation’ 

y = &32i6 (h) 

in which p is a constant that must be chosen in each particular case so as to approximate 
as closely as possible the actual proportions of the plate. The variation of thickness 

1 The first investigation of bending of circular plates of nonuniform thickness was 
made by H. Holzer, 2. ges. Turbine~~essn, vol. 15, p. 21, 1918. The results given in 
this article are taken from 0. Pichler’s doctor’s dissertation, “Die Bicgung kreissym- 
metrischer Platten von ver&nderlicher Dicke,” Berlin, 1928. See also the paper by 
It. Gran Olsson, Zngr.-Arch., vol. 8, p. 81, 1937. 
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along a diameter of a plate corresponding to various values of the constant fi is shown 
in Fig. 146. Substituting expression (h.) in Eq. (198), we find 

It can be readily verified that, 

is a particular solution of Eq. (i). One of the two solutions of the homogeneous equa- 
tion corresponding to 15q. (i) can be taken in the form of a po\ver series: m 

13n(1 + V)(3 + v) . . . (Zn - 1 + p) 22n+l 
‘L 4 . 4 6 6 . 2% .27~(2n + 2) 1 (k) 

in which a, is an arbitrary constant. The second solution of the same equation 
becomes infinitely large at the center of the plate, i.e., for z = 0, and therrfore should 

Fro. 146 

not be considered in the case of a plate without a hole at the center. If solutions 
(j) and (k) are combined, the general solution of Eq. (i) for a solid plate can be put in 
the following form: 

The constant C in each particular case must be determined from the condition at the 
boundary of the plate. Since series (1~) is uniformly convergent, it can be differen- 
tiated, and the expressions for the bending moments can be obtained by substitution 
in Eqs. (b). The deflections can be obtained from Eq. (c). 

In the case of a plate clarrzped al the edge, the boundary conditions are 

and the constant C in solution (1) is 
,812 

To get the numerical value of C for a given value of p, which defines the shape of the 
diametrical section of the plate (see Fig. 146), the sum of series (k) must be calculated 
for z = 1. The results of such calculations are given in the above-mentioned paper 
by Pichler. This paper also gives the numerical values for the derivative and for the 
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integral of series (k) by the use of which the moments and the deflections of a plate 
can be calculated. 

The deflection of the plate at the center can be represented by the formula 

G(1 - vqL”q 
Wma* = clap = 01 -__-__ 

Eh; (0) 

in which a is a numerical factor depending on the value of the constant p. Several 
values of this factor, calculated for Y = 0.3, are given in the first lint of Table 68. 

TABLE 68. NUMERIUI, FACTORS LY AND a' FOR CALCCLATING DEPLECTIONS 
AT THE CENTER OY CIRCULAR PLATES OF VARIABLE THICKNESS 

Y = 0.3 

The maximum bending atressvs at various radial distances can be represented by the 
formulas 

(Pi 

The values of the numerical factors y and 71 for various proportions of the plate and 
for various values of z = r/a are given by the curves in Figs. 147 and 148, respectively. 

For @ = 0 these curves give the same vallics of stresses as were previously obtained for 
plates of uniform thickness (see Fig. 30, pngc 56). 

In the case of a plate simply s?cp~~&d alo~q the edge, the boundary conditions arc 

Cw),- 1 =o (M,Ll ” 0 (Y) 
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Investigation shows that the deflections and maximum stresses can be represented 
again by equations analogous to 15qs. (0) and (p). The notations 01’) y’, and 7: will 
be used for constants in this case, instead of (Y, y, and y1 as used for clamped plates. 
The values of 0’ are given in the last line of Table 68, and the values of y’ and 7: are 
represented graphically in Figs. 149 and 150, respectively. 

0 

0.2 

ii.4 

0.6 
0 0.2 0.4 0.6 0.8 1.0 

x+ 

FIG. 149 

FIG. 150 

To calculate the deflections and stresses in a given plate of variable thickness we 
begin by choosing the proper value for the constant p as given by the curves in Fig. 
146. ‘1Thcn the value of p has been determined and the conditions at the boundary 
are known, we can use the values of Table 68 to calculate the deflection at the center 
and the curves in Figs. 147, 148 or 149, 150 to calculate the maximum stress. If the 
shape of the diametrical section of the given plate cannot be represented with satis- 
factory accuracy by one of the curves iu Fig. 146, an approximate method of solving the 
problem can always be used. This method consists in dividing the plate by con- 
centric circles into several rings and using for each ring formulas devrloped for a ring 
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plate of constant thickness. The procedure of calculation is then similar to that 
proposed by R. Grammel for calculating stresses in rotating disks.1 

68. Annular Plates with Linearly 
Varying Thickness. Let us consider a 
circular plate with a concentric hole and 
a thickness varying as shown in Fig. 151. 
The plate carries a uniformly distributed 
surface load p and a line load p = P/2rb 
uniformly distributed along the edge of 
the hole.2 Letting Do = Ehi/12(1 - P”) 
be the flcxursl rigidity of the plate at 
r = b, we have at any distance T from 
the center 

D=Eg (a) FIG. 151 

Substitut)ing this in Eq. (e) of Art. 67 and taking into account the additional shear 
force P/2m due to the edge load, WC arrive at the differential equation 

The solution of the homogeneous equation corresponding to Eq. (b) is readily 
obtained by setting q = P. Combining this solution with a particular solution of 
Eq. (b), >vve get 

Q = Ar”l + Bra? + - qb3 qbs Pb3 f~- 
2D”(l - 3~) - 6(1 - v)D,g-* 6741 - r)Dd 

in which 

a1 = -1.5 + xkY% - 3v ay? = -1.5 - 43.25 - 3v 

In the spucial case Y = 3, c~sp~.(&on (c) has to be replaced by 

The arbitrary constants A and I3 must be determined from the rcspectivr conditions 
on the boundary of the plate. Writing, for brevity, ‘~6 for (pp)r=b, and Mh for (X,), -),, 
and introducing likewise pa, fiTa, the last column of Table 69 contains the boundar3 
conditions and the special values of Q and P assumed in six different cases. The same 
table gives the values of coefficients k and k, calculated by means of the solution (e) and 
defined by the following expressions for the numerically le.rgest st,ress and the largest 
deflection of the plate: 

1 R. Grammel, Dinglers Z’olytech. J., vol. 338, p. 217, 1923. The analogy between 
the problem of a rotating disk and the problem of lateral bending of a circular plate oi 
variable thickness Leas indicated by L. Fcppl, 2. anyew. Muth. Mech., vol. 2, p. 92, 
1922. Nonsymmetrical bending of circular plates of nonuniform thickness is dis- 
cussed by R. Grnn Oldson, Ingr.-Arch., vol. 10, p. 14, 1939. 

* This case has been discussed by H. D. Conway, J. Appl. fifechanics, vol. 15, p. 1, 
1948. Numerical results given in Table 69 are taken from that paper. 
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TABLE 69. VALUES OF COEFFICIENTS IN EQS. (j) FOR VARIOUS VALUES OF THE 
RATIO a/b (Fig. 151) 

Y =Q 

Case 
(number 

corresponding 
to Table 3) 

i!+iY3 4 

3 

! 

- 

4 

- 

5 

_- 

6 

- 

8 

- 

-- 

-, 

-I- 

I 

Zoeffi- / 
cient ~-P-P- 

kl 0.00372’0 0453 0.401 
1 

1 

k 0.149 ‘0.991 ‘2.23 

3 4 

13.64 :26.0 

2.12 / 4.25 

I 
-: 

5.5/ I-- - I 7.7F 

- 

~- 

k 

k, il; 

Bound- 

ary 
condi- 
tions 

10.6 

6.28 

P = Q* 
Pb = 0 

M, = 0 

I- 

9.16 

3.57 

-- 

30.0 

P=O 

Pb = 0 

M, = 0 

P = Q* 
Pb = 0 

2.16 (op.=0 

! 

k 0.159 ‘0.396 1.091 ( 3.31 / 6.55 ~ 10.78 
; ,- 

I “0 

kl ~0.001740.01120.060(j~ 0.261, 0.5% 0.876 PO = 0 
! 

0.0009210.008 10.0195’ 0.1% 0.346, o/a2 i 

i l I ) 
+ \Vhere Q = rq(a2 - b2). 
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Numerical results valid for similar plates with constant thickness have been given 
in Table 3. 

69. Circular Plates with Linearly Varying Thickness. In discussing the bending 
of the circular plate shown in Fig. 152,’ we have to consider tTvo portions of the plate 
separately. 

1. The annular area b < T < a. provided Y # 4, the slope p = dw/dr again is 
given by the expression (c) of Art. 68 without, however, its nest to la,st term. 

2. The inner area T < 6. Here we 
hart dD/dr = 0, and Eq. (e) of Art. 67 is 
rctlnced to 

K 
h 

A 
r2!??+r!f-pi= Pr -;;; - ~-- 

/I BTD0 
------a ----- (a) 

(0) 
where the subscript i refers to the inner 
portion of the plate. The general solu- 
tion of Eq. (n) is 

-T 
h 

A 
pz = AiT +s _- ar” 

r 1GDn 

FIG. 152 
- 8s (2 log r + 1) (b) 

I) 

The constants A, B in Eq. (c) of Art. 68, and Ai, Hi in Eq. (6) above can be obtjaincd 
from the boundary condition 

(!P)m = 0 
and the conditions of continuity 

Tables 70 and 71 give the d&x&ion w,,,, and values of bending moments of the plate 
in two cases of loading. To calculate the bending moment at the center in the case 
of a central load P, we may assume a uniform distribution of that load over a small 
circlrlar area of a, radius c. The moment Jr, = Mt at T = 0 then can be expressed 
in the form 

(cl 

In this formula ill, is given by Eq. (83j, which holds for a supported plate of constant 
thickness; the second term represents the efiect of the edge moment; and the third 
term, due to the nonuniformity of the thickness of the plate, is given by Table 71. 

1 Clamped and simply supported plates of such n shape were discussed by H. Favre, 
Bull. Il’ech. S&se ronzande, vol. 75, 1949. Numerical results given below are due 
substantially to II. Favre and E. Chabloz, B&I. Tech. S~tisse romande, vol. 78, 1952. 
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TABLE 70. DEFLECTIONS AND BENDING MOMENTS OF CLAMPED CIRCULAR 
PLA~PES LOADED UNIFORMLY (Fig. 152a) 

Y = 0.25 

AI, = &a2 I Al, = Pjqa2 
b qa4 

WlllSX - 
a r=b r=a r=O r=b r=a 

I a Ia-/-!- 
0.2 
0.4 
0.6 
0.8 
1.0 

- 

- 

b - 
a 

-- 

0.2 
0.4 
0.6 
0.8 
1.0 
- 

0.008 

0.042 
0.094 
0.148 
0.176 I 

0.0122 0.0040 
0.0332 0.0007 
0.0543 -0.0188 
0.0709 -0.0591 
0.0781 -0.125 

i 

P 81 
1 

-0.161 0.0122 
-0.I5ti I 

~ 
0.0332 

-0.149 0.0543 
-0.140 0.0709 
-0.125 0.0781 

PI PI __~- 

0.0078 -0.040 
0.0157 -0 039 
0.0149 -0.037 
0.0009 -0.035 

-0.031 / -0.031 

TABLE 71. DEFLECTIONS ANU BENDING MOMENTS OF CLAMPEU CIRCULAR 
PLATES UNDER A CENTRAI, LOAD (Fig. 152b) 

Y = 0.25 
- 
1 

i i 

- 

- 

Pa’ 
Khlsx = a 2 

01 

0.031 
0.093 
0.155 
0.203 
0.224 

/ 1 
i 3 

-- 

- 

Al, = AI, r=O 
r: 

-0.114 
-0.051 
-0.021 
-0.005 

0 

- 
I 

- 

Al, = pP Aft = p,P 

r=b 

B 

-0.034 
-0.040 
-0.050 
-0.063 
-0.080 

-0.129 
-0.112 
-0.096 
-0.084 
-0.080 

r=b r=a 

PI 

-0.028 
-0.03-l 
-0.044 
-0.057 
-0.0’20 

-0.032 
-0.028 
-0.024 
-0.021 
-0.020 

* In Eq. (c). 

In the case of a highly concentrated load requiring the WC of t,he thick-plate t,heory, 
the stress at the center of the bottom surface of the plate is given by the expression 

in which ~0 may be calculated by means of expression (97). 
Assuming next a variation of the flexural rigidity of the plate in accordance with 

the law 

(P : 

where a~ denotes a length at least equal to the radius of the plate, we arrive in 
general at a slope ‘p expressible in terms of the hypergeometric functi0n.i The par- 
ticular assumption m = l/y leads, however, to a solution in a closed form. Taking, 
in addition, Y = .!J we arrive again at a plate with linearly variable thickness.? 

1 R. &an Olsson, Zngr.-Arch., vol. 8, p. 270, 1937. 
? See especially H. D. Conway, J. Appl. Jfechanics, vol. 18, p. 140, 1951, and vol. 20, 

p. 564, 1953. 
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Symmetrical deformation of plates such as shown in Fig. 153 also ean be investi- 

gated by means of a parameter method akin to that described in Art. 39. Some 
numerical results’ obtained in that way 
are given in Tables 72 and 73. 

For bending moments and tensile 
stresses under central load P (Fig. 353b) 
expressions 

analogous t,o Eqs. (c) and (d) may be 
used llla again is given by expression 
(83), LT,~ denotes the value calculated by 
means of expression (96), and y2 is given 
in Table 73. 

Of practical interest is also a combina- 
tion of loadings shown in Fig. 15%~ and 
b. Taking q = -P/m2, mc have the 
state of equilibrium of a circular footiug 
carrying a central load P and submitted 
at the same time to a uniformly distrih- 
uted soil reaction (Fig. 153~). Some 
data regarding this case, in particular 
the values of the factor ys, to be used in 
formulas (f) and (g), are given in Table 
74.2 

(b) 

~-------o-----J $-2 
(cl 

Fm. 153 

TABLE 72. DEFLECTIONS AND BENDING MOMENTS OF SIMI'LY SUPPORTED 
PLATES UNDER UNIFORM LOAD (Fig. 153~) 

Y = 0.25 

____ -------f __I_ 
2.33 2.04 1 0.304 0.105 j 0.304 / 0.167 ~ 0.029 

1 Due, as x-e11 as the method imelf, to H. Favre and E. Chnbloz, 2. angew. Math. u. 
Phys., vol. 1, p. 317, 1950, and Bull. Tech. Suisse mmande, vol. 78, 1952. 

* For further results coucerning circular plates with varying thickness see W. Gittle- 
man, ;1 ixrufl Eng., vol. 22, p. 221, 1950, and .J. Paschoud, Schweiz. Arch., vol. 17, p, 
:305, 1951. A graphical method of &sign has been given by P. F. Chrn~~n and P. XI. 
Saghdi, J. Appl. Mrchrrnirs. vol. 19, p. 561, 195’2. 
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TABLE 73. DEFIAXTIONS AND BENDING MOMENTS OF SIMPLY SUPPORTED 
CIRCULAR PLATES UNDER CENTRAL LOAD (Fig. 153b) 

1.00 
1.50 
2 .33 

--__ 

TABLE i-l. 13~h1)1x(: I\IO\IENT~ 0F A CIRC~UI~AR FOOTING PLATE WITH CESTRAI, 
LOAL) *so UNNR~~LY DISTRIBUTED SOIL PRESS~JRE (Fig. 15%) 

Y = 0.25 

ho 
hl 

1.00 
1.50 

33 . 

Al, = Al, 

r=o 

YZ 

-0.OG5 
- 0 053 

0 03s I < 

M, = pP 

i- = a/2 

4 

0.021 
0.0:12 
0 010 

AI, = (3,P 

r=a/21 r=a 

01 1 81 

0.073 0.030 
0.008 i 0.016 
0 .OG3 1 0.007 

70. Nonlinear Problems in Bending of Circular Plates. From the 
theory of bending of bars it is known that, if the conditions at the sup- 

ports of a bar or the loading condi- 
tions are changing with the deflection 

Yd of the bar, this deflection will no 
longer be proportional to the load, 
and the principle of superposition 
cannot be applied.’ Similar prob- 
lems are also encountered in the case 

MCJ 
I 

(b) 
Mel of bending of plates.2 A simple ex- 

FIG. 154 
ample of this kind is shown in Fig. 
154. A circular plate of radius a is 

pressed by a uniform load q against an absolutely rigid horizontal founda- 
tion. If moments of an intensity M, are applied along the cdgc of the plate, 
a ring-shaped portion of the plate may be bent as shown in the figure, 

1 An example of such problems is discussed in S. Timoshcnko, “Strength of Mate- 
rials,” part II, 3d ed., p. 69, 1956. 

2 See 1-L Girkmann, Stahlbau, vol. 18, 1931. Several examples of such problems are 
discussed also in a paper by It. Ilofmann, Z. a~zgezu. .Wath. Mech., vol. 18, p. 226, 1938. 
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whereas a middle portion of radius b may remain flat. Such conditions 
prevail, for example, in the bending of the bottom plate of a circular 
cylindrical container filled with liquid. The moments M, represent in 
this case the action of the cylindrical wall of the container, whichunder- 
goes a local bending at the bottom. Applying to the ring-shaped portion 
of the bottom plate the known solution for a uniformly loaded circular 
plat#e [see expressions (m) in Art. 621, we obtain the deflection 

w = Cl + cz log r + C,r” -t C4r2 log I‘ + 6,;; (a) 

For determining the constants of integration C1, . . , C4 we have the 
following boundary conditions at the outer edge: 

(w),,, = 0 (I%!,),=, = --Ma (b) 

Along the circle of radius 0 t.hc deflection and the slope are zero. The 
bending moment M, also must be zero along this circle, since the inner 
portion of the plate remains flat. Hence the conditions at the circle of 
radius h are 

(WL2, = 0 dW 
( > 2F 7=b = O (ilfr)T=b = 0 

By applying conditions (b) and (c) to expression (a) we obtain the five 
following equations : 

Cl + C2 log a + Csa2 + C4az log a = - ZJZ 

+ C4(3 + 2 log a + 2v log a -I- V) = - fc$ (3 + v) + $f (d) 

cz + + c&qv + 1) 

+ Cd3 + 2 log b + 2v log b + v) = - &; (3 + v) 

cz; + C,26 + C&(2 log b + 1) = - &; 

By eliminating the constants Cl, . . . , C4 from these equations we obtain 
an equation connecting M, and the ratio h/a, from which the radius b of 
the flat portion of the plate can be calculated for each given value of M,. 
With this value of b the constants of integration can be evaluated, and 
the expression for the deflection of the plate can be obtained from Eq. (a). 
Representing the moment M, and the angle of rotation pa of the edge of 
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the plate by the equations 

M =,Q”” a and pa3 
32 (Pa = P 520 

and repeating the above-mentioned calculations for several values of the 
monlent M,, we can represent the relation between t’he constant factors 
CY and 0 graphically, as shown in Fig. 155, for the part.iculnr case’ v = 0. 

It is seen from this figure that p does not 
1.4 vary in proportion to cx and that the resist’- 

1.2 ante to rotation of the edge of the plate 
decreases as the ratio b/a decreases. This 

I.0 condition holds up to the value CY = 5, at 

0.8 which value /3 = 1, b/a = 0, and the plate 
P touches the foundation only at the center, 

0.6 as shown in Fig. 1540. For larger values 

0.4 of (Y, that is, for moments larger than 
AI, = 5qa2/32, the plate does not touch 

0.2 the foundation, and the relation between 
0 u: and p is represented by the straight line 

0123456 
a AB. The value M, = 5qa2/32 is that 

Fro. 155 value at which the deflection at the center 
of the plate produced by the moments M, 

is numerically equal to the deflection of a uniformly loaded plate simply 
supported along the edge [see Eq. (68)]. 

Another example of the same kind is shown in Fig. 156. A uniformly 
loaded circular plate is simply supported along the edge and rests at the 
center upon an absolutely rigid foundation. Again the ring-shaped por- 
t,ion of the plate with outer radius a and inner radius b call be treated as 

m--a------ 

FIG. 156 FIG. 157 

a uniformly loaded plate, and solution (a) can be used. The ratio b/a 
depends on the deflection 6 and the inteusity of the load q. 

71. Elliptical Plates. Uniformly Loadcd Elliptical Plate with a Clamped 
Edge. Taking the coordinates as shown in Fig. 157, the equut,ion of the 
boundary of the plate is 

$+$+o (a) 

1 This czwz is discussed in the paper by Hofmann, op. cit. 
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The differential equation 

(6) 

and the boundary conditions for the clamped edge, i.e., 

w=o 
dW 

and -=0 
an 

are satisfied by taking for the deflection w the expression’ 

(4 

It is noted that this expression and its first derivatives with respect to 
z and y vanish at the boundary by virtue of Eq. (a). Substituting expres- 
sion (d) in Eq. (O), we see that the equation is also satisfied provided 

(199) 

Thus, since expression (d) satisfies Eq. (b) and t’he boundary conditions, 
it represents the rigorous solution for a uniformly loaded elliptical plate 
n-it,h a clamped edge. Substit,uting 2 = y = 0 in expression (d), we find 
t,hat, wo, as given by IQ. (199), is t,he deflection of the plate at the center. 
If a = b, WC obt’ain for t’he deflection t’he value previously derived for a 
clamped circular plate [Eq. (li2), page 551. If a = M, the deflection w0 
becomes equal to the deflection of a uniformly loaded strip with clamped 
ends and having the span 2b. 

The bending and twisting moments are obtained by substituting expreu- 
sioll (d) in Eqs. (101) and ( 102). In this way we find 

(e) 

Is’or the center of the plate and for the ends of the horizontal axis we 
obtain, respectively, 

and (M,),,,,v=o = - y (f) 

‘This solution and the solution for a uniformly varying load q are obtained by 
(:. H. Bryan; see A. E:. tl. Love’s book, “Theory of Elasticity,” 4th ed., p. 484. The 
c:ue of an ellipt,icaI plate of variable thickness is discussed by R. Gran Olsson, Ingr.- 
A?-C/L., vol. 9, p. 108, 1938. 
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Similarly, for the moments M, at the cent.er and at the ends of the vertical 
axis we find, respectively, 

It is seen that the maximum bending stress is obt’ained at the ends of 
the shorter principal axis of the ellipse. Having the moments N,, N,, 
and X,,, the values of the bending moment M,& and the twisting moment 
J1,,1 at any point on the boundary are obtained from Eqs. (c) (Art. 22, 
page 87) by substituting in these equations 

The shearing forces QZ and Q, at any point are obtained by substi- 
tuting expression (d) in Eqs. (106) and (107). At the boundary the 
shearing force Qn is obtained from Eq. (d) (Art. 22, page 87), and the 
reaction I’, from Eq. (y) of the same article. In this manner we find 
that the int,e!wity of t,he reaction is a maximum at the ends of the minor 
axis of the ellipse and that its absolute value is 

(4 

The smallest absolute value of T’, is at the ends of the major axis of the 
ellipse where 

(rr,,,,,,,,, = 
ab”(a” + :W)y 

:3a4 + 8b” + 2a2b2 (.i) 

For a circle, a = b, and we find (V,),,, = (V,),,,, = r/a/2. 

Elliptical Plute with a Clamped ICtlge and nent by/ a Linearly Varlying Pressure. 
Assuming that q = ~OZ, WC find that, Eq. (b) and the boundary conditions (c) are 
satisfied by taking 

(200) 

From this expression the bending moment)s and the rcxctione at the boundary can be 
calculated as in the previous case. 

~‘~~ijnrmly Loaded Elliptical I’lnte with Simply Sicpporfed Edye. The solution for 
this case is more complicat,ed than in the case of clampc~d ctlges;l therefore we give here 
only some final numerical results. Assuming that a/b > 1, we represent the deflection 
and the bending moments at the center by the formulas 

1 See B. G. Galcrkin, 2. angew. Math. Me&., vol. 3, p. 113, 1923. 
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The values of the constant factors 01, 0, and /3, for various values of the ratio a/b and 
for P = 0.3 are given in Table 75. 

TATSLE 75. FACTORS 01, 8, /31 IN FORMULAS (k) FOR UNIPORXLY LOADED AND 
&XPLY SUPPORTED ELLIPTICAL PLATES 

Y = 0.3 

1.88 2.02 ‘2.10 2.28 
0.188 0.184 0.170 0.150 
0.433 0.465 0.480 0.500 

Comparison of these numerical values with those previously obtained for rectangular 
plates (Table 8, page 120) shows that, for equal values of the ratio of the sides of 
rectangular plates and the ratio a/b of the semiaxes of elliptical plates, the values of 
the deflections and the moments at t,hc center in the two 
kinds of plate do not differ appreciably. The case of a T- , 
plate having the form of half an ellipse bounded by the I 
transverse axis has also been discussed.’ 

. .._-. a. 

?I& O 7 

P 

x 

72. Triangular Plates. Equilntcral Triangular ~ a 
Plate Simply Supported at the Edges. The hend- 5 
ing of such 5 triangular plate by moments Af, i 

uniformly distributed along the boundary has Y 

already been discussed (SC<: page 94). It was FIG. 158 

shown t’hnt in such a cast t)he deflection surface of the plate is the same 
as that of a uniformly stretched and uniformly loaded membrane snd is 

represented by the equation 

4 
- &J2X - a(.9 + ?J2) + z a3 

I 

in which a denotes the height, of the triangle, and the coordinate axes 

are taken as shown in Fig. 1%. 
In the case of a uniformly loaded plate the deflection surface is2 

10 -q&j F x3 - 3y2x - a(x2 + y2) + & aa 
I( 

4 
G a2 - x2 - y2 

> 
(201) 

’ B. G. Galerkin, 3/essen~~r Jfcrth., vol. 52, p. 99, 1923. For bending of clamped 
elliptical plates by concentrated forces see II. Hnppel, n//&h. Z., vol. 6, p. 203, 1920, 
and C. L. Perry, Proc. S!/rrlposia AppL Math., vol. 3, p. 131, 1950. See also 1-I. M. 
dcngupta, IIu/I. Culcutta Alath. Sot., vol. 41, p. 163, 1949, and vol. 43, p. 123, 1950; 
this latter paper also contains a correction to the former one. By means of curvi- 
linear coordinates, solutions for plates clamped along some other contour lines and 
submitted to a uniform load have been obtained by B. Sen, Phil. Mug., vol. 33, p. 294, 
1942. 

2 The problem of bending of a plate having the form of an equilateral triangle was 
solved by S. Woinolvsky-Krieger, Zngr.-Arch., vol. 4, p. 254, 1933. 
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By differentiation we find 

.T’ - &J2X - U(X2 + y”) + & a3 1 
It may be seen from (201) and (6) that the deflection and t,he bending 
moment at the boundary vanish, since the expression in t,he brackets is 
zero at the boundary. Furt’her differentiation gives 

Cc) 

Hence the diffcrcntial equation of the dcflcction surface is also satisfied, 
and expression (201) represents the solution of the problem. Having the 
expression for deflections, the expressions for the bending moments and 
the shearing forces can be readily obtained. The maximum bending 
moment occurs on the lines bisecting the angles of the t!ri:tngle. Con- 
sidering the points along the JZ axis and taking v = 0.3, we find 

FIG. 159 

(M,),,,,, = 0.0248qd at 5 = -0.062a 
(XJmax = 0.0259@ at x = 0.129u (202) 

At the cent,er of the plate 

M, = M, = (1 + v) g 

The case of a concentrated force acting on t’he 
plate can be solved by using t’he tnncthod oj images (set 

page 156). I,et us t’ake u case in which the point of 
application of the load is at the center i! of the plate 
(Fig. 159). Considering the plate, shown in the figure 
by the heavy lines, as a portion of an infinit,ely long 
rectangular plate of width a, we apply the fictitious 
loads P with alternat’ing signs as shown in the figure. 
The nodal lines of the deflection surface, produced by 
such loading, evidently divide the infinitely long plate 

into equilateral trinugles each of which is in exactly the same condition 
as the given plate. Thus our problem is reduced to that of bending of 
an infinitely long rectangular plate loaded by the two rows of equidistant 
loads +P and -P. Knowing the solution for one concentrated force 
(see Art. 36) and using the method of superposition, the deflection at 
point A and the stresses near that point can be readily calculated, since 
the effect of the fictitious forces on bending decreases rapidly as t’heir dis- 
tance from point A increases. In this manner we find the deflect ion at A : 

wo = o.oo576Pg (20-2) 
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The bending moments at a small distance c from A are given by t’he 
expressions 

Since for a simply supported and centrally loaded circular plate of radius 
a0 the ra,dial and t,hc tangential moments at a distance c from the center 
are, rcspcctively (see page @3), 

it can be concluded that the first terms on the right-hand side of Eqs. 
(205) are ident,ical with the logarithmical terms for a circular plate with 
a radius 

Hence the local stresses near the point of application of the load can bc 
calculated by using the thick-plate theory developed for circular plat,es 
(see Xrt. 19). 

Equilateral ‘I’~&~gular Plates with Two or Three Edges Clamped. Triangular plates 
arc used sometimes as bottom slangs of 
bunkers and silos. In such a case each 
triangular plate is rigidly clamped along 
both its inclined edges and clamped 
elastically along its third, horizontal 
edge (Fig. 160). Only the uniform and 
the hydrostatic distribution of the load 
is of practical interest. The largest 
bending moment of the panel and the 
clamping moments at the middle of a 
built-in edge may be represented as 

b--- - - - - -  

M = flqa2 or M = B,qoa2 (f) 

according to the type of loading (Fig. 
160). The values of coefficients p and 

1 I I i \ 

I I 
i -4 q i-4 q, k- 

FIG. 160 

pl, obtained by the method of finite diEerences,’ are given in Table 76. 
It should bc noted, finally, that a plate in form of a triangle with angles r/Z, ~/3, 

and r/6 and having all edges simply supported can be considered as one-half of the 
equilateral plate (Fig. 158), this latter being loaded antisymmet,ricallp above the axis 

* SW A. Smotrov , “Solutions for Plates I,oaded According to the Law of Trapeze,” 
~Ioacow, 1936. 
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TABLE 76. VALUES 01" THE FACTORS p, p, IS EQS. (,f) FOR EQUILATERAL 
TRIA-\TGULAR J‘I,A~~ (Fig. 160) 

v = 0.20 

Edge y = 0 simply supported ’ Edge y = 0 clamped 

Load distribution -~ ~. .__ ~~ ~~ 

__ 

2. The problem of bending of such a plate can bc solved in several ways-for example, 
by the method of images.’ 

Plwtc ia thr I+‘orul o,/’ an Isoswles Right l’riangle with Sinlply Supported Edyes. Such 
a plate may be considered as one-half of a square 
plate, as indicated in Fig. 161 by dashed lincxs, 
and the methods previously developed for rectnn- 
gulnr plates can be applied.2 If a load P is 
applied ai a point A with coordinates 5, 7 (Fig. 
JOI), we assume a fictitious load -P applied at 
A’, which is the image of the point A with respect 
to the line BC. These two loads evidently pro- 
duct a deflection of the square plate such that the 
dia~;onal IiC becomes a nodal line. Thus the 
portion ODC of the square plate is in exactly the 

Fro. 161 same condition as a simply supported trinngnlar 
plate OBC. Considclring the load +I’ and using 

the Navier solution for a square plate (page 1 J l), wvc obtain the deflection 

m=l fl=i 

In the same manner, considering the load -P and taking a - 7 instead of E and a - g 
instead of 0, WC obtain m cc 

1Pa2 

cc 
nm? ILT~ 

sin ~- sm ~-- 
rfLTX w2= --~ nrY 

?r4D (-1)3”+” (m1”,rL2)2a a a sin - sin - (h) 

m=i n=i 

The complete deflection of the triangular plate is obtained by summing up expressions 
(~1 and (h): 

w = ‘701 + to? (4 

r For the solution of this problem in double series, see It. Girtler, Sit&r. Akad. 
Wiss. Wien, vol. 145, p. 61, 1936. The bending of equilateral triangular plates with 
variable thickness has been discussed by H. Gottlicher, Ingr.-Arch., vol. 9, p. 12, 1938. 

2 This method of solution was given by A. Nz’tdai, “Elastische Plattcn,” p. 178, 
1925. Another way of handling the same problem was given by B. G. Galcrkin, R&l. 

trend. sci. Rt~ss., p. 223, 1919, and Bull. Poi!ytccir. Inst., vol. 28, p. 1, St. Petershurg, 
1919. 
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To obtain the deflection of the triangular plate produced by a uniformly distributed 
load of intensity y, we substitute q d.$ dq for P and integrate expression (i) over the 
:xea of the triangle OBC. In this manner \ve obtain 

This is a rapidi]. converging series and can be used to calculate the deflection and the 
bending momcots at any point of the plate. Taking the axis of symmetry of the 
triangle in Fig. lfil as lhc J: I axis :I nd rcprescnting the deflections and the moments 
M,, and ill,, along this axis by the formulas 

the values of the numerical factors 01, p, and fiL are as given in E’igs. 16% and 163. By 
comparing these results with those given in Table 8 for a uniformly loaded square 

Frc;. 102 
YI 

-0.0134 

h 
-0.0100 

fi- 

-- 
XI 
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plate, it can be concluded that for the same value of a the maximum bending moment 
for a triangular plate is somewhat less than half the maximum bending moment for a 
square plate. 

To simplify the calculation of the dcflcctions and moments, the double scrics (j) can 
be transformed into simple series.1 For this purpose we use the known series 

m cash WL 7r -X U,(x) = cos nx 

c ~~- __ = 
(n’ + ?n2)2 

- A$ + & ~~~~~~ ( ) p 
7r,,i 

n = 2,4.H. sinh -, 

(1) 

which can be represented in the following form 

Considering now the sericss 
m 

J’,,,(x) = 
c 

cos t1.r 

(n” + ?n2)2(n* - 7712) 
7L = 2.4,ti. 

we obtain 

and 

m 

d2V,, d22 + m2V’, = - 
c 

C”S nx = -u 
()LZ + n1”)z 

71, 

(,,I) 

OL) 

(0) 

(P) 
72 = %.4,fi, . 

By integrating Eq. (p) we find 

and 
dV,n ..r 

dx 
- - nul,,, sin mz + rr8,, cos l,lr - 

/ 
U,,,(E) cos m(t - x) & (I.) 

0 

The constants A ,,, and B,, can be determined from the conditions 

which follow from series (0) and (IL). \\‘ith these ~:tlues of the constants cxprcssion 
(r) gives the sum of series (o), which rcduccs the double series in expression (j) to a 

simple series. 
73. Skewed Plates. l’latcs bounded by an oblique parallelogram have been used 

recently as floor slabs of skew bridges. Such slabs usually are simply supported along 

1 This transformation was communicated to S. Timoshenko hy ,J. I’. Uspcnsky. 
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the abutments, whereas both other sides remain free or are supported elastically by 
“curbs” or beams. 

In the most general case the use of an oblique system of coordinates chosen in 
accordance with the given angle of skew 
should be recommended; in certain particular 
cases rectangular coordinates may also be used 
to advantage in dealing with skew plates, and 
the method of finite differences appears, in 
general, to be the most promising. The fol- 
lowing numerical data for uniformly loaded 
skewed plates were obtained in that way.’ At 
the center of a skew plate with all edges simply 
supported (Fig. lO?u), let 

The bending moment AF,,, acts very nearly 
in tho direcstion of the short span of the plate. 

If the edges 1/ = 0 and ?Z = a arc free and 
the other two edges are simply supported 
(Fig. l&lh), the central portion of the plate 

carries the load in the direction normal to the 
abutments. Letting wg and (fiZ,),,,, be, 
respectively, the deflection and bending Y 

ib) 
moment at the center of the plate, and (zL’,),~,~,~ 
and (N,),,,;,, the corresponding quantities at Fro. 164 

the free edge, we may express these quantities in the form 

The numerical values of the coefficients are given in Table 77. 

74. Stress Distribution around Holes. In order to investigate the 
stress distribution around a hole, it is simplest to consider a very large 
plate; results obtained in this way prove to be applicable without appreci- 
able inaccuracy to plates of any shape, provided the width of the hole 
remains small as compared with the over-all dimensions of the plate. 

1 The most data are due to V. I’. Jensen, Univ. Illinois Bull. 332, 1941, and V. P. 
Jensen and J. ‘CV. &4llen, Univ. Illinois Bull. 369, 1947. See also C. P. Siess, Proc. 
.lS(‘E, vol. 74, p. 323, 1948. Analytical methods have been applied by II. Favre, 
Schw~iz. Bauztg., vol. 80, p. 35, 1942; P. Lardy, Schweiz. Bauztg., vol. 67, p. 207, 1949; 
and also by J. Krettner, Zngr.-8rch., vol. 22, p. 47, 1954, where further bibliography 
is given. For use of energy methods see also A. M. Guzman and C. J. Luisoni, 
Pubis. Univ. Nacl. Buenos dires, p. 45’2, 1953. Pure bending of skewed plates has 
been discussed by E. Reissner, &(~urt. Apyl. Math., vol. 10, p. 395, 1953. Models of 
skewed plates were tested by L. Schmerber, G. Brandes, and H. Schambeck, Bauinge- 
nieur, vol. 33, p. 174, 1958. For use of finite differences see also Art. 83. 
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TABLE 77. VALUES OF COEFFICIENTS IN EQS. (a) AND (h) FOR DEFLECTIONS 
AND RENDING MOMENTS OB USI~ORXI.Y LOADED SKE\~EII PLATES 

Y = 0.2 

To take an example, let us consider an infinit,ely large plate in a uni- 
form state of stress defined by the bending moments 

MI = n, iv; = 0 (a) 

which correspond to a deflection surface 

, _ ll’lo(.lT” - vy2) 
w -2jj(11v2) ~ = - $:“’ v”) [l - v + (1 + v) cos 201 (b) 

To obtain the dist,urbance produced in such a state of pure bending 
by a circular hole with a radius a, (Fig. 
l(i5), me qssume the material to be re- 
moved inside the periphery of the circle. 
Then we have to replace the action of 
the initial stresses along the periphery of 
the hole by the action of the external 
couples and forces : 

Al” 
(M:),.;, = -~~~ (1 + cos 28) 

2 
MO (cl 

(r-:),.=, = -a COY 28 

which are readily obtained by differentiation of expression (b) in accord- 
ance with Eqs. (192). 

On the init’ial state of stress we superimpose now an additional state 
of stress such that (1) the combined couples and forces vanish at r = a 
and (2) the superimposed stresses taken alone vanish at infinity (T = a). 

We can fulfill both conditions by choosing the additional deflection in 
the form 

W ‘I= -~~~~(.Ilog~+(B+c~)cos28] (4 
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This expression also satisfies the homogeneous differential equation (194) 
and yields the following stress resultants on the periphery of the hole: 

(,!lf;‘)l-=a = - ‘4 {(I - v)A + [4vB - 6(1 - v)C] cos 28) 

(I’;‘),=, = ‘2 [(G - 2v)A + 6(1 - v)C] 
(e) 

cos 28 

Since expressions (c) and (e) for M, contain a constant term as well as 
a term proportional to cos 20, while both expressions for V, contain only 
one term, three equations are needed to satisfy the required conditions 
ML + ilfr = 0 and I’: + V:’ = 0 on the periphery of the hole. Rcsolv- 
ing these equations with respect to the unknown coefficients A, B, and C, 
we obtain the final deflections w = w’ + w” and the following stress 
result,ants along the periphery of the plate: 

Al, 2(1 + ‘) = A/” i 1 - 
3 + 

cos 28 
y 

1 

&t = (34fzja sin 28 

For 0 = r/2 and e = a/4, respectively, we obtain 

(Art)“,,, = g; ill0 
(9) 

It is usual to represent) the largest value of a stress component due to a 
local disturbance in the form 

urnax = L-u I- (h) 
where u denotes the average value of the respective component in the 
same section and k is the so-called factor of stress concentration. Having 
in mind the largest bending stress along the periphery of the hole, 
we can also write k = (Mt)m,,/M~, MO being the initial value of the stress 
couples at 0 = r/2, where this largest stress occurs. Thus in the event 
of pure bending we have 

k=5+3v 
3-l-V 

equal to about 1.80 for steel (v = +). 
Factors of stress concentration could be obtained in a similar manner 

for various modes of a uniform state of stress and also for holes of other 
than circular shape.l All such results, however, prove to be of relatively 
litt,le value for the following reason. 

1 See J. N. Goodier, Phil. Mug., vol. 22, p. 60, 1936, and G. N. Savin, “Stress Con- 
centration around Holes,” MOSCOW, 1951. 
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While the bending stresses (to take only the previously discussed 
case) do not exceed the value of uInar = 6M&/h2, the largest value of the 
corresponding shearing stresses is given by 

3 a%,, = 
GM,, umax 

rmax = - 2h (3 + v)ah = (3 + v)k: (ii) 

Thus, by decreasing the ratio a/h we can increase the ratio ~~~~~~~~~ at 
will. In this way we soon arrive at transverse shearing stresses of such 
a magnitude that their effect on the plate deformation ceases to be negli- 
gible in comparison with the effect of the couples. Consequently, to 

k 

, -kt 

0 1 n 2 3 
Y 
h 

FIG. 166 

assure reliable results regarding the stress distribution around holes, we 
have to resort to special theories which take the shear deformation into 
account. 

Stress-concentration factors obtained’ by means of E. Reissner’s theor\ 
(see Art. 39) are plotted in Fig. 166 versus the value of a/h. The curve 
kb holds in the case of pure bending considered above; the curve kt gives 
the stress concentration in the event of a uniform twist, produced by 
couples M, = MO, M, = --MO in the initial state of stress. The values 

1 E. Reissner, J. Appl. Mechanics, vol. 12, p. A-75, 1945. The case is discussed most 
rigorously by J. B. Alblas, “Theorie van de driedimensionale Spanningstoestand in 
een doorborde plaat,” Amsterdam, 1957. For bending of a square plate with a circular 
hole, see M. El-Hashimy, “Ausgewlhltc Plattenprobleme,” Ziirich, 1956, where 
customary theory is applied. 
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ka = 1.80 and kt = 1.60 given for these cases by the customary theory 
appear, if plotted, as straight lines which approach both respective curves 
asymptotically as the ratio a/h increases indefinitely. It is seen from 
the graph that even for holes three times as wide as the plate is thick 
the error resulting from the application of the usual theory exceeds 10 
per cent of t,he true value of ICb. It is also noteworthy that for vanishing 
hole diameter the limit value JGb = 3 of the stress-concentration factor in 
pure bending becomes equal to the value of the same factor in plane 
stress when uniform tension in one direction is assumed. 

If the hole (Fig 165) is filled up with an elastic material other than that of the plate, 
me llave to deal with an “elastic inclusion.” The unfilled hole and the rigid inclusion 

Fro. 167 

can be regarded as the limiting cases of the elastic inclusion, Young’s modulus of the 
filling being zero in the former and infinitely large in the latter case. In the following, 
the effect of a rigid inclusion is briefly considered. 

Just as in the case of a hole, we have to combine an initial state of stress with a 
supplementary one; however, the conditions now to br fulfilled on the periphery of thcl 
circle r = a are (in the symmetrical case) 

(w),=, = 0 

0 

g = 0 
r -a 

(k) 

where w is the combined deflection of the plate. From the expressions (192) for the 
stress resultants, we readily conclude that on the periphery of the inclusion the relation 
lilt = uX, must hold, whereas the moments M,, become zero. 

In the particular case of pure bending, assumed on page 43, WC obtain a distribu- 
tion of radial moments around the rigid inclusion given byI 

1 M. Goland, J. Appl. Mechanics, vol. 10, p. A-69, 1943; Fig. 167 is taken from this 
paper. See also Yi-Yuan Yu, Proc. Second U.S. Natl. Conqr. Appl. Mech., Ann 
Arbor, Rlich., 1954, p. 381. 
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The respective stress concentration factor is equal to k = (3 + Y)/(I - v”), that is, to 
3.63 for steel. The effect of the transvcrsc shear dcformntion, however, is not implied 
in this result, which consequently holds only for large values of a/h. 

It is seen that in the vicinity of a rigid inclusion the radial couples M, far exceed 
the tangential couples ML; this is in strong contrast to the stress state around a hole, 
where the couples Mt dominate the couples M,. Both moments are balanced best 
in their magnitude in the case of an elastic inclusion, as shown in Fig. 167. Here El 
denotes Young’s modulus of the p!nte and E, that of the filling. 

An inclusion with elastic filling may he replaced, without sllbstnntially changing its 
effect on the plate, by an annular elastic inclusion. Reinforcing a hole with a ring of 
properly chosen stiffness can therefore considerably redlIce the stress concentration 
in the material of the plate around the hole.’ 

1 For stress analysis and numcricnl data regarding this cast see Havin, op. cit. 



CHAPTER 10 

SPECIAL AND APPROXIMATE METHODS IN THEORY 

01F PLATES 

75. Singularities in Bending of Plates. The state of stress in a plate 
is said to have a singularity at a point1 (zO,vO) if any of the stress com- 
ponents at thnt point !~~onics infinitely large. From expressions (lOl), 
(lOa), and (108) for rnomrnt~s and shearing forces we set that a singu- 
larity dots rwt occur as long as the deflection w(:r,~) and its derivatives 
up to the order four are continuous functions of x and y. 

Singularities uslrnlly occur at, points of application of concentrated 
forces and couples. In certain cases a singularity due to renct,ive forces 
can occur at a corner of a, plate, irrespective of the distribution of the 
surface loading. 

In the follovkg discussion, let us take the origin of the coordinates 
at the point of the plate where the singularity occurs. The expressions 
for the deflect.ion given below yield (after appropriate differemintions) 
stresses which are large in comparison with the stresses resulting from 
loading applied elsewhere or from edge forces, provided x and y are small. 

Single Force at an Interior Point uj a Plate. If the distance of the 
point under consideration from the boundary and from other conccn- 
trated loads is suffkiently large, WC have approximately a state of axial 
symmetry around the single load I’. Consequently, the radial shearing 
force at distance r from t’he load I’ is 

Observing the expression (1%) f or (Jr we can readily verify that the 
respective deflection is given by 

(206) 

in which a is an arbitrary lcngt>h. The corresponding term r2 log a yields 
negligible stresses when the ratio r/a remains small. 

Single Couple at an Interior Point of a Plate. Let us apply a single 

1 More exactly, at a poir1t (.c”,?/“,%). 
326 
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force -Ml/Ax at the nrigin and a single force +NI/Az at the point 

( - Az,O), assuming that -II, is a known couple. From the previous result 

[Q. (206)] the deflection due to the combined action of both forces is 

hs AZ approaches zero, we obtain the case of a couple MI concentrated 

at the origin (Fig. 168a) and the deflection is 

where w0 is the deflection given by expression (206). Performing the 
different,iation we obtain 

MIX 
w1 = 8rrD 

( 
log x2p + 1 

) 

If we omit the second term M1z/8rD, which gives no stresses, and use 
polar coordinates, this expression becomes 

In the case of the couple Mz shown in Fig. 1685 we have only to replace 

0 by B + T/L? in the previous formula to obtain the corresponding 

deflection. 

FIG. 168 
(b) 

Double Couple at an Interior Point of a Plate. Next we consider the 

combined action of two equal and opposite couples acting in two parallel 
planes Az apart, as shown in Fig. 169. l’utting MI Ax = H, and fixing 

the value of HI we proceed in essentially the same manner as before and 

arrive at the deflection 

HI awl II, Pwo 
,j& = - __ = - ~ 

Ml dz p a22 (c) 
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due to a singularity of a higher order than that corresponding to a couple.’ 
SubstituGon of expression (20G), where rectangular coordinates may be 
used temporarily, yields the deflection 

w2 = ;$ 
3r ( 

2 log a + 2 + cos 20 
> 

Expressions containing a singularity are also obtainable in the case of a 
couple acting at the corner of a wedge-shaped plate with both edges free, 
as well as in the case of a semi-infinite plate sub- 
mit,tcd to tht: action of a transverse force or a 
couple at some point along the free edgc2 

Single Load Acting in the Vicinity of a l3uilt-in 

FIG. 169 FIG. 170 

&lge (Fig. 170). The deflection of a semi-infinite cantilever plate carry- 
ing a single load P at some point (.$,v) is given by the expression 

where r; = (~1: - 0” + (y - 7)“. WC confine ourselves to the consider- 
atiou of the clamping moment at the origin. Due differentiation of 
expression (d) yields 

M, = - f co9 p (209) 

at x = y = 0, provided t and p do not, vanish simultaneously. It is seen 
that in general the clamping moment M, depends only on the ratio V/E. 

1 To make the nature of such a loading clear, let us assume a simply supported 
beam of a span L and a rigidity EZ with a rectangular moment diagram AX by M, sym- 
metrical to the center of beam and due to two couples M applied at a distance AX from 
each other. Proceeding as before, i.e., making As + 0, however fixing the value of 
H = M Ax, we would arrive at a diagram of magnitude H concentrated at the middle 
of beam. Introducing a fictitious central load H/EZ and using Mohr’s method, we 
would also obtain a triangular deflection diagram of the beam with a maximum ordi- 
nate HL/4EI. A similar dcflcction diagram would result from a load applied at the 
renter of a perfectly flexible string. 

2 See A. TBdai, “ Mastischc Platten,” p. 203, Berlin, 1925. 
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If, however, { = 77 = 0 the moment M, vanishes, and thus the function 
M,(,$,q) proves to be discontinuous at the origin. 

Of similar character is the action of a single load near any edge rigidly 
or elastically clamped, no matter how the plate may be supported 
elsewhere. This leads also to the charucterist ic shape of influence sur- 
faces plotted for moments on the boundary of plates clamped or continu- 
ous along that boundary (see Figs. 171 and 173). 

For the shearing, or reactive, force acting at x = 1~ = 0 in Fig. 170 
we obtain in similar manner 

where r2 = f2 + TV. 

Qz = $ cos3 cp (210) 

76. The Use of Influence Surfaces in the Design of Plates. In Art,. 29 
we considered an influence function K(s,y,<,v) giving the deflection at 
some point (x,y) when a unit load is applied at a point (l,?) of a simply 
supported rectangular plate. Similar fun t’ c ions may be constructed for 
any other boundary conditions and for plates of any shape. We may 
also represent the influence surface K(.$,q) for the deflection at some fixed 
point (z,y) graphically by means of contour lines. By applying the 
principle of superposition to a group of n single loads P, acting at, points 
(&vi) we find the total deflection at (m,~) as 

In a similar manner, a load of intensity p(t,q) dist,ributed over an area d 
of the surface of the plate gives the deflection 

w= 
l P(C;,d~c?.Y,~!?l) 4 d?7 (b) 
A 

By Maxwell’s reciprocal law \ve also have the symIlletry relation 

~Q:d,t,d = W,WGY) (cl 

i.e., the influence surface for the deflection at some point (z,:y) may be 
obtnined as the deflection surface w(t,q) due to a unit load acting at 
(;c,y). The surface ~([,a) is given therefore by the differential equation 
AAw(E,v) = 0, and the solution of this equation not only must fulfill the 
boundary conditions but also must contain a singularity of the kind 
represented in Eq. (206) at l = x, 11 = y. 

Of special practical interest are t,he influence surfaces for stress resultants1 given by 
a combination of partial derivatives of w(z,y) with respect to z and 1~. To take an 

1 Such surfaces have been used first by H. NI. W&crgaard, Public Rods, vol. 11, 

1930. See also F. M. Baron, b. Appl. Mechanics, vol. 8, p. A-3, 1911. 
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c~rmple, let us consider the influence surfaces for the quantity 

IPW a2 
-D- = -D - K(N,IJ,~,~) 

as2 ax2 
(4 

By result (c) of Art. 75 this latter expression yields the ordinates of a deflection surl”ace 
in coordinates E, 17 containing at $ = z, 7 = J/ :i singularity due to a “couple of second 
order“ H = 1 mhich acts at that point, in accordance with Fig. 169. 

The procedure of the conslruction and the USC of inHuerice surfaces may be illus- 
trated by the follo~r-ing examples.’ 

In&fence Surface for thr: Edge JTojtLent of a Clamped Circular Plale2 (Fig. 171). By 
ropresentiug the deflection (lOi), page 293, in the form w = PK(s,O,&e), we can con- 
sider K as the influence function for the deHcction at some point (x:,0), the momentary 
position of the unit load king (E,O). In calculating the edge couple M, at z = r/a = 1, 
r/ = 0 WC observe that all terms of the respective expressions (I%), except for the 
follo\ving one, vanish along the clamped edge z = 1. The only remaining term yields 

1 (1 - PI2 

=------~-- z-1 47r 42 - 2f cos e -I- 1 

For brevity let us put. c2 - 2[ cos 0 + 1 = v2 and, furt.hermorc, introduce the angle 
p (Fig. 171~~). Then WC have E2 = 1 - 217 cos ‘p + q2 and 

which, for negligible values of 7, coincides with the expression (‘09). Th(l influence 
surface for the nlomcnt M, is rcpresent,ed by the contour map in E’ig. 1716, wit,h the 
ordinates m\dtiplied by 4~. 

Injlrence Sltrjuce jar the Bending Moment M, al the Ceder of a Simplly Supported 
Square Pl~te.~ It is convenient to use the inilucncc surfaces for the quantities 
x,a = -D ah/&? and MY0 = -D d2w/dy2 Tvith the purpose of obtaining the final 
result by means of Eqs. (101). 

The infiuence surface for M,u may be constructed on the base of Fig. 76. ‘l’h~ 
influence of the single load P = 1 acting at point 0 is given by the first of the equations 
(151) and by Eq. (152). This latter expression also contains the required singularit) 

of the type gircn by Eq. (206), located at the point 0. The rffect of other loads ma> 
be calculated by means of the first of the equat,ions (l-kg), the series being rapidly 
conrergcnt. The influrnce surface is sholvn in Fig. 172 lvith ordinates multiplied 
by 8,. 

Let us calculate the bending moment M, for txvo single loads P1 and P:! 5 P, at a 
fixed distance of 0.25a from each other, each load h(Gng distributed uniformly over 

1 For details of the so-called sing[Llaritg ?n~!thotl SW A\. Pucher, Zngr.-Arch., vol. 12, 
p. 76, 1941. 

2 Pcveral influence ,surfaces for t,he clarnprd rirculwr plate are given by M. El- 
Hashimy, “Ansgewiildtc I’lattenprol)lcnlr~,” Ziirich, 1956. 

3 The most extensive set of infhlcnce surfaces for rcctnugular plates with various 
edge conditions is due to A1. Puchrr, “ I~~influssfrlder rlastischcr Platten,” 2d ed., 
Vienna, 1958. See also his paper in “ I“cderhofer-Girkmann-Festschrift,” p. 303, 
Vienna, 1’350. For influence surfaces of continuous plates, see G. Hocland, rngr.-Arch., 
vol. 21, p. 124, 1956. 
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\ \ \ nw--’ 1 \ 

(b) 

Multiplication factor & =0.0796 

Y 

FIG. 171 

an area 0.1~1. O.k. Out,side those areas the plate may carry a uniformly distributed 
live load of an intensity q < PJ0.01a2. 

The influence surface (Fig. 172) holds for M,o, an d t,he distributzion of the loading 
which yields the largest value of Mzo is given in this figure by full lines. Because of the 
singularity, the ordinates of the surface are infinitely large at the center of the plate; 
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therefo”re it is simplest to calculate the effect of the load Pi separately, by means of 
Eqs. (163) and (165), in connection with Tables 26 and 27.1 For this case we have 
Y = 0, v/u = k = 1, rp = 1.5708, $ = 0, X = 2.669, and p = 0, which yields N = 0 
and a value of M calculated hcrcafter. As for the effect of the load P?, it can be 
assumccl as proportional to the ordinate 2.30 of the surface at the center of the loaded 

k . - - - - -  -  --------------__ --_- ---_ ------o--------------  ________ -  _____ --___ 

~~~~~---l I  I  

9.2 

I  

‘\ 0.6 \ 
0.8 I\ \ 

-I 

I I I I I I I I 

Multiplication factor & = 0.0398 IY For uniform lood M, =0.0369 qaz 

FIG. I72 

arca. Introducing only the excesses of both single loads over the rcspectivc loads due 
to q, we have to sum up the following contributions to the value of M,c: 

1. Load P,: from Eqs. (163), (105), with t = a/2, d = 0.1 2/2 a, 

;\I P, - O.Ol@ 
iv:, = 7 = -~~~ i;-- 2 log 

( 

4 
____ + 2.669 - 
O.l* 4-j 

1.571 
> 

= 0.219(P, - O.Olqa”) 

1 The effect of the central load may also be calculated by means of influence lines 
similar to those used in the next example or by means of Table 20. 
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2. Load Pz: 

My0 = $2.3O(Pz - O.Ol@) = 0.033(P2 - O.Ol@) 

3. Uniform load q: from data on Fig. 172, 

Ill;; = O.OR69qa2 
Therefore A/,, = 0.219P, -f- 0.0921-‘2 + o.o3:18qa2 

Owing to the square shape of the plate and the symmetry of the boundary conditions 
we are in a position to use the same influence surface to evaluate M,o. The location 
of the load P, corresponding to the location previously assumed for the surface M,, 
is given by da&cd lines, and tlic contribution of the load P, now becomes equal to 
X&6 = O.O35(P, - 0.01pa2), while the contributions of P, and CJ remain the same as 
before. This yields 

dl,,” = 0.21V 1 + O.ORW? + o.o341qa* 

Now assuming, for cxamplc, Y = 0.2 WC have the final result 

nr, = Af,o + 0.2M,” = 0.253PI + o.on!u’, + o.o437qrr* 

InjZuence Surfme for lhe iilowent ilf, at the Ccnlcr oj Sopporl bctme~n Two Interior 
Square Panels of a Plate Continuous in the Direction 2 and Simpl!/ Supported at 7, = f b/2. 
This case is encountered in the design of bridgr slabs supported by many floor beanis 
and two main girders. Provided the deflection and the torsional rigidity of all sup- 
porting beams are negligible, we obtain the influence surface shown1 in Fig. 173. 

In the case of a highway bridge each wheel load is distributed uniformly over some 
rectanglilar area u by 2). For loads moving along the center line 2/ = 0 of the slab a 
set of five influence lines (valid for v/b = 0.05 to 0.40) are plotted in the figure and their 
largest ordinates arc given, which allows us to determine without difficulty the govern- 
ing position of the loading. Both the surface and the lines arc plotted with ordinates 
multiplied by 8~. 

EXAMPLE OF EVALUATION. Let us assume a = b = 24 ft 0 in.; furthermore, for the 
rear tire P, = 16,000 lb, u = 18 in., v = SO in., and for t,hc front tire PI = 4,000 lb, 
u = 18 in., 2) = 15 in. The influence of the pavement and the slab thickness on the 
distribution of the single loads may be included in the values u and v assumed above. 

For the rear tire we have v/b = 0.10 and for the front tire v/b = 0.05. Assuming 
the position of the rear tires to be given successively by the abscissas E = 0.20a, 0.25a, 
0.30a, 0.35a, and 0.40n, the rcspcctivc position of the front tires is also fixed by the 
wheel base of 14 ft = 0.58%~. The evaluation of the influence surface for each par- 
ticular location of the loading gives a succession of values of the moment plotted in 
Fig. 173 versus the respective values of t 1,~ a dashed line. The curve proves to travts 
a maximum at about t = 0.30~~. The procedure of evaluation may be shown for this 
latter position only. 

The infiuence lines mnrkcd 0.10 and 0.05, respectively, yield the contribution of both 
central loads (at :q = 0) cqllal to 

-(16,000 3.24 + 1,000 3.32) = -65,100 lb 

and the influence surface gives the contribution of the remaining six loads as 

-16,000(1.66 + 2.25 + 0.44) - 4,000(1.59 + 2.25 + 0.41) = -86,600 lb 

1 For methods of its construction see references given in Art. 52. 
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Finally, taking into account the prescribed multiplier of l/&r = 0.0398, we have 
the result 

(M,)miu = -0.0398(65,100 + 86,GOO) = -6,040 lb-ft per ft 

Maximum Shearing Force Due to a Load Uni.formly Distributed over the Areu of a 
Rectangle. A load of this type, placed side by side with the built-in cdgc of an infinite 
cantilever plate, is shown in Fig. 170 by dashed lines. This problem is cnoountcred 
also in the design of bridge slabs. By using the result (210) and the principle of 
superposition we obtain the following shearing force at x = y = 0: 

(&l-Lx = 5;; 

which gives 

(Qr),,,,, = - f (.f) 

with 

Numerical values of the factor 01 are given in Table 78. -4s the influence of the othr,t 
tire loads on QI is usually negligible we have no need of an influence surface for Qr. 
The result (f) can be used with sufficient accuracy for slabs having finite dimensions 
and also, as a largest possible value, for an cdgc built in elastically. 

u/u 
0.1 
0.2 
0.3 
0.4 
0.5 

a V/U ( Y  

0.223 1.2 0.852 
0.357 1.4 0.884 
0.459 1.6 0.909 
0.541 1.8 0.92i 
0.607 2.0 0.941 

0.6 0.6ti2 / 2.5 / 0.964 
0 7 0.708 3 ~ 0.977 
0 8 o.i47 4 0.989 
0 9 XIHE 1: 0 !I94 
1.0 1 1 ( 0.999 

77. Influence Functions and Characteristic Functions. It is intc:rest,ing to not,e thr 
close connection bet,\veen the influence function (or Green’s function) of t,hc bent 
plate and the problem of its free lateral vibrations. The latter are governed by the 
differential equation 

where W(x,y,t) is the deflection, p the mass of the plate per unit arca, and t the time. 
With the assumption W = ru(z,y) cos pt we obtain for the function w the differclnf ial 
equation 

DMw-Aw=o ill, 
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in which X = p2p. For some specific boundary conditions, solutions of Eq. (b) 
exist only for a definite set of values XI, hz, . . , XS, . . . of the parameter X, the 
so-called characteristic ?z~n~bers (or eigenvalues) of the problem. The rcspcctive solu- 
tions form a set of charsctcristic functions w~(z,y), w~(z,y), . . , wk(z,y), . . . 
These funrtions are mutually orthogonnl; i.e., 

// 
wi(x,~)wdx,y) dx dy = 0 

A 

for i # k, the integral being extended over the surface of the plate. As the functions 
wk(z,y) arc defined except for a constant factor, we can I‘ normalize ” them by choosing 
this factor such as to satisfy the condition 

wi(x,y) dx dy = a%2 (4 
A 

The form chosen for the right-hand side of (d) is appropriate in the case of a rcctangulat 
plate with the sides a and b, but whatever the contour of the plate may he, the dimen- 
sion of a length must b(> swrtred for 10~~. The set of numbers Xk and the rorrcsponding 
set of normalized functions w~(z,:(/) being established, it can be shown’ that the 
expansion 

m 
1 

K(X,?/,E,?I) = - 
c 

Wk(X,Y)WL(L?) 
a2b2 Xk 

(e) 

k=l 

holds for the influence function of the plate \vith boundary conditions satisfied bj- the 
characteristic functions. 

By applying FGls. (a) and (bj of the prcvio~~s article to the result (e) we conclude 
t,hat, no matter what the distribution of thr loading may be, the deflection of the plate 
can always IX: wprcscnted by a lirrcw combination of its characteristic functions. 

As an example, let us take the rectangular plate with simply supported edges (Fig. 
59). lGgcnfunctions which satisfy Eq. (h) a.long with the bound:Lry conditions 
‘II: = 4,~) = 0 and the condition ((i) are 

a b 

m and n being two arbitrary integers. The respective eigenvaluc, from Eq. (b), is 

Substitution of this in the expansion (e) immediately leads to the result (134). For 
rectangular plates with only two opposite edges supported, the conditions on the other 
edges being arbitrary, influence functions may be obtain4 in a similar manner. 
However, in such a case a preliminary computation of the values of Xk from the respec- 
tive transcendental frequency equation becomes necessary. A further example of an 
influence function obt,ainable in the form of an expansion is the case of a circular plate, 

1 See, for instance, II. Courant and D. Hilbert, “ Methods of Mathematical Physics,” 
vol. 1, p. 370, Sew York, 1953. 
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for which the modes of vibrat,ion, exprcssiblc in terms of Bessel functions, are well 
known. 

78. The Use of Infinite Integrals and Transforms. Another method of treating the 
problems of bending of plates is the use of various transforms.’ A few such transforms 
will be discussed in this article. 

li’o~ier Integrals. In the case of infinite or semi-infinite strips with arbitrary condi- 
tions on the two pnrallcl edges the method of 32. L6vy, described on page 113, can be 
used, but in doing so the Fourier series necessarily must be replaccd by the respective 
infinite integrals. In addition to the example considered in Art. 50, the problem of an 
infinite cantilever plate (Fig. 17-1) carrying a single load P may be solved in this way.’ 

FIG. 174 

Let w1 be the deflection of tile portion AB and wa the deflection of the portion RC 
of the plate of width flC = (I. Then we have to satisfy the boundary conditions 

together with t,he conditions of continuity 

The single force I’ ,113~ be dist ributrd uniformly over a length P, SO\V, any even 
function of 11 can Ix rcpresentcd by the Fourier integral 

Since the intensity of the loading is given by f(n) = F-‘/I, for -a/2 < 7 < v/2 and by 

1 For their theory and application see I. N. Sneddon, “Fourier Transforms,” New 
York, 1951. 

2 The solution and numerical results hereafter given arc due to T. J. Jaramillo, 
J. Appl. Mechanics, vol. 17, p. 67, 1950. Making use of the Fourier transform, 
H. Jung treated several problems of this kind: see nlath. Nuchr., vol. 6, p. 343, 1952. 
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zero elsewhere, WC have 

dn (6 

On the other hand, the function f(v) is equal to the difference of the shearing forces Q., 
at both sides of the scct)ion z = 5. ‘I’hus, by l?qs. (108), we hare 

on x = t. In accordance with I<q. (d) me represent tlir deflections w, and ws by the 
integrals 

wi = 
/ 

oa X<(z,w) cos ay dcu i = I:2 (f) 

in whirh the function 

X;(Z,U) = (A, + Bix) cash c~.r + (Ci + D,2) sin11 LY.I: 

is of the same form as the ftmction Y,, on page 11 i. 

It remains nom- to suhstitute expressions (J) into Rqs. (a), (h), and (e) in order to 
det,ermine the coeflicients A 1, BI, . . , D2, ir~tlepender~t of JJ hut depending on 01. 

I 
0  

FIG. 175 

The distrihution of hending moments along the built-in edge, as computed from the 
foregoing solution for various positions of the single loacl and for 1) = 0, Y = 0.3, is 
shown in Fig. 175. 

Sfcllin Transform. The application of t,his transform is suitable in the ease of a 
wcdgc-sliaped p1at.e with any homogeneous conditions along the edges 0 = 0 and 
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o = (Y (Fig. 176). To take an example let us consider the edge 0 = 0 as clamped and 
the edge 8 = ol, except for a single load P at r = ~0, as free.1 

We use polar coordinates (see Art. 62) and begin by taking the general solution of 
the differential equation Ahw = 0 in the form 

W(s) = r--%(O,s) (8) 

where s is a parameter and 

O(B,s) = A(s) cos SO + I?(s) sin s0 + C(s) cos (s + 2)8 + D(s) sin (s + 2)6 (h) 

The deflection and the slope along the clamped edge va.nish if 

Now, a function f(r) can be represented by means of Mellin’s formula as follows: 

iw(s)ls~o = 0 1 aw(s) 
[-----I 

= 0 (ii I” as e-0 

The bending moment Ilt, on the free edge 
vnnishcs on the condition that 

[ 

aw(s) 1 arv(s) 
v-+-- 

ar2 r ar 

1 @W(s) 
+;yji- =O 1 (jl 8-a 

where 0 is a real constant, subject to some limiting conditions. Specifically for a force 
T’ concentrated at r = r0 we obtain 

(1) 

This suggests the following form for the deticction of the plate: 

1 

J 

‘C+mi 

w =Gi 
?-O(Q) ds Cm) r--mi 

Now, the reactive forces acting down along the edge 8 = a! are given by 

(VdB-a = (CA - F>,_, 
This, by use of due expressions for &t and Ilf,, (see pages 283, 284) as well as the 
expression (m), givrs 

(V,)L, = - g 
u+-i a3e 

s 1 c- mi s + bZ + (1 - y)(s + l)(s + 211; 1 
r-(8+3) & (0) e= a 

1 The problem was discussed by S. D70inowsky-Krieger, Ingr.-Arch., vol. 20, p. 391, 
1952. Some corrections are due to \V. T. Koiter, Ingr.-Arch., vol. 21, p. 381, 1953. 
For a plate with two clamped edges see Y. S. Uilyand, Doklady Akad. Nauk S.S.S.R., 
vol. 84, p. 463, 1952. See also IV. T. Koiter and J. B. Alblas, Proc. Koninkl. Ared. 
Akad. Wetmschap., ser. B, vol. 57, no. 2, p. 259, 1954. 
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We finally eyunte expressions (1) and (o) and thus obtain, in addition to Eqs. (i) and 
(j), a fourth condition to determine t,ho quantities A(S), B(s), C(s), and D(s). Sub- 
stitution of thcsc coefficients in the expressions (h) and (J/L) and introduction of a new 

variable u = -(s + l)i, where i = d/-1, yields the following erpression for the 
deflection of the plate: 

in which G and H are some functions of Q, tl, and X, and N is a function of 01 and U. 

Ml 

The variation of the deflections along the free edge and the distribution of the 
moments ML along the edge 0 = 0 in tho partjicular case of 01 = r/4 and 01 = z/2 is 
shown in Fig. 177. 

Hmkel ‘I’rtrnsj’o~~r. I,ct a c:il~c~Jar plate with a radius u be bent to a surface of 
revolution t1.v a synlliletriwlly diutritjutt*(l load ‘I(/‘). We multiply ilw diffewntinl 
equation XYIC = q/U of such a plate by r.lU(X/~J tlr :tnd illt~agrstr lay p:trts liciwrelr 
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r = 0 and T = M. l’rovided u) = 0 for r > cc, the result is 

x4 
s 

- w(r)rJo(xr) dr = g(x) (!I) 
0 

whew 

y(X) = (C, -I- XYL)Jo(XU) + (XC, -t XvA)J~(hU) +; 
s 

a 
o dp)dobv) dp (r) 

Jo and J, are Bessel functions of the order zero and one, and Cc are constants. ilppli- 
cation of the Hankel inversion theorem to Eq. (q) gives 

The constants Ci now are obtainable from the conditions on the boundary I’ = u of 
the plate and from thr condition that the function g(X)/X’ n;l~it be bounded. The 
expression (i,) ml?st Ire slightl?: modified in the casc~ of an anmllar p1atc.l Examples 
of the application of solutio~~s of the tgpc (s) to the problem of elasti&ly supported 
plates arc given in Art. (il. 

Sine Tmnsform. In the cast of rectangular plates we have used solutions of the 
form 

w(.r,y) = ZY(y,n) sin a2 

and in t,he cast of sectorial plates those of the form 

‘I’he finite sine transforms of the function %u, taken with respect to 5 and 0, respec- 
tivcly, and introduced together with transformed dcrivativcs of zu and the trans- 
l’ormed ditierential equation of the plate, then prove useful in calculating the constants 
oi the functions Y and R from the given boundary conditions of the plate.2 

79. Complex Variable Method. By taking z = z + i?~ and z = J - iy for inde- 
pendent variables the differential equation (104) of the brnt plate bccornes 

Let us a,ssume, w = wo + WI, where wi is the general solution of the equation 

and to” a particular solution of Eq. (a). Then we have3 

101 = ~[Zdz) + x(z)1 ih) 

\vhere p and x are functions which are analytic in the region unclrr consideration. 
Usually the derivative + = ax/& is introduced along with x. 

1 For the foundation of the method and an extensive list of transforms needed in its 
application set H. Jung, 2. angew. Math. Mech., vol. 32, p. 46, 1952. 

2 The application of t,hc method is due to L. I. Deverall and C. J. Thorne, J. Appl. 
Mechcmaics, vol. 18, pp. 152, 359, 1951. 

3 (R denotes the real part of the solution. This form of the solution of the bipoten- 
tin1 rcquatiorl is due to E. Goursat, Httll. A&.. Jlalh. ik’rnnce, vol. 26, p. 236, 1898. 
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In the case of a single load P acting at zo = 20 + il~o the solution wg may be chosen 
in the form 

w. = 16pz (2 - z,)(i - 20) log I(2 - z,)(Z - $1 ic) 

which is substantially equivalent to expression (206). For a uniform load 

qx22* 

w” = 64D 
would be a suitable solution. 

If the outer or the inner houndary of the plate is a circle WC always Can replace it 
by a unit circle z = eis, or brielly e = U. The boundary conditions on z = n must be 
expressed in complex form also. The functions ‘p and $ may be taken in the form of a 
power series, with additional terms, if necessary, depending on the value of stress 
resultants taken along the inner edge of the plate. Multiplication of the boundary 
conditions by the factor [2?ri(u - z)]-r C& and integration a!ong z = c then yields the 
required functions ‘p and $.* 

Vor boundaries other than a circle a mapping function z = w(l) = w(pei”) may be 
used so as to map the given boundary line onto the unit circle r = eiq = U. ‘l-h(~ 
determination of the functions cpl(r) = p(z) and $,(r) = I/J(Z) from the boundary 
conditions on r = 0 then is reducctl to the problem already considered. The I2(usclr- 
elibhvili method out,lined above is cspccially efhcient in cases concerning stress 
distribution around holes;’ the function w(r) then has to map the infinite region of the 
plate into the interior of the unit circle 

The complex variable method also allows us to express Green’s flmctions of a circular 
plate with various boundary conditions in closed form.2 In other cases, such as that 
of a clamped square plate, we must rely on an approximate determination of the 
Green functions.3 

When expressible by a double trigonometric series, the deformation of the plate can 
also be represented in a simpler form by making use of the doubly periodic properties 
of the elliptic functions. For the quantity Aw, satisfying the potcnt,ial equation 
A(Aw) = 0, such a representation becomes part,icularly convenient because of the 
close connection between the Green function for the cxprcssion Au and the mapping 
function of the region of the given plate into the unit circle.4 Once 1~) is determined 

*For evaluation of integrals of the Cauchy type implied iu this proccdurc see X. 1. 
Muschelishvili, “Some Basic Problems of the il2athcmaticol Theory of Elasticity,” 
Groningen, 1953. 

1 An extensive application of the method to the problem of stress concentration is 
due to G. K. Savin; SW his “Stress Concentration around Holes,” &foscow, 1951. 
See also Yi-l-uan Yu, J. A1ppZ. 1l1cchanics, vol. 21, p. 129, 1954, and t’roc. N&h 
Intern. Congr. ilppl. J1cch., vol. 6, p. 378, Brussels, 1957; also I,. I. Lkverall, J. App(. 

Mechanics, vol. 2-2, p. 295, 1957. h somewhat different method, applicable as well 
to certain problems of the thick-plate theory, was used by i\. C. Stevc>nson, I’iiii. .Vcly., 
vol. 33, p. 639, 1942. 

2 E. Rcissner, Lath. ilnn., vol. 111, p. 777, 1935; A. Lollrye, P’riklnrl. ,Ktrt. :Ilekha~~., 
vol. 4, p. 93, 1910. 

3 F. Schultz-Grunow, Z. angew. Math. Nech., vol. 33, p. 227, 1953. 
4 Courant and Hilbert, op. cit., vol. 1, p. 377. Elliptic functions have been used in 

particular by A. Nadai, 2. angcw. ~Vath. diech., vol. 2, p. 1, 1932 (flat slabs); hy 
F. Tolkc, Zngr.-Arch., vol. 5, p. 187, 1934 (rectangular plates); and also by 1~. 1). 
Aggarwala, Z. ungew. Math. IVech., vol. 34, p. 226, 1954 (polygonal plates and, in 
particular, triangular plates). 
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the shearing forces of the plate are readily given by the derivatives of that function by 
virtue of Eqs. (108). 

80. Application of the Strain Energy Method in Calculating Deflec- 
tions. Let us consider again the problem of the simply supported 

rectangular plste. P’rom the discussion in Art. 28 it is seen that the 
deflection of such a plntc (Fig. 59) can always be represented in t,he form 
of a double trigonometric tierioa:* 

m m 
cc 

rnwc UT = a n=y 7,2,i sin -~ sin -- 
a b (a) 

In = 1 I‘ = 1 

The coefficients amn may be considered as the coordinates defining the 
shape of the deflection surface, and for their determination the principle 
of virtual displncements may be used. In the application of this principle 
\ve need t’he expression for strain energy (see page 88): 

Substituting series (a) for w, the first term under the integral sign in (6) 
becomes 

Observing that 

if m # m’ and n # n’, we conclude that in calculating the integral (c) 
we have to consider only the squareu of terms of t,he infinite series in the 
parentheses. Using the formula 

the calcula’tion of the integral (c) gives 

1 The terms of this series are characteristic functions of the plate under consideration 
(see Art. 77). 
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From the fact that 

it can be concluded that the second term under the integral sign in 
expression (b) is zero a,ftcr int>egration. IIence the total strain energy 
in this case is given by expression (c) and is 

(4 

Let us consider the deflection of the plate (Fig. 59) by a concentrated 
force P perpendicular t,o the plate and applied at a point R: = 4, y = 1). 
To get a virtual displacement satisfying boundary conditions we give to 
any coefficient a,‘,,’ 0 f series (a) an infinitely small variation 6~7,~‘~‘. As a 
result, of this the deflection (a) undergoes a variation 

6w = 6u,,r,s sin m+ sin F 

and the concentrated load P produces a virtual work 

From the principle of virtual displacements it follows that t)his work must 
be equal to the change in potenCx1 energy (d) due to the variation 8~~‘~‘. 
Hence 

Substituting expression (d) for V, we obtain 

from which 

Substituting this into expression (a), WC obtain once more the result (133). 
Instead of using the principle of virtual displnccments in cnlculatjing 

coefficients a,,, in expression (a) for the deflection, we can obtain the 
same result from the consideration of the total energy of the system. 
If a system is in a position of stable equilibrium, its total energy is a 
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minimum. Applying this stat’ement to the investigation of bending of 
plates, we observe that the total energy in such cases consists of two 
part,s: the strain energy of bending, given by expression (b), and the 
potential energy of the load dist’ributSed over the plate. Defining the 
position of the element, Q dz dy of the load by its vertical distance w from 
the horizontal plane .cy, the corresponding potential energy may be taken 
equal to - wg ds dy, and the potential energy of the total load is 

- JJwq dx dy 

The t>otal energy of the system then is 

!Yi 

The problem of bending of a plate reduces in each particular case to 
that of finding a function w of IC and ?/ that satisfies the given boundary 
conditions a~ld mukcs the integral (h) a minimum. If we proceed with 
this problem by the use of the calculus of variations, we obtain for ~1 
the partial differential equation (104), which was derived before from the 
consideration of the equilibrium of an element of the plate. The int,e- 
grnl (II,), however, can be used advantageously in an approximate investi- 
g:ttion of bending of plates. For that purpose we replace the problem of 
vnriat,ionnl calculus with that of finding the minimum of a certain func- 
tion by assuming that the deflection w can be represented in the form 
of a series 

70 = UlW(S,Y) + azcFz(z,y) + wT%(~,?/) + . . . + UnPn(Z,Y) (211) 

in which the functions ‘pl, ‘pz, . . , (Pi are chosen so as to be suitable’ 
for representation of the deflection surface w and at the same time to 
sat,isfy the boundary condit,ions. Substituting expression (211) in the 
integral (h), we obtain, after integration, a function of second degree with 
coefficients al, a~, . . . . These coefficients must now be chosen so as 
to make the integral (h) a minimum, from which it follows that 

ar o aI ” -= -= . . . 
d(Ll da2 

l3I 
aa,, 

-0 (i) 

This is a system of 7~ linear cquat~ions in aI, u2, . , a,, and these 
quantities can readily be calculated in each particular case. If the 
functions cp are of such a kind that series (211) can represent any arbi- 

1 From experience we usually know approximately the shape of the deflection 
surface, and we should be guided by this information in choosing suitable functions (o. 
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trary function within the boundary of the plate,’ this method of calcu- 
lating deflect’ions w brings us t,o a closer and closer approximation as the 
number ‘~1 of the terms of the series illcreases, and by taking n infinitely 
large Tve obtain 3.11 exact solu!ion of ‘clic problem. 

Applyillg the method to the cxx of a simply supported rectangular 
plate, we take the deflection in the form of t,he i l,igoilol).ict,ric series (a). 
Then, by using expression (d) for the strailt energy, the itltegral (h) is 
represented in the follo\ving form : 

and Eqs. (i) have the form 

In the rasc of a load P applied at a point lvith the coordinates l, q, 
the intensity q of the loac! is zero at all points except t,hc point {, 9, \vhere 
we have to pu? y ti.c 0’~ = P. Then Eq. (1;) coincides \vit,h Eq. (e), prel-i- 
ously derived by the il:;e of the principle of virtual displnccments. FO!, 
practical purposes iI konld hc: noted that t’he integral 

contjained in exprcAons (0) nlld (L) ~nnishes for a plate rigidly clnm~~d 
on the boundary. The same simplification holds for a polygonal plate 
if one of the boul:d:ary conditions ih either w x= 0 or &O/&L = 0, \vhrrc 
n = direction normal to the edge.” 

If polar coordinates instead of rcct n!iglAtr coordinates are used and 
axial symmetry of loading and deformation is ~S,~UIIKX~, T<Gl. (h) has to he 
replac~cd by 

i \Vc have seen that a double trigonometrical swim (a) possesses this property with 
respert to dcflcctions w of a simply supported rcctmgulx plate. Hence it, can be used 
for obtaining au cxnct solution of the prob!em. The methcd of solving the bending 
problems of plates by the use of the integral (h) w:m dcvrk>prd by IV. Ritz; see J. reine 
nnyew. Jfufi!., vol. 135, 1908; and Ann. Physik, ser. 4, vol. 28, p. $37, 1900. 

‘JS~3~, for inst:nic*r, 6. it. Uerger, ijsfew. Ingr.-A&., Yol. T, p. 41, 19.53. 
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The contribution of the term containing the factor 1 - v again is zero 
for a plate clamped along the boundary. 

The strain energy method can also be used for calculating the deflection of a circular 
plate resting on an elastic foundation. For example to obtain a rough approximation 
for the case of a circular plate, we take for the deflection the expression 

w = A + Rr2 (n) 

in which A and B are two constants to bc determined from the condition that the 
to al cncrgy of the system in stable equilibrium is minimum. 

The strain energy of the plate of radius a as given by 159. (~1) is 

v, = 4H2Dad(l + Y) 

The strain energy of the deformed elastic foundation is 

The total energy of the system for the cnsc of a load I’ applied at the center is 

V = 1B’D?ru”[l + v) + ,k(~,tW + -;-ATW $- &Wa”) - PA 

Taking the derivatives of this cxprcssion with respect to A and B and equating them 
to zero, \ve obtain 

.‘I + Bf.22 1 P 
A + - Ra2 = ’ 

2 7rkn2 

In accordance with the numerical example on page 264 we take 

D P 
/=a -=I 

hxk4 87rku3 
- 102 lo-” 

and obtain 
WlTllX = A = 41.8. 1O--3 in. 

‘I’his result is about 3 per cent less than the result 43 . 1OP obtained from the clifferen- 
tial equation of a plate resting on elastic foundation. For greater accuracy more 
terms should be tnkcn in expression (n). 

If the stress distribu(ion around the single load, not merely the deflection, were 
desired, a term of the form 

P 
~ 7-z log T 
8*D 

should be included in expression (n) in accordance with the type of singularity here 
required [see Eq. (20(j)]. 

When using polar coordinates in the most general case the integral (h) assumes the 
Corm 

I= 
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81. Alternative Procedure in Applying the Strain Energy Method. 
The calculation of the coefficientsal, UZ, . . . , a, in expression (211)) lvhich 
had to satisfy the boundary conditions but not the differential equation 
of the problem, may also be carried out without actually determining 
the potential energy of the system. 

Let us assume a virtual deflection 6w of the plate; then, IYC can calcu- 
late the respective work of the loading y either directly, by means of the 
integral 

(6V)I = JJy 6w dx dy (a) 

or indirectly, using the expression 

(6V)? = J‘SDAA~ 6w dx dy 04 

If w mere the exact solution of the differential equation DAAw = q of the 
plate, then the expressions (u) and (b) ~vould be idcnt,ical. For an 
approximate solution, mhich Eq. (211) represents, this is certainly not 
the case. We can succeed, however, in equalizing t,he expressions for the 
work for a particular set of virtual deflections, namely for 6wl = q1 6ul, 
&u2 = p‘J 6uz, . . . ) 6w, = pn 6u,,. Substituting these expressions con- 
secutively in the equation (6V)l = (61’)~ or, what is the same, in the 
equation 

J‘Jq 6~ dn: dy = JJDAAw 6~ dx dy 

me obt!ain the following system of equations:’ 

cc> 

ij-(IAw-j+,dxdy=O 

j+++~dxdy=O 

.ili’ (AAw - 3) cpndxdy = o 

It remains only to substitute the expression (211) in Eqs. (d) and to 
resolve them It-ith respect to the unknown coefficients al, u2, . . ., an. 
This leads t’o the final expression for the deflection (211). 

To illustrate the applicaGon of the method let us consider a uniformly 
loaded rectangular plate \vith all edges built in (Fig. 91). Writing for 
brevity 2.c/u = 21, 2y/h = v, \ve shall use the expressions 

u1 = u4 - 2‘lcz + 1 
uz = 246 - 2u4 + 7.42 

v1 = 214 - 2v2 + 1 
v, = 116 - 2v” + 0% (e) 

’ The principle leading to these so-called Galcrkin equations was indicated by 
W. Ritz: see l‘Gesa~nrnelte Kerhe,” p. ZB, 1911. 
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The set of functions 

y1 = UlVl yz = UlV2 Y3 = U2Vl y4 = lizI' (.f) 

then fulfills the required conditions 

Let us carry out t!ic: cwml)ut:Ltion for the T)xrtic:ular cnsc or the square plate. .\Y 
5 and ?/ now arc illtcrc!l:lrr~tat,le, \vve have n, = a., and, consequently, 

p:! = $0,: = li, I,‘? -f c:2T’I 

Putt8ing c[U’jl(jD = 1\’ \w tnlie Pz!,I cssion (2111 in t,hf, !oriil 

%o = a,U,lf~ $- a,(U,V, + 1.171,) -+- a,UzV, k/l 

Substituting this consect~tiwly in l?qs. (rl) \vi:h the fwtors ‘pl, rpz, and pPa and 
ohscrving notation (e) WC have thrn to cvaluntc the integrals between the limits 
‘J, = +1, u = fl. Thus \vc a.rrivc at the follo\ving system of equations: 

6.6SiY-t5a* + 1.215579(c~ + 0.0675488ar = 0.1422221N 
l.%1587!la, -i- 2.i-4S.mk~ + 0.218235ar = 0.0406349N (h) 
0.0675488n / + 0218235a2 + 0.00590462~~ = 0.00290249N 

For the first approximation we have 

for the third approximation. 
Sumcrical results obtained 1~~ means of the expression (9) for the deflection at the 

ccntcr, the moments .ll, = Jr, at the center, and the moment J1, at 1: = a/2, 1, = 0, 
respectively, are the following: 

First approx. O.f~01329~qa”/D, O.O’)Tf@‘, --0.042t5qa2 
Third approx. 0.0312fi Iqa’lD, 0.0ZBqa2 -0.0.ilZqa~2 

For comparison, ‘l’nhle 35 gives the values 

O.O0126yn”/D, 0.02319a2, -0.0.513@ 

The moments at the center are calculated for Y = 0.3. 
It is seen that, whereas the first approximat,ion is not yet satisfactory, the third 

approximation appears quite sufficient even for the bending moments concerned. 
82. Various Approximate Methods. n Cornbined 114ethod.1 The procedure 

described in the foregoing article may be restricted as well to one variable, say y, thus 
obtaining for the other vnrinl)le, z, an ordinary diffcrcntial equation. Let us consider 
again the bending of a clamped square plate under uniform load (Fig. 91). 

1 1)uv to I,. V. I~ant,orovich, Izwst. ilk&. Nnctk S.S.S.K., no. 5, 1933, 
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In confining ourselves to the first approximation we take, this time, 

w = p(z)+(y) = &)(a4 - 8a2y2 + 16214) (a) 

the boundary conditions w = dw/dy = 0 on 7-/ = *a/2 thus being fufilled by the 
function $(y). Now we try to satisfy the condition (c) of Art. 81 by choosing the 
variation in the form 

fhJ = ia/) Wx) @J 

This, after substitution in Eq. (c) of Art. 81, yields 

Next, we substitute expression (a) in this latter equation arid obtain the following 
differential equation for the unknown function p(z) : 

(e) 

An obvious particular solution of this equation is p = (1/X340. For th:: homogeneous 
equation resulting from Eq. (f), when (, = 0, 1,-c have to assmile ‘p = chiiCG. This 
yields h = ka i gd, with 01 = 4.1503 and p = 2.2855. In virw of t,hc symmetry 
of the deflection surface about the :, axis, solutions of Eq. (c) must be even functions 
in z; accordingly me have 

To calculate the constants 6’1 and C’, we II so thr boimdary conditions ‘p = 8ppl~Yx = 0 
on x = &-a/2. Thus v-e obtain C, = --0.50227, C? = -O.O433!J63, which establishes 
definitively the form of the function (f) and the solution (a). 

We derive from this latter the following nnnrerical results for the ccntcr of the plate: 
w = O.OOlYXqa”/D and (for Y = 0.3) Al, = 0.0%~llqa2 and M, = 0.0ZGlqa2. 

Owing to the partial use of the tliffcrcntial eqlJat,ion the results of the first approxi- 
mation prove to be more exact than those of Art. 81, where a pure strain energy method 
was applied. To improve t,he accuracy still further, wf: have to assume 

w = Y,(X)~i(X) i- P1(X)$b(Ic) + . . (9) 

where all the functions +(y) have to fulfill the boundary conditions on y = L-a/2. 
The use of Eq. (c) in conjunction with the variations 6~~ = +I &,Q, 6~~ = & &,Q, . . 
would lead t,his time to a system of linear differential equations with constant cocffi- 
cients for the functions (O,(Z), pp?(z), . . . . The handliug of such a system, though 
simple in principle, may become troublesome for higher approximations; the second 
approximation, however, should bc adequate for the most practical purposes. 

T/X Method of Reuersion. Solution (%ll), fulfilling only the boundary conditions 
of the problem, may also be used in the follo\ving manner. Instead of calculating the 
deflections from a givcu load distribution by means of the difierential equalion (103) 
we use the same equation to cal~ulatc the loading 

q = l3AAw (h) 
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resulting from the t,entative expression (211) for the deflection. According to our 
hypothesis, expression (211) dots not represent the rigorous solution of the problem 
and, therefore, the loading (h) will never be identical Tvith the given loading (I. We 
can, ho\vercr, choose the parameters al, a2, . . in Eq. (211) so as to equalize the 

I I h 
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---I---;---;--- &J 

I , 
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functions p and q on the average over some por- 
tions of the arca of the plate. 

Consider, for example, a rectangular plate 
(Fig. 178) with boundary conditions and a dis- 

tribution of loading symmetrical about both 
axes z and y. Having subdivided the plate 
into 16 equal rcct,anglcs, WC need, because of 
the symmetry, to consider only four partial 
areas, such as A,, d>, da, and d,. Expression 
(211) can be restricted accordingly to four 

terms, i.e., to 

w = alPI + awpe + asrpn + aafP4 (9 

Now let Q and q’ undergo in each of the partial 
areas the condition 

D 
((I - q) dx di/ = 0 n = 1,2,3,4 (j) 

A,, 

This gives four linear equations for the four parameters a, and the resolution of these 
equations establishes the expression (i) in its final form.’ 

Methods Approximating the Boundary Conditions. If we succeed in finding a solu- 
tion which fulfills the differential equation (103) toget,her with one of the boundary 
conditions, the second prescribed condition may bc satisfied by determination of a set 
of suitably chosen parameters. In solving the problem stated in Art. 44 coefficients 
of the two trigonometric scrics rcprcscnting the variat,ion of the edge moments of the 
plate were introduced as such parameters. Expansion of the slope atu/aN in Fourier 
series2 along the boundary was used in order to let this slope vanish in accordance 
wit,h the requirements of the problem. In using the latter condition the parameters 
could be calculated. Some minimum principle---for example, the method of least 
squares-may be used as well in order to satisfy approximately the conditions on the 
boundary. The application of such a principle needs more detailed consideration 
when two boundary conditions must be simultaneously fulfilled.3 

In using a solution which satisfies only the differential equation of the problem it 
sometimes proves simplest to fulfill the boundary conditions merely at a number of 
points suitably chosen along the boundary. The symmetry of the deformation of the 
plate, if such a symmetry exists, should be taken into account in locating those points. 
In order to satisfy all boundary conditions at m points we must introduce 2m unknown 
parameters. 

In the most general case4 we may use an expression for the deflection which satisfies 
neither the differential equation of the bent plate nor the boundary conditions of the 

1 An illustrative example for the application of the method may be found in C. 13. 
Biezcno and R. Grammcl, “Technische Dynamik,” 2d cd., vol. 1, p. 147, Berlin, 1953. 

2 A more general system of functions orthogonalized along an edge was used by 
A. Nddai to fulfill a boundary condition; SW “Elastische I’latten,” p. 180, Berlin, 1925. 

3 An important contribution to this question is due to E. Berger, op. cit., p. 39. 
4 The method was discussed by C. J. Thorne and J. V. Atanasoff, Iowa Slate CoU. J. 

Sci., vol. 14, p. 333, 1940. 
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ln-oblem. A number of points, say n, will be chosen then on and inside the boundary 
of the plate in which the differential equation must be satisfied exactly. Therefore 
a total of 2m + n parameters will be needed to obtain the solution of the problem. 

wein~sfein’s Jfetllod.’ In the specific case of a plate built in along the boundary we 
may seek at lirst a solution of the clifferential equation AAwl = q/D such that t,he 
solution is valid for the given loading q and for the boundary conditions wl = 0, 
awn = 0, instead of the actual conditions. It has been shown in Art. 24 that, this latter 
procedure is c~clliivalent lo solving in succession two problems, each dealing with the 
equilibrium of a loaded membrane. 

The solution of the actual problem may be taken in the form 

m 

w=wL+ 
z 

WcPk (k) 
k=l 

where ali are some coefficients and qk functions of z, y, vanishing at the boundary and 
obeying the differential equation AAa = 0. The required condition aw/aN at the 
boundary (where N is the normal to the boundary) can be modified by means of 
Green’s theorem, which leads Co the following system of m linear equations for tho 
parameters a,/.: 

m 

F dx dy + 
Cl 

ab Acp, Apr dx dy = 0 

k=l 
(0 

. . . . . . . . . . . . . . . . . . . . 
where all integrals are taken over the rntirc nrca of the plate. The method may be 
used to advantage when the boundary conditions w = 0, Aw = 0 suggest a much 
simpler solut,ion of the problem than the actual conditions w = 0, i)w/8A’ = 0. 

83. App!ication of Finite Differences Equations to the Bending of 
Simply Supported Plates. In our previous discussion (see Art. 24) it 
was shown that the differential equation for the bending of plates can be 
replaced by two equations each of which has the form of the equation 
for the deflect’ion of a uniformly stretched membrane. It was mentioned 
also that, this latter equation can be solved with sullicient accuracy by 
replacing it by a finite differences equation. To illustrate this method of 
solution let us begin with the case of a uniformly loaded long rectangular 
plate. At) a considerable distance from the short sides of the plate the 
deflection surface in this case may be considered cylindrical. Then, by 
taking the x axis parallel to the short sides of the plate, the differential 
equations (120) become 

dz”= -Q 

a270 M 
as2= 

-- 
11 

1 A. Weinstein and I>. H. Rock, Quart. Appl. Math., vol. 2, p. 262, 1944. 
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l$oth these equations have the same form as the equation for the deflec- 
tion of a stretched and laterally loaded flexible string. 

Let AI3 (Fig. 179) represent the deflection curve of a string stretched 
by forces S and uniformly londcd nith a vertical load of intensity g. In 
deriving the equation of this curve me consider the equilibrium of an 
ini~initesimnl element IyI?L. The t,ensile forces at points m and n have the 

directions of t’angeut:; t,o the d~ficction curve at t,hese points; and, by 
projecting these forces and also the load g d.c on t#he z axis, we obtain 

from which 

This equation has the same form as Eqs. (a) derived for an infinitely 
long plate. The deflection curve is now obtained by integrating Eq. (c), 
which gives the parabolic curve 

satisfying the conditions zu = 0 at the ends and having a deflection 6 at 
the middle. 
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‘rhe same problem can be solved graphically by replacing the uniform 
load by a system of equidistant concentrated forces q Ax, Ax being the 
dist,ance betlveen two adjacent forces, and constructing t,he funicular 
polygon for these forces. If A (Fig. 179) is one of the apexes of this 
funicular polygon and S’L~ and Sk arc the tensile forces in the t\vo adja- 
cent sides of the polygon, t’he horizontal projections of these forces are 
equal to S and the sum of their vertical projections is in equilibrium with 
the load Q Ax, which gives 

In this equnt,ion w~-~, wk, and wk+l are the ordinates corresponding to the 
three consecutive apexes of the funicular polygon, and (wk - wk--l)/Ax 
and (WI;+1 - wk)/Ax are the slopes of the two adjacent sides of the poly- 
gon. Equation (e) can be used in calculating the consecutive ordinates 
201, wz, . . . , wk-1, wk, w/:+1, . . , w, of the funicular polygon. For 
this purpose let us construct Table (f). 

.-rT.T~. .I.. .I.. 
The abscissas of the consecutive division point,s of the span are entered in 
the first column of the table. In the second column are the consecutive 
ordinates of the apexes of the polygon. Forming the differences of the 
consecutive ordinates, such as w1 - wo, . . . , wk - wkel, wk+l - wk, 

. . , we obtain the so-called jirst diflcrences denoted by Aw,, . . . , 
AWk-1, AWk, . . . , mhich \\-e enter in the third column of the table. The 
second diflerences arc obtained by formin, w the differences betmeen the 
consecutive numbers of the third column. For example, for the point Ic 
mit,h the abscissa lc Ax the second difference is 

A%Ok = AW, - A’Wk-1 

= Wk+l - wk - ('tuk - wk-1) = t"k+l - 2wk +Wk-1 (9) 
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With this notation Eq. (e) can be written in the following form: 

A2w Q -- 
ET= s 

This is a finit,e differences equation which corresponds to the differential 
equation (c) and approaches it closer and closer as the number of division 
points of the span increases. 

In a similar manner the differentia,l equations (a) can be replaced by 
the following finite differences equations: 

A2M 
z= -4 

Azw M (9 
-=-- 
AX2 D 

To illustrate the application of these equations in calculating the deflec- 
tions of the plate let us divide the span, say, into eight equal parts, i.e., 
let Ax = &a. Then Eqs. (i) become 

AZ&f = - E2 
64 
Ma2 

A2w = - 64D 

Forming the second differences for the consecutive division points wl, 
w2, w3, and 2~‘~ in accordance with Eq. (8) and observing that in our case 
‘1~0 = 0 and .1/o = 0 and from symmetry w3 = w5 and iV3 = Mj, WC 
obtain the two following groups of linear equations: 

Jf lcL’L 
w2 - 2Wl = - ..--- 

WD 

Ma -  LII ,  i- Ml = -  g w3 -  

M $a2 (j> 

ill - -  211. + ill2 = -  rla2 4 23 
64 

W 4 -  2wa + w2 = -  __ 

640 

M3 - 2M + M3 = - @ M,a2 
4 ti4 

w3 - 3204 + w3 = - ~ 
640 

Solving the first group, we obtain the following values for M: 

Ml = z@’ fif2 = 6 qa” M 3 = l5 qa2 
M, = 2 64 64 2 64 8 qg (k) 

These values coincide exactly with the values of the bending moments 
for a uniformly loaded strip, calculated from the known equation 

JJ = !P QX’ 
2 

.c - - 
2 
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Substituting the values (1~) for the moments in the second group of Eqs. 
(j), we obtain 

wz - 2w, = -$N 
wg--2wz+wl= -6N 
w* - 2Wl + 702 = 4-y-N 
Wa-2wqfws= -8N 

where N = $f$ 

Solving these equations, WC obtain the following deflections at the division 
points: 

wl = 21N w2 = 38.5N wa = 50N wq = 54N (0 

The exact values of these deflections as obt’aincd from the known equation 

for the deflection of a uniformly loaded strip of length a, for purposes of 
comparison, are 

wl = 20.7N wp = 38N 203 = 49.4N w4 = 53.3N 

It is seen that by dividing the span into eight parts, the error in the 
magnitude of the maximum deflection as obtained from the firrite differ- 
ences equations (i) is about 1.25 per cent. By increasing the number of 
division points the accuracy of our calculations can be increased; but this 
will require more work, since the number of 
equations in the system (j) increases as we X 

increase the number of divisions. Ay: &c 

Let us consider next a rectangular plate 
of finite length. In this case the deflections ‘Y ’ 

A m,n 1 

are functions of both z and y, and Eqs. AY I A -I, “A “‘*m+l,n 
(a) must be replaced by the general equa- A m,n tl 

tions (120). In replacing these equations 
by the finite differences equations we have F 
to consider the differences corresponding to 

y 

the changes of both the coordinates R: and ?/. 
Fro. 180 

We shall use the following notations for the first differences at a point 
A,,, with coordinates m AL and ‘n Ay. The notJation used in designating 
adjacent points is shown in Fig. 180. 

Azwm- 1,n = U’rn,L -  wn-1.73 Azw,,,,, = u&+1.71 - w,n 
Aywn,n--l = w,,, - w,,+l A$&,,, = ~(‘,,,r+l - w,, 

Having the first differences, we can form the t,hrcc kinds of second differ- 
ences as follows: 
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Azzw,, = Azw,, - Azw,-l,n = w,+l,n - w,n - (w,n - wm-l,n> 
=w m+l,n - 2wmn + wnl-1,n 

Auywmn = Aywmn - A/w,,,.,-1 = w,,n+l - w,n - (w,, - wm.+-1) 
- u",‘,1L~-l - 2wm + wn,,n~- 1 

(ml 

Azuwmn = A&m, -- A&r-1.n = wm,,~+l - wm - (we-la+1 - wr-1.n) 

- wn.n+l - wma - ‘wr-l,n+l + wn<-1.n 

With these notations the differential equations (120) will be replaced by 
the following differences equations : 

A,,M AmM __~ 
AZ? + n?J”= -P 

Amu) A,,,w _ A! --- + -- 
Ax2 Ay2 D 

(n> 

In the case of a simply supported rcct,angular plate, dl and w are equal to 
zero at the boulldzry, and we can solve Eqs. (n) in succession without any 

FIG. 181 

area we have to make the 

-x 

difficulty. 
To illustrate the process of calculating 

moments and deflections let us take the ver> 
simple case of :L uniformly loaded square 
plate (Fig. 181). X rough approximation fol 
M and w will be obtained by dividing the 
plate into 16 small squares, as shown in the 
figure, and by taking Ax = Ay = a/4 in Eqs. 
(n). It is evident from symmetry that the 
calculations need be extended over an area 
of one-eighth of the plate only, as shown in 
the figure by the shaded triangle. In this 
calculations only for the three points 0, 1, 2, 

for which M and w are difercnt. from zero. ,1t the remaining points 3,4,5, 
these quantities arc zero from the boundary conditions. Beginning with 
the first of the equations (n) and considering the ccntcr of the plate, point 
0, we find the following valued of the second differences for this point by 
using Eqs. (m) and the conditions of symmetry: 

A,,Mo = 2X1 - 211f0 
A&, = 2f1f1 - 2111 ,, 

in which M, and N, are t,he values of dl at points 1 and 0, respectively. 
Similarly for point 1 we obtain 

The second differences at point 2 can be calculated in the same way. 
Substituting these expressions for the second differences in the first, of 
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the equations (n), we obtain for points 0, 1, and 2 the following three 
cyustions : 

L$&’ 1 - &MO = _ @ 
16 

2M 2 - 4M + M = - '@ 1 0 16 

-4&f 
2 

+ 2M1 = .- @ 
1G 

from which we find 

Substituting these values of moments in the second of the equations (u), 
we obtain the following three eyua- 
tions for calculntJing deflections WO, 

wl, and ~2: 

From these equations we find the fol- 
lowing values of the deflections: 

w,, = @N Wl = +gv wz = +$N 

For the deflection at the center we 
obtain 

Y 
FIG. 182 

66 wo=-N= 66qa4 
16 16 . 16 . 641) 

= 0.00403 @ 
( D 

Comparing this with the value O.O0406qa”/D given in Table 8, it’ can he 
concluded that the error of the calculated maximum deflection is less than 
1 per cent. For the bending moment at the center of the plate we find 

which is less than the exact value 0.047Yqa3 by about 4;. per cent. It, 
can be seen that in this case a small number of subdivisions of the plate 
gives an accuracy sufficient for practical applications. By taking twice 
the number of subdivisions, i.e., by making Ax = A?/ = +a, the value 
of the bending moment will dif’fer from the exact value by less than 
1 per cent. 

-4s a second problem let us consider t,hc bending of a simply supported skew plate 
~wrying :L uniform load of intensity q (Fig. 182), The subdivisions in this CLLW aret 
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AZ = b/6 and Au = b/3. Therefore the first of the equations (n) can be written as 

JA,,.nl + A,,d4 = - $ (0) 

Applying this equation to points I to 8 succcssircly and using expressions (n) for the 
dif-fercnccs, wc obtain the following system of linear equations: 

4M, + 4M, - IO&f, + M, = - ‘$ 

8MS + 2Mi - lOM, = - $ 

The solution OF this system is 

M, = 0.29942 $ M = 066191@f 5 . 
9 

it4 2 = 0.49854 ‘@! 
9 

M, = 0.39387 $ 

A4 3 = 0.41462 nb’ M ‘I = 
9 

05692Oc . 
9 

M 4 = 0 59329 ?b” 
. 

M = 
9 8 

0.74337 !@ 
9 

The second of the equations (n) now becomes 

Mb2 
4A,,w + Ar,,w = - _ 

9D 

Taking into account the result (q) this gives a second group of equations: 

-1ow1 + 4wz = -0.29942N 
4w, -- low2 + wa + 4wi = -0.49854N 

wt - 10~~ + 4wj = -0.41462iV 
4w, - low4 + w:, + 4w, = -0.59329N 

4wg + wt - lO?u;j + wg + 4ws = -0.66191N 
ws - lo?& + 4w1 = -0.39387N 

4~4 + 4~00 - 10~7 + wg = -0.56920X 
8100 + &UT - iOlU* = -0.74337N 

(d 

(r) 

6) 
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in which 

This yields the deflections 

w1 = 0.13176N 
w2 = 0.25455N 
wa = 0.22111N 
wd = 0.32469N 

It should be noted that the integration of 
the differential equation of the bent plate 
by analytic methods would encounter con- 
siderablc difficulties in this case. 

To calculate the moments at the middle 
point 8 of the plate we have to use expres- 
sions (101) and (102), in which the deriva- 
tives first must be replaced by the respective 
differences. Thus, making USC’ of expres- 
sions (tn) and using the values (t) for the 
deflections, and also taking Y = 0.2, we 
obtain 

w; = 0.38549N 
WC, = 0.20293N 
w; = 0.31249N 
wx = 0.44523N 

it) 

,&---- Mm,,-.---+ ---MY---A 
I- 

-----M,-----+, 
Mnt 

FIG. 183 

(T,f ) = -D to? - 2ws + w, 
I is 20” - 2ws + w5 

Ax2 
-++- 

&Y2 
~~~ ) = 0.0590qh2 

(j,f,), = -D 
( 

w~%$-t-- + y %d!!+Ujj 
> 

= 0.0401gb’ 

(M,,), = (I - v)D = “1”,,L” + w4 = 0.0108qb2 

hfohr’s circ\lr (Fig. 183) now gives2 the following principal moments at point 8: 

The direction of stresses due to these moments with respect to the coordinate axes 
x and ?J, respectively, is given by 

1 
a = ; arctan 

2M,, 
~ = 24”25’ 
!K - nr, 

From Fig. 182 we conclude that the stresses due to M,,, at the center are acting almost 
exactly in the direction of the short span of the plate. 

The plan of the plate in Fig. 18’2 was such that we could use a rectangular network 

1 See also the diagrams in Fig. 184 for the particular case Ar = Ay. 
2 Note the difference of notations in Figs. 183 and 22. The principal moments in 

Fig. 183 are denoted by M,,, and MC,. Note also that if in both diagrams the point 
on the circle moves in the clockwise direction, the normal to corresponding section 
will move in the same direction. 
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with constant subdivisions AZ and &. In a more general case a triangular network’ 
must be used for the analysis of a skew slab. 

The method of finite differences can also be applied to plates with edges built in or 
free and, finally, to plates with mixed boundary conditions.2 Since in the general 

@+----@ -I 0 

d _... --- 
dx 2x 

Fro. 184 

case the value of M is not fixed on the boundary, and accordingly the use of M becomes 
IPSS advantageous, the deflections w may be calculated directly by means of a sequence 

1 Extensive use of such networks is made by V. I’. Jensen in Univ. Illinois Bull. 332, 
1041, and the previous numerical example is taken therefrom. 

2 Many numerical examples of this kind may he found in the book by H. Marcus, 
” Die Theorie elastischer Cemebe,” 2d ed., Berlin, 1932; see also N. J. Nielsen, 
“ Brstemmelse af Spamdinger i Pladcr,” Copenhagen, 1920. 
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of difference equations equivalent to the dih’erential equation AAw = q/D of the bent 
plate. For convenience the finite diffcrcnce equivalent of the operator AA( ) is 
represented in Fig, 184 together with the other useful operators. The diagram is based 
on the assumption AZ = Ay = X. Each number has to be multiplied by the symbol wk 
denoting the deflection at the respective point k and the sum of such products then 
divided by an expression given in the caption. 

In order to formulate the boundary conditions for an cdgc with vanishing deflections 
Ict us establish the equation for an int)crior point 7, next to the edge (Fig. 185). 
.ipplying the operator AA( ) 15-e have 

[WI + WI, + WY + w13 + 2(wz + w4 + WI0 + w12) 

- S(w3 + we + ws + wn) + 20~71; = ; (u) 

in which w? = wS = wq = 0. Next we have to eliminate the deflection W, at a fictive 
point 1, obtained by continuation of the network beyond the boundary of the plate. 

This is rcxdily done by means of the relation wi = -w? when the plate is simply sup- 
ported at point 3 and by means of w i = 2u7 when the plate is built in. Thus, there 
remain only the deflections of the interior points in Eq. (u) and the total number of 
such unknown deflections will not exceed the number of the equations of the type (u) 
at our disposal. 

In the case of a free edge the number of such difference equations will be increased 
by the number of such points 2, 3, 4, . . . on the boundary at which the deflections 
do not vanish. The respective operators AAw now must be extended over the exterior 
point at the distance A and also 2X from the free edge. Corresponding to each pair of 
such unknown deflections WO, wi, there will be two boundary conditions 

expressed by means of the differences and written for point 3, opposite to both exterior 
points 0 and 1. Hence the total number of equations will still be the same as the 
number of unknown deflections. 

When the values of M in the interior of the plate are no longer independent of the 
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deflections w, the difference equations for the deflections become more involved tha11 
was the case in the two previous examples. In solving such equations the method of 
relaxation can sometimes be used to great advantage.’ 

84. Experimental Methods. For irregularly shaped plates or plates with irregularly 
varying thickness or weakened by many holes, experimental methods of investigation 
become more efficient than purely analytical methods. Conventional dcviccs, such 
as electrical strain gauges and extensomctcrs of all kinds, can be used for determination 
of strain in a bent plate.2 The following brief review is restricted to methodswhich are 
appropriate to special conditions connected with the bending of thin elastic plates. 

Use of Phofoelasticity.” This method, usually applied to problems of plane stress, 
must be necessarily altered if employed in the case of bending of plates. In fact, the 
normal stresses in a thin bent plate are equal in magnitude but opposite in sign for two 
fibers symmetrical with respect to the middle plane of the plate. Accordingly, the 
optical effect produced in the zone of tension on a bca.m of polariecd light passing 
through the plate is nullified by an opposite effect due to the zone of compression. 

The influence of the second zone can be elinlinatod by cementing togcthcr two 
identical pI:rfcs of photoclastic material with a reflecting foil of metal between them. 
The inner srwface of one or both plates may also be silvered to the same end.4 Calcula- 
tions show that the optical effect of such a sandwich plate of a thickness h is about the 
same as thr effect of a single plate of the thickness h/2 if this latter pla,te is submitted 
to a plane stwss equal to the extreme fiber stress of the bent plate. 

Another a11 ernativ@ for making a bent plate photoelasticnlly effective is to cement 
together two plates, both of photoelastic material, but, having different elastic proper- 
ties. The law of distribution of the flexural stress is no longer linear in such a plate. 
Hence, being bent, it yields an optical effect on a beam of polarized light. 

ilccording to a third method, sheets of photoelastic material are bonded on a reflec- 
tive surface of a plate of any elastic material and any dimensions.” The behavior of 
such sheets in a beam of polarized light yields all data regarding the strain in the 
extreme fibers of the tested plate. The method allows us to investigate the strain in a 

1 For this m&hod, due to R. V. Southwell, see S. Timoshenko and J. N. Goodier, 
“Theory of Elasticity,” 2d ed., p. 468, New York, 1951. See also F. S. Shaw, (‘An 
Introduction to Itrlaxation Methods,” Dover Publications, Sew York, 1953, where 
further bibliography is given. Another method of successive approximation in using 
the finite differences equation was developed by H. Liebman, Die angcndhcrtc 
Ermittlung harmonischer Funktionen und konformer Abbildungen, Sit&~. 
Miinchen. Akarl., p. 385, 1918. The convergency of this method was disc11ssed b? 
F. Wolf, Z. angew. Math. Me&., vol. 6, p. 118, 1926, and by R. Cournnt, Z. ccn~ew. 
Math. ilfech., vol. 6, p. 322, 1926. For an improved method see also R. Zurmiihl, Z. 
angew. Math. Mech., vol. 37, p. 1, 1957. 

2 An electromechanical method in measuring curvatures of a bent slab was used by 
W. Andr&, F. Leonhardt, and R. Kriegcr, Bauingeniew, vol. 33, p. 407, 1958. 

3 See for instance Timoshenko and Goodier, op. cit., p. 131. 
4 Set J. N. Goodier and G. H. Lee, J. Appl. Mechanics, vol. 8, p. A-27, 1941, and 

&T. Dantu, Ann. ponts et chaussdes, p. 281, 1952. 
5 See H. Favre, Schweiz. Bauztg., 1950. For application of the method to a canti- 

lever plate of variable thickness see H. Schwieger and G. Haberland, Z. angew. Math. 
Mech., vol. 36, p. 287, 1956. 

6 This photostress method is due in principle to A. Mesnager (1930), but its practical 
application has been realized only recently; see, for example, F. Zandman and M. R. 
Wood, Prod. Eng., September, 1956. For application of the so-called freeze proceduw 
to plates, see D. C. Drucker, J. Appl. .iiech~anics., ~01. 9, p. A-161, 1942. 
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slab which is part of an actual structure and subjectled to the actual loading, rather 
than being restricted to a model of the slab. 

Use of Rejlected Light.’ The effect of a reflective surface of a strained plate on the 
direction of txo adjacent light beams can be used to calculate the surface curvatures 
~%/dx2, #w/d!/?, and d%o/~.x 8~1, and, consequently, also the values of the flexural and 
torsional moments of t.he plate. For the same pur~)osc the distortion of a luminous 
rectangular mesh projected on the initially plane surface of the plate may be used. 
ICspcrinlly valuable are results obtained in this way for plates on elastic foundation, 
whose mechanical properties never can be expressed in a perfect manner analytically. 

The Interfercmce Meth,od. Similar to th, 1 e c assic method used for determination of 
Poisson’s ratio on beams, the interference met,hod has also been applied to measure 
the deflccrions of a bent plate.2 

Analogy bctmmn Plme Slress and Plate Bending.3 There is an analogy between the 
plate deflection, governed by the difrcrcntial equation AALO = 0 on the pa.rticular case 
of edge forces acting alone, and iliry’s stress function p satisfying the equation AA,+, = 0. 
Whereas the function VI yields the curvatures of the deformed plat,e, Airy’s function 
yields the components gz = i12,~/d1/2, ny = i)2~/~W, and 7Xy = --dzppli)x ity of the plane 
stress in an e!astic solid. I’rovidcd the contour, say f&y) = 0, is the sarnc in both 
cases, we can put 

where K is an arbitrary constant, such that the curvatures remain small. 
Measured deflections ID can be used for computation of the components of the plane 

stress and vice versa if certain conditions of analogy are satisfied both on the boundary 
of the plate and on that of the elastic solid.4 

1 For theory of the method and its application to various problems of bending of 
plates see M. Dantu, Ann. pods et chaussdes, 1940 and 1952. See also G. Bowen, 
Eng. News-Record, vol. 143, p. 70, 1949. 

2 See R. Landwehr and G. Grabert, Inyr.-Arch., vol. 18, p. 1, 1950. 
3 Established by K. Wieghardt., Milt. Forschungsarb. Zngenieurwesens, vol. 49, 1908. 

For a further extension of the analogy see H. Schaefer, Abhandl. Bmunschweig. wiss. 
GM., vol. 8, p. 142, 1956. 

4A simple formulation of those conditions is due to M. Dantu, Ann. ponts et 
chausst?es, p. 386, 1952. For experimental methods based on analogy with electrical 
phenomena see R. H. MacNea,l, J. Appt. Mechanics, vol. 18, p. 59, 1951, and K. 
\\‘otruba, Czechoslov. J. I’hp., vol. 2, p. 56, 1!153. Further information on various 
experimental methods may lje found in 1,. Fijppl and E. MBnch, “Praktische Span- 
nungsoptik,” 2d cd., Berlin, 1959. 



CHAPTER 11 

BENDING OF ANISOTROPIC PLATES 

85. Differential Equation of the Bent Plate. In our previous discus- 
sions we have assumed that the elastic properties of t’he material of the 
plate are the same in all directions. There are, however, cases in which 
an anisotropic material must be assumed if we wish to bring the theory 
of plates into agreement with experiments.’ Let, us assume that the 
material of the plate has three planes of symmetry with respect to its 
elastic properties.2 Taking these planes as the coordinate planes, the 
relations between the stress and strain components for the case of plane 
stress in the xy plane can be represented by the following ecluations: 

It is seen that in the case of plane stress, four constants, EL, EL, E”, and 
G, are needed to characterize the elastic properties of a material. 

Considering the bending of a plate made of such a material, me assume, 
as before, that linear elements perpendicular to the middle plane (zy 
plane) of the plate before bendin, u remain straight and normal to the 
deflection surface of the plate after bending.3 Hence we can use our 
previous expressions for the components of strain: 

1 The case of a plate of anisotropic nlaterial WLLS disc~~sscd hy J. Boussinesy, J. n~&.~ 
ser. 3, vol. 5, 1879. See also Saint Venant’s translation of “‘l’hkorie de 1’6lasticit6 dcs 
corps solides,” by A. Clebsch, note 73, p. 693. 

2 Such plates sometimes are called “orthotropic.” The bending of plates with mow 
gcncrnl elast,ic properties has been considered by S. G. Lechnitzky in his book ” -‘Lnixo- 
tropic Plates,” 2d cd., Moscow, 1957. 

3 The effect of transverse shear in the case of anisotropy has been considered by 
Ii. Girkrnann and R. Beer, Chew. Ingr.-Arch., vol. 12, p. 101. 19.58. 

364 
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The corresponding stress components, from Eqs. (a), are 

With these expressions for stress components the bending and twisting 
moments are 

1 
h/2 

M, = a,~ dz = - 
~ tc : 2 

I^ 

h/2 
ill ,, = u,gi dz = - 

-h/2 

s 

h/2 
A~,, = - 

d2W 
rzvz dz = 2D,, __ 

-h/2 ax ay 

(212) 

in which 
D _ E”/h” E’h” 

z 12 
D, = +- D, = T D,, = $ (d) 

Substituting expressions (212) in the differential equation of equilibrium 
(100)) we obtain the following equation for anisotropic plates: 

Int,roducing the notation 
H = DI + 20, 

we obtain 

D,g+2H .:4 &2-Wi,$=~ 

(e) 

(213) 

The corresponding expressions for the shearing forces arc readily obtained 
from the conditions of equilibrium of an element of the plate (Pig. 48) 
and the previous expressions for the moments 

Vz = - & D, 2 i- 11 
( 

Q, = - “, ( Du $ + 11 

In t,he particular case of isotropy we have 

Thus, we have 

(214) 
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Hence 

D, = D, = ~- 
I<h” 
~~~ -- 

12(1 - Y”) 

H = D + ‘21) 
fi 

> 

15-11~~ 
1 + -c-+, = lZ(l - $) Vi 

Equation (213) can be used in the investigation of the bending of plates 
of nonisotropic and even nonhomogeneous material, such RS reinforced 
concrete slabs,’ which has different flexural rigidities in two mutually 
perpendicular directions. 

86. Determination of Rigidities in Various Specific Cases. The expressions (c/l 
given for the rigidities in the preceding article are subject to slight modifications accord- 
ing to the nature of the material cn~ployed. In particular, all values of torsional 
rigidity D,, based on purely theorcticnl considerations should he regarded as a first 
approsimatlon, and a direct test as shown in Fig. 25c must be recommended in order 
to obtain more rclinble values of the modulus G. Usual values of the rigidities in some 
cases of practical interest are given below. 

ZZrir;forc~l Concrele Slubs. Let E, be Young’s modulus of steel, E, that of the con- 
crete, ve Poisson’s ratio for concrete, and n = Z?,/Z?~. In terms of the elastic con- 
stants introduced in Art,. 85 wvc hnvc approsimatrly Ye = I E”/-\/E,E,. For a slab 
with two-way reinforccrrrent in the directions z and I/ we can assume 

(a) 

In these equations, I,, is the moment of inertia of the slab material, I,, that of the 
reinforcement taken about the neutral axis in the section z = constant, and I,, and 
I,, are the respective values for the section 11 = constant. 

!Vith the expression given for D,, (also recommended by Huber) we obtain 

and the differential equation 

H = z/D,D, (b) 

1 The application of the theory of anisotropic plates to rcinforccd concrete slabs is 
due to M. T. Huber, who published a series of papers on this subject; see Z. &twr. 
Tny. IL. Archilcktur Ver., 1914, p. 557. The principal results arc coliwtcd in his books: 
.‘Tc:orya Plyt,” IIvov, 1922, and “Probleme der Statik technisch wichtiger orthotroper 
l’l:~ttcn,” \~arsa~v, 1929. .ibstracts of his paper3 are given in (‘orrlpf. WM~., vol. 170, 
pp. Xl and 13u<5, 1920: unJ WI. IdO, p. 124s. 1925. 
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which can readily be reduced to the form (103) by introducing y1 = 1/ m asa 
ne\v variable. 

It is obvious that the values (a) are not independent of the state of the concrete. 
For instance, any difference of the reinforcement in the directions z and 21 will af-fect 
the ratio D,/D, much more after cracking of the concrete than before. 

/‘/!/wood. For a plate glued together of three or five plies, the z axis supposed to be 
parallel to the face grain, me may use the constants given in Table 79. 

TABLE 79. ELASTIC CONSTANTS FOR Pr,~woou 

!- 

Unit = 10” psi 

Maple,* 5-ply. 1.87 
Afara,*3-ply.......................... I .96 
Baboon* (Olroum@), 3-ply.. 1.28 
Birch,? 3- and 5-ply. 2.00 
Birch1 with bakelite membranes. 1.70 

- 

0. GO 
I--- ~~ 
i 0.073 

O.lG5 
0.11 
O.lGi 

i 
0.043 
0.014 

i 0.077 
0.85 0.061 

-i- 
-- 

G 

/ 
- 

0.159 
0.110 
0.085 
0.17 
0.10 

* By R. E’. S. Harmon and E. H. Adams, Brit. J. Appl. Phys., vol. 3, p. 155, 1952. 
f By S. G. IJechnitjzky, “ Anisotropic Plates,” p. 40, Moscow, 1947. 

IL 

x 

Fro. 186 

Corrtcynted Sheet. Let ti and Y be the elastic constants of the matwial of tllc, shwt, 
h its thickness, 

z = f sin z 
/ 

the form of the corrugation, and s the length of t,hr src of one-half a maw (Fig. 186). 
Then we have’ 

D, = i Eh3 

6 I’,(1 - V2) 
D, = El 
D, -0 

H = 21>,, = f Eh3 
I 12(1 + V) 

1 SW E. Scydel, Rer. c&t. Versuchsanstalt Lxf(fahrt, 1931. 
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in which, approximately, 

Plate Reinforced by Equidistant Sti$eners in One Direction. For a plate reinforced 
symmetrically with respect t,o it,s middle plane, as shown in Fig. 187, we may take’ 

D, = H = _G-!c 
12(1 - 9) 

Eh3 
D,=-- 

12(1 - 9) 

in which E and Y are the elastic constants of the material of the plating, E’ t)he Young 
modulus, and I the moment of inertia of a stiffener, taken with respect to the middle 
axis of the cross section of the plate. 

FIG. 1517 FIG. 188 

Plnte Cross-stiflened by Two Sets of Equidistanf Stifleners. Provided the reinforce- 
ment is still symmetrical about the plating we have 

D, = 
Eh3 

12(1 - 2) 

Eh3 D, = ___.~~ E’I, 

12(1 - 9) + .-ii,- 

Eh3 
H= 

12(1 - 3) 

1, being the moment of inertia of one stiffener and b, the spacing of the stiffeners in 
direction z, and Iz and aI being the respective values for the stiffening in direction y. 

Slab Reinforced by a Set of Equidistant Ribs. In the case shown in Fig. 188 the 
theory established in Art. 85 can give only a rough idea of the actual state of stress and 

1 Recommended by Lcchnitzky, op. cit. For more exact values see N. J. Huffington, 
J. Appt. Mechanics, vol. 23, p. 15, 1956. An csperimcntal determination of the 
rigidities of stiffened and grooved plates was carried out, by IV. H. Hoppmann, N. J. 
Huffington, and L. S. Magness, J. Appl. Mech,anics, vol. 23, p. 343, 195G. 
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strain of the slab. Let E be the modulus of the material (for instance, concrete), 
I the moment of inertia of a T section of width a,, and 01 = h/H. Then we may 
assume 

D, = 
Ead3 

12(ar - t + &) 

D, = E’ 
al 

D, = 0 

The effect of the transverse contraction is neglected in the foregoing formulas. The 
torsional rigidity, finally, may be calculated by means of the expression 

in which D:, is the torsional rigidity of the slab without the ribs and C the torsional 
rigidity of one rib.’ 

87. Application of the Theory to the Calculation of Gridworks. Equa- 
tion (213) can also be applied to the gridwork system shown in Fig. 189. 

Y Y (0) (0) (b) 

FIG. FIG. 189 189 
(b) 

. . 

This consists of two systems of parallel beams spaced equal distances 
apart in the x and y directions and rigidly connected at their points of 
intersection. The beams are supported at the ends, and the load is 
applied normal to the xy plane. If the distances al and br between the 
beams are small in comparison lvith the dimensions a and b of the grid, 
and if the fiexural rigidity of each of the beams parallel to the x axis is 
equal to Bi and that of each of the beams parallel to y axis is equal to Bz, 
we can substitute in Eq. (213) 

1 For a more exact theory concerning slabs with ribs in one or two directions and 
leading to a differential equation of the eighth order for the deflection see K. Trenks, 
Bauingenieur, vol. 29, p. 372, 1954; see also A. Pfliiger, Zngr.-Arch.,vol. 16, p. 111,1947. 
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The quantity D1 in this case is zero, and the quantity D,, can be expressed 
in terms of the torsional rigidities CI and Cz of the beams parallel to the 
x and y axes, respectively. For this purpose we consider the twist of an 
element as shown in Fig. 189b and obtain the following relations between 
the twisting moments and the twist d2w/ds &J: 

Substituting these expressions in the equation of equilibrium (e) on page 
81, WC find that in the case of the syst’em rcprcsentcd in Fig. 189a the 
differential equation of the deflection surfacc is 

which is of the same form as Eq. (213). 

In order to obtain the final expressions for the flexural and torsional moments of a 
rib we still have to multiply the moments, such as given by Eqs. (212) and valid for 
the unit width of the grid, by the spacing of the ribs. The variation of the moments, 
say ill, and M,,, may be assumed parabolic between the points (no - I) and 
(nl + 1) and the shaded area of the diagram (Fig. 190) may be assigned to the rib 

b,---m-&------b, 
FIG. 190 

(m) running in the direction 2. Then, observing the expressions (212), WC obtain the 
following approximate formulas for both moments of the rib (m) : 

Cl 
24 

+ 

(cl 

For ribs of the direction y we have to interchange x and y in the foregoing expressions 
and replace B1 by Bz and Cl by C,; (m - l), (m), and (n! + 1) then denote three 
surcessive joints on a rib having the direction x. 
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Two parameters largely defining the elastic properties of a grid and often used in 
calculation are 

The parametjer X multiplied by the side ratio a/b (Fig. 189) yields the relative carrying 
capacity of a rectangular plate in the directions IJ and CZ, whereas the parameter p 
chnractcrizes the torsional rigidity of a grid as compared with its flexural rigidity. 

Equation (215) has been extensively used in investigating the distribution of an 
arbitrarily located single load between the main girders of a bridge stiffened in the 
transverse direction by continuous floor beams.1 

88. Bending of Rectangular Plates. When the plate is simply sup- 
ported on all sides Eq. (213) can be solved by the methods used in the 
case of an isot-ropic plate. Let us apply the Navier method (see Art. 28) 
and assume that the plate is uniformly loaded. Taking the coordinate 
axes as shown in Fig. 59 and representing the load in the form of :I double 
t,rigonomebric series, the differcntinl equation (213) becomes 

= y 2 -$ & sin ?“,” sin I?!+ (a) 

m=1,3,5 ,... n=1,3,5 ,... 

X solution of this equation that satisfies the boundary conditions can be 
taken in the form of the double trigonometrical series 

w= 2 2 a,m,sirlysiny (b) 
nc= I.%.~. ,1=1.3,5 , 

Substituting this series in Eq. (a), we find the following expression for the: 
coefficients a,,,,, : 

i Factors giving tha distribution of a single load have been calculated for p = 0 by 
Y. Guyon, Ann. pants ct chaws&s, vol. 116, p. 553, 1946, and for p # 0 by C. Ma.s- 

sonnet, Pubis. Intern. Assoc. Bridge and Structural Engrs., vol. 10, p. 147, 1950. FOI 
vcrificnt,ion of calculated results by test see I<. Sattler, Bauingenieur, vol. 30, p. 77. 
1955, and also M. Naruoka and H. Yonczawa, Pubis. Inkrn. Assoc. Bridge and 

Strltctu& Engrs., vol. 16, 1956. For skewed grids see S. Woinowsky-Krieger, fmqr.- 
. I wh., vol. 25, p. 350, 1957. 
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Hence the solution of Eq. (a) is 

w=$F 2 2 q-;,~;;~+gDu, (cl 

n&=1,3,5, ., n=1.3.5 ,_.. 

In the case of an isotropic material D, = D, = H = D, and this solution 
coincides with t’hat given on page 110. 

Furthermore, let us consider the particular case of H = dDzD, 
already mentioned on page 366. Comparing expression (c) with the 
corresponding expression (131) for the isotropic plate, we conclude that 
the deflection at the center of such an orthotropic plate with rigidities 
D,, D,, and the sides a, b is the same as that of an isotropic plate having 
a rigidity D and the sides a0 = a i/nmz and b. = b yD/D,. In like 
manner the curvatures of the orthotropic plate may be expressed by 
those of a certain isotropic p1at.e. The deflection and the bending 
moments at, the center of the orthotropic plate obtained in this way 
can be expressed by the formulas 

n/I, = 

M, = 

where a, 01, and Pz are numerical cocfficientsl given in Table 80 and 

(4 

As a second example let us consider an infinitely long plate (Fig. 74) 
and assume t)hut the load is distributed along the x axis following the 
sinusoidal relation 

q = q. sin !!?!I% 
a 

In this case Eq. (213) for t,he unloaded portions of the plate becomes 

(f) 

1 Calculated by M. T. Huber, “Probleme der Statik technisch wichtiger orthotroper 
Platten,” p. 74, Warsaw, 1929. For numerical data regarding uniformly loaded 
rectangular plates with various edge conditions and various torsion coefficients, see 
H. A. Schade, Trans. Sot. Natal rlrchitects llfarine Engrs., vol. 49, pp. 154, ISO, 1941. 
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TABLE 80. CONSTANTS LY, ,T~, AND fl? FOR A SIMPLY SUPPORTED RECTANGULAR 
ORTHOTROPIC PLATE WITH H = 1/D,D,, EQS. (d), (c) (Fig. 59) 

6 

I 
1.1 
1.2 
1 .3 
1.4 
1.5 
1.G 
1.7 

- 

0.00407 
0.00488 
0.00565 
0.00639 
0.00709 
0.00772 
0.00831 
0.00884 

I- 

- 

82 c a 

0.0368 0.0368 1.8 0.00932 
0.0359 0.0447 1.9 0.00974 
0.0344 0.0524 2.0 0.01013 
0.0324 0.0597 2.5 0.01150 
0.0303 0.0665 3 0.01223 
0.0280 0.0728 4 0.01282 
0.0257 0.0785 5 0.01297 
0.0235 0.0837 10 0.01302 

- 

- 

T 
B2 

0.0214 0.0884 
0.0191 0.0929 

0.0174 0.0964 
0.0099 0.1100 
0.0055 0.1172 
0.0015 0.1230 
0.0004 0.1245 
0 , 0.1250 

A solution of this equation, satisfying the boundary conditions at the 
sides parallel to the y axis, can be taken in the following form: 

‘10 = Y, sin 7 (h! 

where Y,,, is a function of y only. Substituting this in I4q. (s), we obtaitl 
the following equation for determining the function Y,: 

D Yxv - 2H 
mW 

ZI m a2 Yz+ DzTym =o 

The roots of the corresponding characteristic equation are 

IJsing, in accordance with Eq. (d), Art. 87, the notation 

(.i) 

@) 

we have to consider the following three cases: 

Case 1, p > 1: 

Case 2, p = 1: 

Case 3, p < 1: 

Hz > D,D, 

Hz = D,D, (0 

Ha < D,D, 

In the first case all the roots of Eq. (j) are real. Considering the part 
of the plate with positive y and observing that the deflection w and its 
derivatives must vanish at large distances from the load, we can retain 
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only the negative roots. Using the notation 

t,hc integral of Eq. (i) becomes 

y, = A,,te-v)Lyia + B,e-“y/O 

and expression (h) can be represented in the form 

From symmetry we conclude that along the 5 axis 

0 

and we find 

B,, = - a A,, 

The coefficient A, is obtained from the condition relating to the shearing 
force Q, along the x axis, which gives 

Substituting for w its expression (n), we obtain 

and the final expression (7~) for the deflection becomes 

In the second of the three cases (I) the characteristic equation has two 
double roots, and the function Y, has the same form as in the case of an 
isotropic plate (Art. 36). In the third of the cases (I) we use the notation 
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and thus obtain the solution 

We can also shift) from case 1 t’o case 2 by using t,hc complex relations 

1 1 .I 
-=7--2-i a! P ff 
1 1 
6==3’+i$ 

(4 

Having the deflection surface for the sinusoidal load (,f), the deflection 
for any other kind of load along t,he x axis can be obtained by expanding 
the load in the series 

P 

c 

. m7rx 
rl= a,, sin - 

a 
VL=l 

and using the solution obtained for the load (f) for each term of this 
series. The following expressions hold when, for instance, a load P is 
concentrated at a point 2 = E, y = 0 of the infinite strip (Fig. 72): 

Case 1, p > 1: 

Expressions in closed form’ can be obtained for bending moments due to 
a single load in a manner similar to that used for the isotropic plate in 
h-t. 35. 

IIaving this solution, the deflection of the plate by a load distributed 

1 See W. Nowacki, Acta Tech. Acad. Sci. Hung., vol. 8, p. 100, 1954; 8. Woinowsky- 
Gieger, Zngr.-drch., vol. 25, p. 90, 1957. Numerical results regarding influence 
surfaces of orthotropic rectangular plates may be found in H. Olsen and F. Reinitz- 
huber, “Die zweiseitig gelngert>e l’lat,tc,” Berlin, 1950, and in 11. Hornberg and 
J. \\‘eiurneistcr, “ l3influssfl~ichcn fiir Kreuswerke,” 2d ed., Berlin, 1956. 
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over a circular area can be obtained by integration, as was shown in the 
case of an isotropic plate (see Art. 35). By applying the method of 
images the solutions obtained for an infinitely long plate can be used in 
the investigation of the bending of plates of finite dimensions.’ 

89. Bending of Circular and Elliptic Plates. A simple solution of Eq. (213) can be 
obtained in the case of an elliptic plate clamped2 on the boundary and carrying a 
uniform load of intensity p. Provided the principal directions z and IJ of the ortho- 
tropic material are parallel to the principal axes of the ellipse (Fig. 157) the expression 

in which 

(4 

satisfies Eq. (213) and the required conditions on the boundary. The bending 
moments of the plate are readily obtained by means of expressions (212). In the 
particular case of a clamped circular plate (a = b) we have the following results: 

w = du2 - +Y2 
G1D’ 

M, = -&, [(Dz + &)(a2 - r2) - 2(Ds2 + Dly2)1 

M, = & [CD, + Dd(a” - +I - W4,y2 + &z2)1 

Jfz, = &, Dq,xy 

Qz = - g; (30, + H) 

(cl 

Q,, = - & (30, + H) 

in which 

r = 4x2 + lJ2 and D’ = 9(3D, + 2H + 30,) 

Since the twist is zero along the edge, the reactions of the support are given by a linear 
combination of the boundary values of the shearing forces QZ and Q, (see page 87). 

A straightforward solution can also be obtained in the case of pure bending or pure 
twist of an orthotropic plate. Let such a plate be subjected to uniform couples 
M, = Ml, M, = Mz, and M,, = Ma. By taking the deflection in the form 

w = Ax2 + Bxr/ + cyz (4 

1 Several examples of this kind are worked out in the books by M. T. Huber: 
“Teorya l’lyt,” Lvov, 1922, and “Probleme der Statik tcchnisch wichtiger orthotroper 
Platten,” II’arsaw, 1929. 

2 For bending of a simply supported elliptical plate, see Y. Ohasi, 2. angew. Math. z(. 
Phys., vol. 3, p. 212, 1952. 
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we obviously satisfy the differential equation (213). The constants A, B, and C then 
are given by the linear equations 

D,A + DIG = -&Ml 
DIA -f D,C = -+Mz 

D,,B = +M, 
(e) 

which ensue from the expressions (212). 
The bending of a circular plate with cylindrical acolotropy has been discussed too.1 

If, in addition to the elastic symmetry, the given load distribution is also symmetrical 
about the center of the plate, then the ordinary differential equation of the bent plate 
contains only two flcxural rigidit)ies, the radial and the tangential. Formal solutions 
of this equation for any boundary conditions are simple to obtain; the choice of the 
elastic constants of the material, however, rcqliircs special consideration since certain 
assumptions regarding these constants lead to infinite bending moments at the center 
of the plate even in the case of a continuously distributed loading. 

Most of the special methods used in solving the problems of bending of an isotropic 
plate (Chap. IO) can be applied with some modifications to the case of an anisotropic 
plate as well. 

If we take the complex variable method,” for example, the form of the solution 
proves to be different from that considered in Art. 79. As can be shown, it depends 
upon the roots pl, pz, -pi, and -p2 of the characteristic equation 

Dl/p4 + 2Hp2 + D, = 0 

which are tither imaginary or complex. These roots being determined, the solution 
of the homogeneous equation D, i)n~ul/r7x4 + 2H d4wl/itx2 ay2 + D, a%,/ag = 0 can 
be represented either in the form 

if pi # p?, or else in the form 

if pi = pz. In thcsc expressions rpi and (Do arc arbitrary analytic functions of the com- 
plex variables z1 = 5 + p,y and z2 = 2 + pzy. 

In using the Ritz method, expression (6) of Art. 80 for the strain energy has to be 
replaced by the expression 

while the rest of the procedure remains the same as in the case of the isotropic plate. 

1 G. F. Carrier, J. Appl. Jfcchanics, vol. II, p. A-129, 1944, and J,echnitzky, op. tit. 
2 See S. G. Lechnitzky, Z’riZ&zd. Mat. dfelchan., vol. 2, p. 181, 1938, and V. Morcovin, 

Quart. Appl. dZath., vol. 1, p. 116, 1943. For application of the method to the problem 
of stress concentration, see also G. X. Snvin, “Stress Concentration around Holes,” 
Moscow, 1951, and S. G. Lechnitzky, Znzhenernyi Sb~tzili, vol. 17, p. 3, 1953. Stress 
concentration in isotropic and anisotropic plates was also discussed by S. Holgate, 
Proc. Roy. Sot. London, vol. 185h, pp. 35, 50, J94ti. 



CHAPTER 12 

BENDING OF PLATES UNDER THE COMBINED ACTION 
OF LATERAL LOADS AND FORCES IN THE MIDDLE 

PLANE OF THE PLATE 

90. Differential Equation of the Deflection Surface. In our previous 
discussion it has always been assumed that the plate is bent by lateral 
loads only. If in addition to lateral loads there are forces acting in the 
middle plane of the plate, these latter forces may have a considerable 
cffcct on the bending of the plate and must be considered in deriving the 
corresponding differential equation of the deflection surface. Proceed- 
ing as in the case of lateral loading (see Art. 21, page 79), we consider 
the equilibrium of a small element cut from the plate by two pairs of 
planes parallel to the zz and yz coordinat’e planes (Jl’ig. 191). In addi- 
tion to the forces discussed in Art. 21 WC now have forces acting in the 

middle plane of the plat’e. We denote the 

mx 
magnitude of these forces per unit length by 
N,, N,, and N,, = N,,,, as shown in the figure. 
Projecting these forces on the zc and y axes 

2 
/ 1 N,+%dx 

and assuming that, there are no body forces or 

I I kl) 
tangential forces :&ng in those directions at 

I NyI 
N +*dx 

w+ 

X 
the faces of the plate, we obtain the following 
equations of equilibrium : 

x dx a,v, a,v,, 
NX “NXY +y dx 

(TLC 
-+,i/=o 

Y +\ aN (216) 
* 
‘\ 

-‘N,,d%jy 
2 + !!!!I = 0 

‘\ 
dy 

‘NY +*dy 
dy 

These equations are entirely independent of 

(b) the three equations of equilibrium considered 

FIG. 191 in Art. 21 and can be treated separately, as 
mill be shown in Art. 92. 

In considering the projection of the forces shown in Fig. 191 on the 
z axis, we must, take into account the bending of the plate and the 
resulting small angles between the forces N, and N, that act on the 
opposite sides of the element. As a result of this bending the projection 

378 
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of the normal forces N, on the z axis gives 

-N’dyg + N, + $.c 

ilfter simplification, if the small quantities of higher t,han t#he second 
order are neglected, t,his projection hccomes 

d3W ai\T, aw 
N, - dx d!J + ~ - dr dy a.9 ax aa (a) 

In the same day the projection of’ the normal forces iVw on the z axis gives 

Regarding the projection of t>he shearing forces Y,,, on the 2 asis, WC 
observe that the slope of the deflection surface in the !J direction on the 
t,\vo opposite sides of the element is aw/ay and aw/ay + (@w/&c a!J) dx. 
Hence the projection of the shearing forces on the z axis is equal to 

N,,. a2W ~ d:c dy + 
aN,, au] 

a.c a,tj 
~ - dx dy 

a~ ay 

An analogous expression can be obtained for the projection of the shear- 
ing forces N,, = N,, on the z axis. The final expression for the projec- 
tion of all the shearing forces on the z axis then can be -written as 

a% m,,, ___ a.r a,?/ dx dy + Cc) 

Adding expressions (a), (6), and (c) to the load q dx dy acting on the ele- 
ment and using Eqs. (21(i), we obtain, instead of Eq. (100) (page Sl), the 
following equation of equilibrium: 

Substitut)ing expressions (101) and (102) for M,, U,, and M,,, we obtain 

a;+2& +g 

= $ 
( 

q + N, g + N, $ + 2X,, * ax ay > 
(217j 

This equation should be used instead of Eq. (103) in determining tht: 
deflection of a plnt,e if in addition to lateral loads there are forces in the 
middle plane of the plate. 
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If there arc body forces’ acting in the middle plane of the plate or tangential forces 
distributed over the surfaces of the plate, the differential equations of equilibrium 
of the element shown in Fig. 191 become 

Here X and Y denote the two components of the body forces or of the tangential 
forces per unit area of the middle plane of the plate. 

Using Eqs. (218), instead of Eqs. (21G), we obtain the following diffcrcntial equa- 
tionZ for the deflection surface: 

Equation (217) or Eq. (219) togcthcr with the conditions at the boundary (see Art. 22, 
page 83) defines the deflection of a plate loaded 

h x laterally and submitted to t,he action of forces in the 
middle plane of the plate. 

91. Rectangular Plate with Simply Supported 
Edges under the Combined Action of Uniform 
Lateral Load and Uniform Tension. Assume 

FE. 192 
that the plnte is under uniform tension in the 
li: direction, as shown in Fig. 192. The uniform 

lateral load p can be represented by the trigonometric series (see page 109). 

Equation (217) thus becomes 

This equation and the boundary conditions at the simply supported edges 

1 An example of a body force acting in the middle plane of the plate is the gravity 
force in the case of a vertical position of a plate. 

2 This differential equation has been derived by Saint Venant (see final note 73) in 
his translation of Clebsch, “ThBorie de 1’6lasticit6 des corps solides,” p. 704, 1883. 
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will be satisfied if we take the deflection w in the form of the series 

w= cc arrLn sin 7 sin Z2 
b Cc) 

Substituting this series in Eq. (b), we find the following values for t,he 
coefficients a,,,, : 

in which m and n are odd numbers 1, 3, 5, . . . , and al,L,L = 0 if tn or n 
or both are even numbers. Hcncc the deflection surface of the plate is 

Comparing this result with solution (131) (page llO), we conclude from 
the presence of the term N,m2/a2Dae in the brackets of the denominator 
that the deflection of the plate is somewhat diminished by the action of 
the tensile forces N,. This is as would be expected. 

By using M. L&y’s method (see Art. 30) a solution in simple series 
may be obtained which is equivalent to expression (e) but more con- 
venient for numerical calculation. The maximum values of deflection 
and bending moments obt’ained in this way’ for v = 0.3 can be represented 
in the form 

The constants LY, /3, and p1 depend upon the ratio a/b and a parameter 

and are plotted in Figs. 193, 194, and 195. 
If, instead of tension, we have compression, the force N, becomes 

l H. D. Conway, J. Appl. fifechanics, vol. 16, p. 301, 1949, where graphs in the case 
of compression are also given; the case N, = N, has been discussed by It. F. Morse 
and H. D. Conway, J. A&. Il~echanics, vol. 18, p. 209, 1951, and the case of a plate 
clamped all around by C. C. Chang and H. D. Conway, J. A&. Mechanics, vol. 19, 
p. 179, 1952. For combined bending and comprcesion, see also J. Lockwood Taylor, 
The Shipbuilder and Blarine ErLgi?Le BGldar, no. 494, p. 15, 1950. 
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negative, and the deflections (e) become larger than those of the plate 
bent by lateral load only. It may be seen also in this case that at cer- 
tain values of the compressive force N, the denominator of one of the 
terms in series (e) may vanish. This indicates that at such values of N, 
the plate may buckle laterally without any lateral loading. 

92. Application of the Energy Method. The energy method, which 
was previously used in discussing bending of plates by lateral loading 
(see Art. 80, page 342), can bc applied also to the cases in which the 

f 
0.08 

OL 

0.06 

““‘: 
1 2 3 L 

o-+ 
b 

FIG. 193 

lateral load is combined with forces acting in the middle plane of the: 
plate. To establish the expression for the strain energy corresponding 
to the latter forces let us assume that these forces are applied first to the 
unbent plate. In this way we obtain a two-dimensional problem which 
can be treated by the methods of the theory of elasticity.’ Assuming 
that this problem is solved and that the forces N,, N,, and N,, are known 
at each point of the plate, the components of strain of the middle plane 
of the plate are obtained from the known formulas representing Hooke’s 

1 See, for example, S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2d 
ed., p. 11, 1951. 
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law, uiz., 

The strain energy, due to stretching of the middle plane of the plate, is 
then 

VI = &fJ(N,c, + NUT!, + Nq,rzI,) dx dy 
1 = -- 

2hE 
. [N: + NE - 2vNzN, + 2(1 + v)N;,] dz dy (220) 

where the integration is extended over the entire plate. 
Let us now apply the lateral load. This load will bend the plate and 

produce additional strain of the middle plane. In our previous discus- 
sion of hcnding of plates, this latter strain was always neglected. Here, 

1 2 
0, 

3 

b 

FIG. 194 
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0.06 

r I 

2 
‘-+ 

3 4 

b 

FIG. 195 

however, me have to take it into consideration, since this small strain in 
combination with the finite forces N,, N,, N,, may add to the exprcssiolt 
for strain energy some terms of the same order as the strain energy of 
bending. The 2, y, and z components of the small displacement that a 
point in the middle plane of the plate experiences during bending will be 

0 
/#--dx--qs 

denoted by u, v: and w, respectively. 

ri+ 

Considering a linear element AB of that 
x 

Al plane in the R: direction, it may be seen from 

L 
El;--$dx 

\+ 

Fig. 19G that the elongation of the element 
U -/- due to the displacement u is equal t,o 

z ‘\u+lTU-& 
ax 

(&L/&E) dz. The elongation of the name 

FIG. 19ti 
element due to the displacement w ip 
YJ(~w/&LZ)~ da, as may be seen from the com- 

parison of the length of the clement AIBl in Fig. 196 with the length of 
its projection on the x axis. Thus t#he total unit elongation in the z direc- 
tion of an element taken in the middle plane of the plate is 

(221) 
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Similarly the strain in the y direction is 

(222) 

Considering now the shearing strain in the middle plane due to bend- 
ing, we conclude as before (see Fig. 23) that the shearing strain due to 
the displacements u and v is &u/dy + &J/ax. To determine the shear- 
ing strain due to the displacement w we take two infinitely small linear 
elements OA and OB in the x and y directions, as shown in Fig. 197. 
Because of displacements in the z direction these elements come to the 
positions 01Al and 01B1. The difference between the angle P/Z and the 
angle AIOIBl is the shearing strain corresponding to the displacement w. 
To determine this difference we con- 
sider the right angle B,OIA1, in which 
BzOl is parallel to BO. Rotating the 
plane BzO,A, about the axis OlAl by 
the angle dw/ay, we bring the plane y 
B,OlAl into coincidence with the 
planeBIOIA1*andthepoint Bztoposi- 
tion C. The displacement B&is equal 
to (aw/ay) dy and is inclined to t.he ver- 
tical BzBl by the angle &I/&L Hence z 
BIC is equal to (aw/az)(&/ay) dy, FIG. 197 
and the angle COIB1, which repre- 
sents the shearing strain corresponding to tho displacement w, is 
(aw/&)(aw/ay). Adding this shearing strain to the strain produced by 
the displacements u and v, we obtain 

(223) 

Formulas (221), (222), and (223) represent the components of the addi- 
tional strain in the middle plane of the plate due to small deflections. 
Considering them as very small in comparison with the components E,, Ed, 
and yzU use d in the derivation of expression (220), we can assume that 
the forces N,, N,, N,, remain unchanged during bending. With this 
assumption the additional strain energy of the plate, due to the strain 
produced in the middle plane by bending, is 

Vz = JJ"(Nzc:: + N,e: + Nwr:,) dz dy 
Substituting expressions (221), (222), and (223) for & $, and r&,, we 

* The anglrs awl@ and awlax correspond to small deflections of the plate and are 
regarded as small quantities. 
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finally obtain 

It can be shown, by integration by parts, that the first integral on the 
right-hand side of expression (224) is equal to the work done during bend- 
ing by the forces acting in the middle plane of the plate. Taking, for 
example, a rectangular plate with the coordinate axes directed, as shown 
in Fig. 192, we obtain for bhe first term of the integral 

Proceeding in the same manner with the other terms of the first integral 
in expres,Gon (22~L), me finally find 

+ N, 2 + Nz, (“,+g)]dxdy 

The first mtegral on the right-hand side of this expression is evidently 
equal to the work done during bending by the forces applied at the edges 
5 = 0 and II; = a of the plate. Similarly, the second integral is equal to 
the work done by the forces applied at the edges y = 0 and y = b. The 
last two integrals, by virtue of Eqs. (218), are equal to the work done 
during bending by the body forces acting in the middle plane. These 
integrals each vanish in t’he absence of such corresponding forces. 

i2dding expressions (220) and (224) to the energy of bending [see Eq. 
(117), page 881, we obtain the total strain energy of a bent plate under 
the combined action of lxt,cral loads and forces actjing in the middle plane 
of the plate. This strain energy is equal to the work T, done by the 
lateral load during bending of the plate plus the work Th done by the 
forces acting in the middle plane of the plate. Observing that this latter 
work is equal to the strain energy VI plus the strain energy represented 
by the first integral of expression (224), WC conclude that the work pro- 
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duced by the lateral forces is 

(225) 

Applying the principle of virtual displacement, we now give a variation 6~ 
to the deflection w and obtain, from Eq. (225), 

The left-hand side in this equation represents the work done during the 
virtual displacement by the lateral load, and the right-hand side is the 
corresponding change in the strain energy of the plate. The application 
of this equation will be illustrat’ed by several examples in the next article. 

93. Simply Supported Rectangular Plates under the Combined Action 
of Lateral Loads and of Forces in the Middle Plane of the Plate. Let us 
begin with the case of a rectangular plate uniformly stretched in the 
z direction (Fig. 192) and carrying a concentrated load P at a point with 
coordinates t: and 7. The general expression for the deflection that satis- 
fies the boundary conditions is 

m=1,2,3 ,... n=1,2,3 ,... 

To obtain the coefficients CL~ in this series we use the general equation 
(226). Since IV, = N,, = 0 in our case, the first integral on the right- 
hand side of Eq. (225), after substitution of series (a) for w, is 

The strain energy of bending representing the second integral in Eq. 
(225) is [see Eq. (d), page 3431 
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To obtain a virtual deflection 6~ we give to a coefficient anIn an increase 
6am,,,. The corresponding deflection of the plate is 

6w = 6a,,,, wry sin FL? sin __ 
b 

The work done during this virtual displacement by the lateral load P is 

P6a,,,, sin F sin n!?LT? b Cd) 

The corresponding change in the strain energy consists of the two terms 
which are 

ab 
= - N, 

8 (e) 

and 
C?V 

SV = dn 6a,,,, 
n1,n, 

Substituting expressions (d) and (e) in Eq. (226), we obtain 

from which 

Substituting these values of the coefficients amln, in expression (a), we 
find the deflection of the plate to be 

If, instead of the tensile forces N,, there are compressive forces of the 
same magnitude, the deflection of the plate is obtained by substituting 
-N, in place of N, in expression (g). This substitution gives 
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The smallest value of N, at which the denominator of one of the terms 
in expression (h) becomes equal to zero is the critical value of the com- 
pressive force N,. It is evident that this critical value is obtained by 
taking n = 1. Hence 

where m must be chosen so as to make expression (227) a minimum. 
Plotting the factor 

against the ratio a/o, for various integral values of m, we obtain a system 
of curves shown in Fig. 198. The portions of the curves that must be 
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FIG. 198 

used in determining L are indicated by heavy lines. It is seen that the 
factor k is equal to 4 for a square plate as well as for any plate that can 
be subdivided into an integral number of squares with the side b. It can 
also be seen that for long plates IC remains practically constant at a value 
of 4.* Since the value of m in Eq. (227) may be other than 1 for oblong 
plates, such plates, being submitted to a lateral load combined with com- 
pression, do not generally deflect’ in the form of a half wave in the direc- 
tion of the longer side of the plate. If, for instance, a/b = 2, 4, . . . 
the respective elastic surface becomes markedly unsymmetrical with 
respect to the middle line 2 = a/2 (Fig. 192), especially so for values of 
N, close to the critical value (N,),V. 

By using the deflection (g) producrd by one concentrated load, the 

* A more detailed discussion of this problem is given in S. Timoshrnko, “Theory of 
Elastic Stability,” p. 327, 1936. 

1 Several esnmples of such a deformation have been considered by K. Girkmann, 
Stahlbazc, vol. 15, p. 57, 191’2. 



:‘,90 THEORY OF PLATES AND SHELLS 

deflection produced by :aily l:l,t,ernl load can be obtained by superposition. 
.1ssuming, for example, that the plate is uniformly loaded by a load of 
iutcnsity 4, me substit utc q dt dq for P in expression (g) and integrate 
the expression over the entire area of the plate. In this day TX obtain 
the same expression for the deflection of the pl:Lt,e under uniform load as 
has already been derived in another mnnncr (see page 381). 

If the plate laterally loaded by the force P is compressed in the middle 
plane by uniformly distributed forces N, 2nd IV,, proceeding as before 
n-e obt,nin 

The critical value of the forces N, aud N,, is obtained from the 
condition’ 

where m and r~ are chosen so as to make N, and N, a minimum for any 
given value of the ratio N,/N,. In the case of a square plate submitt,ed 
to the action of a uniform pressure p in the middle plane we have a = 0 
and N, = N, = p. Equation (j) then gives 

The critjical vnluc of p is obt’aincd by taking m = IL = 1, \vhich gives 

(228) 

In the case of a plate in the form of an isosceles right triangle with 
simply supported edges (Fig. 161) the deflection surface of the buckled 
plate Tvhich satisfies all the boundary conditions is2 

( 
2xlJ 2n.c w = a sin ?FF sin --- + sin -i- sill y 

a a > 

‘I’hlls the critical value of the compressive stress is obtaiued by substi- 
tuting m = 1, 7~ = 2 or m = 2, n = 1 into expression (1~). This gives 

(229) 

1 A complete discussion of this problem is given in Timoshenko, “Elastic Stabilit,y,” 
p. 333. 

2 This is the form of natural vibration of a square plate having a diagonal as a nodal 
iine. 
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94. Circular Plates under Combined Action of Lateral Load and Tension or Com- 
pression. Consider a circular plate (Fig. 199) submiMed to the simultaneous action 
of a symmetrical lateral load and a uniform compression M, = N, = N in the middle 
plant of the plate. Owing to th e s ope 1 rp of the deformed plate (Fig. 27) the radial 
compression N gives a transverse component N dpp!dr which we hare to add to the 
shearing force & (Fig. 28) due to the lateral load. 
IIcnce the diI’fcrcntia1 equation (54) becomes I 

in which 

In the case of a circular plate without a hole’ the 
solution of Eq. (a) is of the form 

where JI is the Bessel function of the order one, qpo a particular solution of Eq. (a) 
depending on &, and Cl a con&ant defined by the boundary conditions of the plate. 

Let us take as an example a rigidly clamped” plat,e carrying a uniform load of 
intensity (1. Then, as a particular solution, we use 

and thewforr, 

It follows, by integration, that 

C,Cl kr IT 
w = 

k 
~JO - 

0 u 
- :; + (~2 (cl 

where Jo is the Bessel function of the order zero and Cz a second constant. Ha\Yng 
calculated Cl from the condition p = 0 on r = u, anrl Cy from the c.orttlition )I’ = 0 on 
r = a, we obtain the final solution3 

The deflections (1) become infinite for J1(k) = 0. 1)enoting the zeros of the func- 
t,ion J1 in order of their magnitude by j,, j:, \ve SW that the condition k = j, 

1 In the case of a concentric hole a term proportional to a l3c,w~l function of second 
kind must be added to expression (c). The inner boundary must be submitted then 
to the same compression N, or else the problem becomes more complex because of the 
inconstancy of strcsscs iv, and iV1. 

2 The cast of an elastic restraint without transverse load has been discussed by 
H. Heismann, J. Appl. Mechanics, vol. 19, p. 167, 1952. 

3 This result may be found in A. Nddai, “Elastische Plattcn,” p. 255, Berlin, 1925. 
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defines the lowest critical value 

of the compressive stress N. Now, for the function Ji(k) we have the expression 

Jl(k) =;(1-;)(1-2) (h) 

in which jr = 3.83151, j, = 7.01559, . . . As k < j, we can neglect the terms 
k2/j2 beginning with the second parentheses. Observing, furthermore, that 

kZ N 
7=- 
31 NC? 

by virtue of Eqs. (b) and (g) we have, approximately, 

where 

J,(k) = f (1 - a) (9 

IV 01 = -- 
NC, 

(j) 

Making use of the expression (i), it can be shown that, approximately,i 

where wq is the deflection due to the load Q alone. Cases with other boundary condi- 
tions and other laws of distribution of the lateral load may bc handled in like manner. 
In the general case of a symmetrical lateral load combined with coinpression we can 
put, approximately, for the center of the plate (r = 0) 

and on the boundary (r = a) 

(k) 

where w,, rclntcs to a plate carryin g the given lateral load alone and cy = N/N,, has 
the following meaning: 

For a simply supported plate: 
Na? 

==4.20L) 

NaZ 
(711) 

For a clamped plate: 
a=14.680 

i See 0. Pettersson, Acta Polytech., Stockholm, no. 138, 1954. The following results 
are taken from this paper, in which, more geuerally, an elastic restraint at the edge is 
assumed. 
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TABLE 81. VALUES OF CONSTANTS IN APPROXIMATE EXPRESSIONS (k) AND (1) 
v = 0.3 

( lase 

I 

2 

3 

4 

5 

Load distribut,ion 

__--.~___ 
Uniform edge couples 

T 
Boundary 
conditions 

I- 
Simply supported 

Uniform load 

l- 

Simply supported 

Clamped 

1 - 
Central uniform load over area Simply supported 
of radius EG 

/ Clamped 
/ 

- 

I- I 

r- 
, - 

Const,ants 

co = 0.305 
c’ = -0.270 

c” = -1.219 

c”= -1+ 
2.153 -___ 

1 - 1.3lnt 
c’ = c” = 0.205 

1.308 C@Z -I-__ 
In L: 

J’ = 0.0539 , 

the former value being valid for Y = 0.3. The values of the constants cO, c’, and c” are 
given in Table 81. 

If the circular plate is subjected to a lateral load combined with a uniform tension N, 
instead of compression, then we hax, approximately, 

where (Y is the absolute value of N/N,,. As for the curvatures, a factor 

I 

1 + (1 c c)a 
instead of the factor (1 + CCS)/(~ - ) 01 must be used in expressions (I;) and (I), the 
constant c having the meaning of co, c’, and c”, respectively. 

96. Bending of Plates with a Small Initial Curvature.’ Assume that a 
plate has some initial warp of the middIe surface so that at any point 
there is an initial deflection wo which is small in comparison with the 
thickness of the plate. If such a plate is submitted to the action of 
transverse loading, additional deflection w1 will be produced, and the 
total deflection at any point of the middle surface of the plate will be 
wo + WI. In calculating the deflection w1 we use Ey. (103) derived for 
flat plates. This procedure is just,ifiable if the initial deflect,ion wo is 

1 See S. Timoshenko’s paper in MerrL. Inst. Wags Commun., vol. 89, St. Petersburg, 
1915 (Russian). 
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small, since we may consider the initial deflection as produced by a 
fictitious load and apply the principle of superposition.’ If in addition 
to lnt,eral loads there are forces acting in the middle plane of the plate, 
t,hc effect of these forces on bending depends not only on WI but also on wo. 
To take this into account, in applying Eq. (217) we use the total deflection 
w = w0 + w1 on the right-hand side.of the equation. It will be remem- 
bered that the left-hand side of the same equation was obtained from 
expressions for the bending moments in the plate. Since these moments 
depend not on the total curvature but only on the change in curvature 
of the plate, the deflection w1 should be used instead of w in applying 
that side of the equation to this problem. Hence, for the case of an 
initially curved plate, Eq. (217) bccomcs 

1% is seen thnt, the effect of an initial curvatlue on the deflection is equiva- 
lent to the effect of a fictitious lateral load of an intensity 

Nz$ + N, % + 2Nw ;$ 

Thus a plate will experience bending under the act,ion of forces in the 
.z!/ plane alone provided there is an init,ial curvature. 

Take as an example the case of a rectangular plate (Fig. 192), and 
assume that the initial deflection of t,he plntc is defined by the equutiol~ 

w0 = alI sin F sin Z% 
6 

If uniformly distributed compressive forces N, are acting on the edges 
of this plat,e, Eq. (230) becomes 

Let us take the solution of this equation in the form 

w 1 = R sin !!I? sill Z! 
a b 

SubstituCng this value of WI into Eq. (b), we obtain 

UllN, 

1 In the cast of large deflections the rnngnitudc of the deflection is no longer pro- 
portional to the load, and the principle of superposition is not applicable. 
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With this value of A expression (c) gives the deflection of the plate pro- 
duced by the compressive forces N,. Adding this deflection to the initial 
deflection (a), we obtain for the total deflection of the plate the following 
expression: 

II’ ~ 1uu + 201 = l ““, 
“Y .__ sin E+! sin -- a b 

in which 

(4 

The maximum deflection will be at the center and will bc 

a11 
wnw.x 

l--a (..f) 

This formula is analogous to that used for a bar with initial curvuture.’ 
In a more general case we can take the initial deflection surface of the 

rectangular plnt#e in the form of the following serica: 
m m 

m7rx 
wo = 

?Lay 
anln sin a sin ~ 

b 
m=l tr=l 

Cd 

Substituting this series in Eq. (230), we find that the additional deflection 
at any point of the plate is 

in which 

(i) 

It is seen that all the coefficients b,, increase with an increase of N,. 
Thus when N, approaches the critical value, thr: term in series (h) that 
corresponds to the laterally buckled shape of the plate [see Eq. (227)] 
becomes the predominating one. We have here a complete anaIogy with 
the cast of bending of initially curved bars under compression. 

The problem can be handled in the same manner if, instead of com- 
pression, we have tension in the middle plane of the plate. In such a 
case it is necessary only to change the sign of N, in the previous equa- 
tions. Without any difficulty we can also obtain the deflection in the 
case when there are not only forces N, but also forces N, and N,, uni- 
formly distributed along the edges of the plate. 

1 See S. Timoshenko, “Strength of Materials,” part II, 3d ed., p. 56, 1956. 



CHAPTER 13 

LARGE DEFLECTIONS OF PLATES 

96. Bending of Circular Plates by Moments Uniformly Distributed 
along the Edge. In the previous discussion of pure bending of circular 
plates it was shown (see page 47) that the strain of the middle plane of 
the plate can be neglected in cases in which the deflections are small as 
compared with the thickness of the plate. In casts in which the deflec- 
tions arc no longer small in comparison wit.h the thickness of the plate 
but are st,ill small as compared with the other dimensions, the analysis of 
t’he problem must be extended to include the strain of the middle plane 
of the plate.’ 

We shall assume that a circular plate is bent by moments M. uni- 
formly distributed along the edge of the plate (Fig. 200~). Since the 
deflection surface in such a case is symmetrical with respect to the center 
0, the displacement of a point in the middle plane of the plate can be 
resolved into tlvo components: a component zc in the radial direction and 
a component, w perpendicular to the plane of the plntc. Proceeding as 
previously indicated in Fig. 196 (page 384), we conclude that the strain 
in the radial direction is2 

The strain in the tangential direction is evidently 

Denoting the corresponding tensile forces per unit length by N, and 

1 This problcrn has been discussed by S. Timoshenko; see MWU. Inst. Ways 
(lomnrz~n., vol. 89, St. Pet,ersburg, 1915. 

2 In the case of very large deflections we have 

which modifies the following differential equations. See E. Reissner, Proc. Symposia 
.4ppI. Math., vol. 1, p. 213, 1949. 

396 
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Nt and applying Hooke’s lam, we obtain 

(c) 

These forces must be taken int,o consideration in deriving equations of 
equilibrium for an element of the plate such as that shown in Fig. 200h 

-x 

FIG. 200 

and c. Taking the sum of the projections in the radial direction of all 
t*he forces acting on the element, we obtain 

from which 

T dgdrdO + N,drde - N,dr do = 0 

N,-Nt+r+;=O (4 
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The second equat,ion of equilibrium of the element is obtained by taking 
moments of all the forces with respect to an axis perpendicular to the 
radius in the same manner as in the derivation of Eq. (55) (page 53). 
In this way we obtain’ 

Qr= -11 
( 

g+;g-;g 
> 

(e, 

The magnitude of the shearin, v force Q1- is obtained by considering the 
equilibrium of the inner circular portion of the plate of radius T (Fig. 
200a). Such a consideration gives the rel:ttion 

Substituting this expression for shearing force in Eq. (e) and using espres- 
sions (c) for N,. and N, \i-c can represent the equations of equilibrium (d) 
and (c) in the following form: 

(231) 

These two nonlinear equations can be integrated numerically by start- 
ing from the center of the plate and advancing by small increments in 
the radial direction. For a circular element of a small radius c at the 
center, we assume a certain radial strain 

an d a certain uniform curvature 

With these values of radial strain and curvature at the center, the values 
of the radial displacement u and the slope dw/dr for r = c can be calcu- 
lated. Thus all the quantities on the right-hand side of Eqs. (231) are 
known, and the vnlucs of d2u/dr2 and of d3w/dr3 for r = c can be calcu- 
lated. As soon as these values are known, another radial step of length c 
ca,n be made, and all the quantities entering in the right-hand side of 
Eqs. (231) can be calculated for r = 2c* and so on. The numerical 

1 The direction for QV is opposite to that used in Fig. 28. This explains the minus 
sign in Eq. (e). 

* If the intervals into which the radius is divided are sufficiently small, a simple 
l~ro(~~lnr~, sirich as that used in S. Timoshenko’s “Vibrat,ion Problems in Engineering,’ ’ 
~(1 cd., 1’. l~(, can be applied. The numerical results represented in Fig. 201 are 
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values of u and w and their derivatives at the end of any interval being 
known, the values of the forces N, and Nt can then be calculated from 
Eqs. (c) and the bending moments M, and M, from Eqs. (52) and (53) 
(see page 52). By such repeated calculations we proceed up to the radial 
distance r = a at which the radial force N, vanishes. In this way we 
obtain a circular plate of radius a bent by moments MO uniformly dis- 
tributed along the edge. By changing the numerical values of ~0 and 

0 5 
‘It 

15 4c 

FIG. 201 

1 /PO at the center me obtain plates with various values of the olltcr r>ldius 
rlud various values of the moment along the edge. 

Figure 201 shows graphica,lly the results obtained for a plate with 

a = 23h and (ilfr)rc” = nr, = 3.03 10 a 4 

It will be noted that the maximum deflection of the plate is 0.55h, which 
is about 9 per cent less than the deflection wg given by the elementary 
theory which neglects the strain in the middle plane of the plate. The 
forces N, and Nt are both positive in tjhe central portion of the plate. 
In the outer portion of the plate the forces NE become negative; i.e., 

obtained in this manner. A higher accuracy can be obtained by using the methods 
of Adams or Stijrmer. For an account of t’he Adams method see Francis Bashforth’s 
book on forms of fluid drops, Cambridge University Press, 1883. StGrmer’s method 
is discussed in detail in A. N. lirilov’s book “Approximate Calculations,” pub- 
lished by the Russian Academy of Sciences, Moscow, 1935. See also 1,. Collatz, 
“Numerische Behandlung 1’011 l)iffcrential~leeichuIlgcn,” Berlin, 1951. 
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compression exists in the tangential direction. The maximum tangential 
compressive stress at the edge amounts to about 18 per cent of the maxi- 
mum bending stress GMo/h2. The bending stresses produced by the 
moments M, and M, are somewhat smaller than the stress GMo/hz given 
by the elementary theory and become smallest at the center, at which 
point the error of the elementary theory amounts to about 12 per cent. 
I’rom this numerical example it may be concluded that for deflections of 
the order of 0.5h the errors in maximum deflection and maximum stress 
as given by the elementary theory become considerable and that the 
strain of the middle plane must be taken into account to obtain more 
accurate results. 

97. Approximate Formulas for Uniformly Loaded Circular Plates with 
Large Deflections. The method used in the preceding article can also be 
applied in the case of lateral loading of a plate. It is not, however, of 
practical use, since a considerable amount of numerical calculation is 
required to obtain the deflections and stresses in each particular case. 
A more useful formula for an approximate calculation of the deflections 
can be obtained by applying the energy meth0d.l Let a circular plate 
of radius a be clamped at the edge and be subject to a uniformly dis- 
tributed load of intensity q. Assuming that the shape of the deflected 
surface can be represented by the same equation as in the case of small 
deflections, w-e take 

w=wo 1-g/ 
( ) 

(WI 

The corresponding strain energy of bending from Eq. (m) (page 345) is 

(b) 
E’or the radial displacements we take the expression 

u = r(a - r)(C, + czr + c,r2 + .) (cl 

each term of which satisfies the boundary conditions that u must vanish 
at the center and at the edge of the plate. From expressions (a) and (c) 
for the displacements, we calculate the strain components Ed and et of the 
middle plane as shown in the preceding article and obtain the strain 
energy due to st’retching of the middle plane by using the expression 

1 See Timoshenko, “Vibration Problems,” p. 452. For approximate formulas see 
also Table 82. 
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Taking only the first two terms in series (c), we obtain 

??Y!EC’ I’, = 1 _ $ 0.250Cfa2 + 0.11 G7C,2a4 + 0.300C1Csa~ 

ci4w4, 
- 0.00846C1a 2 + 0.00G82C,uz~ + 0.00477 7 

> 
(e) 

The constants C1 and C’z are now determined from the condition that the 
total energy of the plate for a position of equilibrium is a minimum. 
Hence 

avl 
0 av, -z 

ac1 
and _ = 0 

acs 

Substituting expression (c) for V 1, we obtain two linear equations for CI 
and CZ. From these we find that 

Then, from Eq. (e) we obtain’ 

Adding this energy, which results from stretching of the middle plane, 
to the energy of bending (b), we obtain the total strain energy 

(h) 

The second term in the parentheses represents the corre&on due to strain 
in the middle surface of the plate. It, is readily seen that this correction 
is small and can be neglected if the deflection wo at the center of the plate 
is small in comparison with the thickness h of the plate. 

The strain energy being known from esprcssion (h), the deflection of 
the plate is obtained by applying the principle of virtual displacements. 
From this principle it follows that 

4v + j71) *w = gr a 
--dlua O / 

q 6wrdr = 2nq 6wo 
0 

l(l- $?.dr 

Substituting expression (h) in this equation, we obtain a cubic equation 
for wo. This equation can be put in the form 

(232) 

The last factor on the right-hand side represents the effect of t’he stretch- 
ing of the middle surface on the deflection. Because of this effect the 
deflection w. is no longer proportional to the intensity q of the load, and 

1 It is assumed that Y = 0.3 in this calculation. 
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the rigidity of the plate increases with the deflection. For example, 
taking wg = $1, we obtain, from Eq. (232), 

This indicates that the deflection in this case is 11 per cent less than that 
obtained by neglecting the stretching of the middle surface. 

Up to now we have assumed the radial displacements to be zero on the 
periphery of the plate. Another alternative is to asslIme the edge as free 
to move in the radial direction. The expression (232) then has to be 
replaced by 

4a” 1 
w” = m ---- 

1 + 0.1462 
(233) 

a result1 which shows that under the latter assumption the effect of the 
stretching of the plat>c is considerably less marked than under the former 
one. Taking, for in&ance, wo = $1 we arrive at wo = 0.965(qa4/64D), 
with an effect of stretching of only 34 per cent in place of 11 per cent 
obtuincd above. 

Furthermore we can conclude from Eqs. (b) and (c) of Art. 96 that, if 
N, = 0 on the edge, then the edge value of Nt becomes Nt = E~Q = Bhu/r, 
that is, negative. We can expect, therefore, that for a certain critical 
value of the lateral load the edge zone of the plut,e will become unstable.2 

Another method for the approximate solution of the problem has been 
developed by A. N&dni.” He begins with equations of equilibrium simi- 
lar to Eqs. (231). To derive them we have only to change Eq. (f), of the 
preceding article, to fit the case of lat’eral load of inteusity q. After such a 
change the expression for the shearing force cvidpnt)ly hccomes 

Using this expression in the same manner in which expression (j) was 
used in the preceding article, we obtain the following system of equations 
in place of Eqs. (231): 

1 Obtained by a mclhod which will be described in Art,. 100. 
2 The instability occurring in such a case has been invest,igated by D. Y. Panov and 

T’. I. Feodossicv, P&lad. Mat. Mekhan., vol. 12, p. 389, 1948. 
3 See his book “Elastische Platten,” p. 288, 1925. 
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To obtain an approximate solution of the problem a suitsable expression 
for the deflection w should be taken as a first approximation. Substi- 
tuting it in the right-hand side of the first of the equations (234), we 
obtain a linear equation for u which can be integrated to give a first 
approximation for U. Substituting the first approximations for u and w 
in the right-hand side of the second of the equations (234), we obtain a 
linear differential equation for w which can be integrated to give a second 
:tpproximation for UJ. This second approximation can then be used to 
obtain further approximat(ions for u and w by repeating the same sequence 
of calculations. 

In discussing bending of a uniformly loaded circular plate with a 
clamped edge, Wjdai begins with the derivative dw/dr and takes as first 
approximation the expression 

which vanishes for r = 0 and 1’ = a in compliance with the condition at 
the built-in edge. The first of the equations (234) then gives the first 
approximation for U. Substituting these first approximations for u and 
dw/dr in the second of the equations (234) and solving it for Q, we det,er- 
mine the constants C and 12 in expression (j) so as to make y as nearly a 
constant as possible. In this manner the following equation’ for calcu- 
lating the deflection at the center is obtained when v = 0.25: 

3 = 0.176 1 a 
0 

' 
E h 

In the case of very thin plates t,he deflection ~0 may become very large 
in comparison with h. In such cases the resistance of the plate to bend- 
ing can be neglected, and it can be treated as a flexible membrane. The 
general equations for such a membrane are obtained from Eqs. (234) by 
putting zero in place of the left-hand side of the second of the equations. 
An approximate solution of the resulting equations is obtained by neg- 
lccsting t,he first term on the left,-hand side of Eq. (235) as being small in 
comparison with t,he second term. Hence 

0 3 

0.583 F = O.liG $ 9 
0 4 

i 

1 Another method for the approximate solution of ICqs. (23-t) WV devcloped by 
K. Fcderhofer, Eisenba?r, vol. 9, p. 152, 1915; see also Forschzcngsarh. VDI, vol. 7, 
p. 148, 1936. His equation for wo differs from IZq. (235) only by the numerical value 
uf tlw c~oefFicic:nt on the left-hand side; viz., 0.523 must Iw ust~l instead of 0.583 for 
y -A l).*23, 
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A more complete investiga,tion of the same problem’ gives 

wg = O.fx2a jq 
J- 
3 qa 

i 
(236) 

This formula, which is in very satisfactory agreement with expcriments,2 
shows that the deflections are not proportional to the intensity of the load 
but vary as the cube root of that intensity. For the tensile stresses at 
the center of the membrane and at the boundary the same solution gives, 
respectively, 

and 

To obt,ain deflections that are proportional to t’he pressure, as is often 
required in various measuring instruments, recourse should be had to 
corrugated membranes3 such as that shown in Fig. 202. As a result of 

the corrugations the deformation con- 
sists primarily in bending and thus 
increases in proportion to the pressure.4 

FIG. 202 
If the corrugation (Fig. 202) follows a 
sinusoidal law and the number of 

waves along a diameter is sufficiently large (n > 5) then, with the nota- 
tion of Fig. 186, the following expression5 for w. = (w),,,, may be used: 

98. Exact Solutisn for a Uniformly Loaded Circular Plate with a 
Clamped Edge. fi To obt,ain a more satisfactory solution of the problem 
of large deflections of a uniformly loaded circular plate with a clamped 
edge, it is necessary to solve Eqs. (234). To do this me first write the 
equations in a somewhat different form. As may be seen from its deri- 

1 The solution of this problem was given by H. Hencky, 2. Allath. Ph~qsik, vol. 63, 
p. 311, 1915. For some peculiar effects arising at the edge zone of very thin plates 
see K. 0. Friedrichs, Proc. Symposia Appl. Math., vol. 1, p. 188, 1949. 

2 SW LSruno Eck, Z. omgew. Math. Nech., vol. 7, p. 498, 1927. For tests on circular 
plates with clamped edges, see also A. McPherson, IV. Ramherg, and S. Levy, NACA 
Rept. 744, 1942. 

3 The theory of deflection of such membranes is discussed by Ii. St,ange, Imp.-Arch., 
vol. 2, p. 47, 1931. 

4For a bibliography on diaphragms used in measuring instruments see M. D. 
Hersey’s paper in NACA I?@. 165, 1923. 

6 A. S. Volmir, “Flexible Nates and Shells,” p. 214, Moscow, 1956. This book also 
contains a comprehensive bibliography on large deflections of plates and shells. 

6 This solution is due to S. IV:>?-, Trans. ASME, vol. 56, p. 627, 1934. 
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vation in Art. 96, the first of these equations is equivalent to the equation 

N,-N,+rgT=O (237) 

Also, as is seen from Eq. (e) of Art. 96 and Eq. (i) of Art. 97, the second 
of the same equations can be put in the following form: 

(238) 

From the general expressions for the radial and tangential strain (page 
396) we obtain 

Substituting 

1 

in this equation and using Kq. (237), we obtain 

d 
= 

o 
(239) 

The three Eqs. (237), (238), and (239) containing the three unknown 
functions N,, Nt, and w will now be used in solving the problem. We 
begin by transforming these equations to a dimensionless form by intro- 
ducing the following notations: 

With this notation, P:qs. (237), (238), and (239) become, respectively, 

$ (ES,) - St = 0 (241) 

(242) 

(243) 

The boundary conditions in this case require that the radial displace- 
ment u and the slope dw/dr vanish at the boundary. Using Eq. (b) of 
Art. 96 for the displacements u and applying Hooke’s law, these con- 
ditions become 

(u),=, = r(St - vsr)T=a = 0 (244) 

= 0 (a) 
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Assuming that S, is a symmetrical function and dw/dr an antisym- 
metrica, function of .$ we represent these functions by the following 
power series : 

S, = Bo + Bzt2 + B,t4 + * - * (b) 

g = d$ (CI.$ + C# + c5.p + * . .) (cl 

in which Bo, Hz, . . . and Cl, C’s, . . . are const’ants to bc determined 
later. Substituting the first of these series in Eq. (Ul), we find 

St = Bo-j-3B,~~ + 5B4E4 + (4 

By integrating and differentiating Eq. (c), we obtain, respectively, 

;= 43 ( cl;+G~+G~+ ” .) 
d d’W 
;iTdr ( > = dS (Cl + 3c,p + 5C&4 + . . .) 

(e) 
(f) 

It is seen that all the quantities in which we are interested can be found 
if we know the constants Bo, B,, , . . , C1, C,, . . _ . Substituting 
series (b), (c), and (d) in Eqs. (242) and (243) and observing that these 
equations must be satisfied for any value of .$, we find the following 
relations between the constants B and C: 

k-l 

4 ___- 
Bk = - k(k + 2) c 

cmck-, 

n=1,3.5,... 
k-3 

Ck = 120 - v’) 
k2 - 1 BmCk-2-m 

77x = 0,2,4, 

k = 2, 4, 6, . . . 

k = 5,7,9, . . . (9) 

3 
c3 = 2 (1 - 4 p 2 2/g + BoC, 

> 

It can be seen that when the two constants Bo and Cl are assigned, all the 
other constants are determined by relations (g). The quantities S,, St, 
and dw/dr are then determined by series (b), (d), and (c) for all points in 
the plate. As may be seen from series (b) and (f), fixing B, and C1 is 
equivalent to selecting the values of X, and the curvature at the center 
of the plate.’ 

To obtain the following curves for calculating deflections and stresses in 
particular cases, the procedure used was: For given values of Y and 

1 The selection of these same quantities has already been encountered in the case of 
bending of circular plates by moments uniformly distributed along the edge (SW 
page 398). 
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p = q/E and f or selected values of Bo and CI, a considerable number of 
numerical cases were calculated,’ and the radii of the plates were deter- 
mined so as to satisfy the boundary condition (a). For all these plates 
the values of X, and St at the boundary were calculated, and the values of 
the radial displacements (u),,, at the boundary were determined. Since 
all calculations were made with arbitrarily assumed values of 130 and C1, 
the boundary condition (244) was not satisfied. However, by interpo- 
lation it was possible to obtain all the necessary data for plates for which 
both conditions (244) and (a) are satisfied. The results of these calcu- 
lations are represented graphically in Fig. 203. If the deflection of the 

0 2 4 
Load, F$ 6 'O I2 

Fro. 203 

plate is found from this figure, the corresponding stress can be obtained 
by using the curves of Fig. 204. In this figure, curves are given for the 
membrane stresses 

N, 
0, = x 

and for the bending stresses 
6111, fl; I.= -- 

h2 

as calculated for the center and for the edge of the plate.” By adding 
together r7 and g:, the total maximum stress at the center and at the 
edge of the plate can be obtained. For purposes of comparison Figs. 
203 and 204 also include straight lines showing the results obtained from 

1 Nineteen particular casrs have been calculated by Way, op. cit. 
2 The stresses are given in dimensionless form. 
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the elementary theory in which the strain of the middle plane is neg- 
lected. It will be noted that the errors of the elementary theory increase 
as the load and deflcct’iorls increase. 

0 
0 0.4 0.8 1.2 1.6 1.8 

DeClection, We/h 

FIG. 204 

99. A Simply Supported Circular Plate under Uniform Load. An exact solution of 
the proljlemr can be obtained by a series method similar to t,hnt II& in t,he preceding 
article. 

Because of the axial symmetry we have again &u/dr = 0 and N, = Nt at r = 0. 
Since the radial couples must vanish on the edge, a further condition is 

With regard to the stress and strain in the middle plane of the plate two boundary 
conditions may be considered: 

1. Assuming the edge is immovable we have, by Eq. (244), & - vS, = 0, which, 
by Eq. (23i), is equivalent to 

[ 
S,(l - V) + 1’ $ = = 0 

I 
@) 

I 0 

1 K. Federhofcr and II. Egger, Sitzber. Akad. Wiss. Wien, IIa, vol. 155, p. 15, 1946; 
see also M. Stippes and A. H. Hausrath, J. Appl. J~echanics, vol. 19, p. 287, 1952. 
The pcrt,urbation method used in this latter paper appears applicable in the case of a 
concentrated load as well. 
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2. Supposing the edge as free to move in the radial direction we simply have 

(&),-a = 0 (cl 

The functions S, and dw/dr may be rcprcsented again in form of the series 

8, = ---x- (B,p + I?& + usp5 + . . .) 
12(1 - !J~)& 

dw h -= --._ 
dr 2a 2/3 

(Clf + Cd + Cd + ’ ’ .) 

(4 
(el 

where p = r/a. Using these series and also Eqs. (241), (242), (243), from which the 
quantity S, can readily be eliminated, wc arrive at tllc following relations between 
t,he constants B and 6: 

where p = q/E, q being the intensity of t)he load. 
Again, all constants can casilv be cxprcsscd in terms of both constants RI and Cl, 

for which two additional relations, ensuing from the boundary conditions, hold: 
In case 1 we have 

Jjk(lc - v) = 0 (‘s(k + v) = 0 (i, 
k=l..i.5, k= L.Y.3.. 

and in case 2 

c 
n, = 0 

c 
Ch(k + v) = 0 (3 

k- 1,:1,5.. k = 1 ,:3,3. 

To start the resolution of the foregoing system of equations, suitable values of B, and 
C1 may be ~:ken on the basis of an approximate solution. Such a solutJion, satisfying 
condition (a), can be, for instance, of the form 

dw 
- = C@P” - P) 
dr 

where C is a constant and 6 = ~ n + y (n = 3, 5, .). Subst,ituting this in Eqs. 

(241) and (243), in which 4 must be replaced by pu/h, and eliminating St we obtain 
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Herein cl and c2 are constants of integration and 

n, = 4n(n + 1) n* = (72 + l)(n + 3) 

Let us, for example, assume the boundary condiiions of cxsc 2. Then we obtain 

The constant C, finally, can hc dctermincd t)y some atr:ti:k energy met hotI -for esam- 
ple, that described in Art. 100. Using there lkls. (~1) or (0) we h:tvv only to replace 

8( 

t2 7( 
22 
Eh’ 

6( 

10- 5: 

8- 4( 

f 6-3( 

wo 
h 

4- 21 

2- 11 

o- ( 

I- 

)- 

I- 

Radially 

c 

/  
L--- 

- --I- + : -- 
J /’ 

%/h 

(o-&o 

qo4 
-7 3 5 10 25 50 :<)‘I 200 363 Eh” 

Logarithmic scale for abscissa:; 

FIG. 206 

dppldr = rhES, and dw/dr by npproxirrxrte cvprcssions in accordnnec with Eqs. (k) 
and (I) giren above. 

The largest values of dcflcctions and of tot:rl stresses obtained l)y Fetlerhofcr and 
Eggcr from the exact, solution arc given in Fig. 205 for cast 1 and in Fig. 201; for case 2. 
The calculation has heen carried out, for Y = 0.25. 

Table 82 may he useful for approzivznte calcula~ ions of the deflectinrl LIT,, at the 
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cwlt,cr, given by an cquntion of the form 

also of the stresses in the middle plant:, given by 

and of the extreme fiber bonding s~res~c)s~ 

100. Circular Plates Loaded at the Center. .“\n approximate solution of this 
1)robltnl can be obtained by means of the method described in Art. 81. 

The work of tho internal forces corresponding to some variation at,, Se{ of the strain is 

\\-c a~ssumc, furthermore, thaf cit,hc:r the radial displeccmcnts in the middle plane or 
t hc radial forces N, vanish on the boundary. Then, int,egaating expression (a) by 
parts and putting 6~ = 0 or !V,. = 0 on r’ = a, we ohtain 

The work of the bending moments 41, and ,?r, on the variation 6(-&x/&2) and 
S( --$ dwldr) of the curvatures is similarly 

Now we suppose that cithrr the radial bending moment M, or the slope 6(&u/dr) 
becomes Nero on the boundary. Integration of cspression (c) by parts then yields 

Finally, the work of the external forces is 

sv, = 2* 
s 

Oa q 6w r dr 

or, by putt’ing 

(e) 

1 The sign is negat,ive if the bottom of the plate is in compression, 
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we have 

Provided &u = 0 on the boundary WC finally obtain 

The condition s(V, + 17, + V,) = 0 now yields the equation 

d 1) - (AW) - I) - N, - 
dr 

2 1 $ (6~) r dr + clr (rAvy,) - Xi 6u dr = 0 (g) 
1 

We could proceed next by assuming both variations 6~ and 6~ as arbitrary. Thus 
WC would arrive at the second of the differential equat,ions (2:14), N, being given b) 
expression (c) of Art. 96, and at Eq. (d) of the same article. If wc suppose only this 
latter equation of equilibrium to bc sntisfird, then we have still io fulfill the condition 

in which / is a 5: LX‘+ iunct,ion d(~fining 

(4 

and governed by the differential equation 

(A 

which follows from Eq. (3’3). Int,egrating expression (h) by parts once more wc 
obtain 

1 d d,Fdw 
l)AAW --(I--- zr,cr, 

( )I 
6w r dr = 0 

r dr 

With intent to use the mclthod described in Art. 81 we take the deflection in the form 

w = Ul‘pl(r.) + cb(pY(1.) + + a,Lpp.(r) (0 

Just as in the case of the expression (211) eacll func*tion p;(r) has to satisfy two 
boundary conditions prescribed for the defecation. Sx~lxtituting expression (I) either 
in E:q. (h) or in Eq. (h-) and applying thck same rcnsoning as in .4rt. 81, we arrive at a 
sequence of equat,ions of t#he form 

in which 
J 
-0 

i = 1,2 , )11 (ml 
0 
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or at a set of equations 

/ 
OQ Y+w dr i = 1, 2, . , ,i (0) 

where (P) 

w=w(, 12+2.‘!, 
( 

’ 
0 T 02 ‘24 - a > 

((I) 

which holds rigorously for a plate with ~mnll dcHwtions. From Eq. (j) we obtain, 
by integration, 

I.ct thcrr bc a frrr ratli:ll displnwl~~crlt at the boundary. The constants of integra- 
lion ( ,‘1 and C2 then are determined lby two conditions. The first, namely, 

can be rewritten as 

and the second is 

This latter condition must be added in order to limit, at 1 
stress N, given by Eq. (i). Thus WC obtain 

0, t)he value of the 

The load function is equal i.o 

in our case, and cxprcssions (y) and (r.) yield 

while C,O~ is given by the crprcssion in the pnrcnthescs in Eq. (n). Substituting this in 
Eq. (m) we arrive at the relation 

191 Pa2 16 DPLIO + - ho: = - 
648 57 
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The general expressions for the extreme fiber bending stresses corresponding to the 
deflection (q) and obtainable by means 01 Eqs. (101) arc 

(WI 

These expressions yirlld infinite values of stresses as r tends to zero. JIowcvcr, assum- 
ing the load P to be distributed uniCormly over a circular arca Cth a small radius 
T = C, WC can use a simple relation existin, m in plates with small dcflcctions between 

I, 
the stresses 0,. = ct ” at the center of such an area and the stresses m: = C: caused at 
T = c by the same load P acting at the point r = 0. According to Sjdni’s result,’ 
expressed in terms of stresses, 

I, ,I 3  P 
LTI = ct =/+-,- 

2 ’ Tr,“” 

Applying this relation to the plate with large deHections we obtain, at the center of 
t,he loaded area with a radius C, npproxinlately 

The foregoing results hold for a circular plate with a clamped and movable edge. 
By introducing other bound:ary conditions we obtain for ~0 an equation 

which is a gcueralization of Eq. iv). The ronstnnts .! nntl R arc given in Tahlc 83. 
The same table contains scvcral coefficients2 nrcdcd COV c~::l(~nlation of strt:sses 

acting in the middle plane of the plate and the cxtremc~ fiber bcnc:ing stresses 

The former arc ~alcul:rtrd losing csprcssions (i), the latter hy mc:tns of eqlressions 
(101) for the moments, the sign being negative if the compression is at tite bottom.” 

101. General Equations for Large Deflections of Plates. In discuklg 
the germ-al case of large deflections of plates we use Eg. (210), which was 

1 A. Xddai, “ PIastische F’lat,tcn,!’ p. 63, Berlin, 1025. 
2 All data contnined in Table 82 are takrn lrom A. S. Volmir, op. cit. 
3 For bending of the ring-shaped plates with large deflections SW Ii. Federhofer, 

&ten-. lap.-Arch., vol. I, p. 21, 1046; 11;. Reissner, QMU?. Appl. JluUr., vol. 10, p. 167, 
3052, and vol. 11, p. 473, 1953. Large deHect,ions of elliptical plates have been cl& 
cussecl by xi. A. Weil and N. $1. Ncwmark, J. A&. Mechanics, vol. 23, p. 21, 1956. 
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TABLE 83. DATA FOR CALCULATION OF APPROXIMATE VALUES OF DEFLECTIONS 
w0 AXI) Swmsws IS CESTRALLY LOADED PLATES 

L' = 0.3 

Boundnrg 
conditions 

PI 

Plate 
clamped I __- 

-0.250 / -2.198 0 

0. -188 

0 

0.200 ~ 0.217 

_. 
0.895 0. 606 

0.606 0.272 ,0.552 0.407 

derived by considering the equilibrium of an element of the plate in the 
direction perpendicular to the plate. The forces N,, N,, and N,, now 
depend not only on the external forces applied in the zy plane but also 
on the strain of the middle plane of the plate due to bending. Assuming 
t#hat there are no body forces in the XI/ plant and that the load is perpen- 
dicular to the plate, the equations of equilibrium of an element in the 
.~y plane are 

The third equation necessary to determine the three quantities N,, N,, 
and N,, is obtained from a considerat’ion of the strain in the middle sur- 
face of the plate during bending. The corresponding strain components 
[see Eqs. (221), (222), and (223)] are 

au I aw 2 tz=-++ - 
az ( ) 2 d.E 

1 3w ? Ey2+- 
a?J 237 ( ) 

Y z~~~+z!+s!~ 
: 

(6) 

By taking the second derivatives of these expressions and combining the 
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resulting expressions, it can be shown that 

!$+!&4&= ““2x& 
( > ax ay 

By replacing the strain components by the equivalent expressions 

Ez = f& (N, - VN,) 

%I = & (N, - VN,) 

’ Nz, Yzy = - hG 

(cl 

(4 

the third equation in terms of N,, N,, and N,, is obtained. 
The solution of these three equations is greatly simplified by the intro- 

duction of a stress function.’ It may be seen that Eqs. (a) are identically 
satisfied by taking 

N =hcF z N =hd2F 
ay2 g a22 

N,, = -hd2F 
a~ ay 

where F is a function of 5 and y. If these expressions for the forces arc 
substituted in Eqs. (d), the strain components become 

a(1 + v) d2F 
Y zy = - E ax a?/ 

(f) 

Substituting these expressions in Eq. (c), we obtain 

g.i+2& 1 (245) 

The second equation necessary to determine F and w is obtained by 
substituting expressions (e) in Eq. (217), which gives 

+i!g;-2~~ 
ax ay ax ag (246) 

1 See S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2d ed., p. 26, 1951. 
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Equations (245) and (246), together with the boundary conditions, 
determine the two functions F and w.” Having the stress function F, 
we can determine the stresses in the middle surface of a plate by apply- 
ing Eqs. (e). From the function w, which defines the deflection surface 
of the plate, the bending and the shearing stresses can be obtained by 
using the same formulas as in the case of plates with small deflection [see 
Eqs. (101) and (lOa)]. Thus the investigation of large deflections of 
plates reduces to the solution of the two nonlinear differential equations 
(245) and (246). The solution of these equations in the general case is 
unknown. Some approximate solutions of the problem are known, how- 
ever, and will be discussed in the next article. 

In the particular case of bending of a plate to a cylindrical surface’ 
whose axis is parallel to the y axis, Eqs. (245) and (246) are simplified by 
observing that in this case w is a function of x only and that @F/ax2 and 
a2F/Q2 are constants. Equation (245) is then satisfied identically, and 
Eq. (246) reduces to 

a4W 
S-D 

A+!$$ 

Problems of this kind have already been discussed fully in Chap. 1. 

If p&r coordinates, more convenient in the cast of circular plates, are used, the 
system of equations (245) and (246) assumes the form 

AAF = - .“r L(w,w) 

AA\u, = ;j L,(w,F) + ; 

in which 

and L(w,w) is obtained from the foregoing expression if w is substituted for P. 

In the case of very thin plates, which may have deflections many times 
larger than their thickness, the resistance of the plate to bending can be 

* These two equations were derived by Th. von Klirman; see “Encyklopadie der 
Mathematischen Wissenschaften,” vol. IV4, p. 349, 1910. B general method of non- 
linear elasticity has been applied to bending of plates by E. Koppe, 2. angezu. Math. 
Mech., vol. 36, p. 455, 1956. 

1 For a more general theory of plates (in particular of cantilever plates) bent, with- 
out extension, to a developable surface, see E. H. Mansfield, Quart. J. Mech. Appl. 
Math., vol. 8, p. 338, 1955, and D. G. Ashwell, Quart. J. Me&. Appl. Math., vol. 10, 
p. 169, 1957. A boundary-layer phenomenon arising along the free edges of such 
plates was considered by Y. C. Fung and W. H. Witrick, Quart. J. ~Wech. Appl. Math., 
vol. 8, p. 191, 1955. 
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neglected; i.e., the flexural rigidity D can be taken equal to zero, and 
the problem reduced to that of finding the deflection of a flexible mem- 
brane. Equations (245) and (246) then become’ 

1 (247) 

,4 numerical solution of this system of equa,t,ions by the use of finite 
differences has been discussed by H. Hencky.’ 

The energy method affords another means of obtaining an approxi- 
mate solution for the deflection of a membrane. The strain energy of a 
membrane, which is due solely to stretching of its middle surface, is given 
by the expression 

T’ = +lJ-(N.ccz + N2,~I, + Wzi,y.cy) dx dy 
Eh 
41 2(1 - v”) 

[tf + 6; + 2~6,~~ + g(1 - v)&] dn: fhy (2483 

Substituting expressions (221), (222), and (22~5) for the strAn compo- 
nents E,, Ed, yZU, we obtain 

In applying the energy method we must assume in each particular case 
suitable expressions for the displacements U, v, and w. These expressions 
must, of course, satisfy the boundary conditions and will contain several 
arbitrary parameters the magnitudes of which have to be determined by 
the use of the principle of virtual displacements. To illustrate the 
method, let us consider a uniformly loaded square membrane3 with sides 
of length 2a (Fig. 207). The displacements U, v, and u in this case must 
vanish at the boundary. Moreover, from symmetry, it can be concluded 

1 These equations were obtained by A. FBppl, “Vorlesungan iiber Technische 
5Iechanik,” vol. 5, p. 132, 1907. 

2 H. Hencky, Z. an~,eur. Math. Mech., vol. 1, pp. 81 and 423, 1921; see also R. Kaiser, 
Z. angew. Math. Me&., vol. 16, p. 73, 1936. 

3 Calculations for this case are given in the book “Drang und Zwang” by August 
and Ludwig F~ppl, vol. 1, p. 226, 1924; see also Hencky, ibid. 
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that w is an even function of x and y, whereas u and v are odd functions 
of II: and of y, respectively. All these requirements 
are satisfied by taking the following expressions for 
the displacements: 

Y 
FIG. 207 

w = W” cos ZF 0s T?z 
2a 2a 

u = c sin y cos LY 
2a 

=Y Tar 
v = c sin a cos 2a 

which contain two parameters w. and c. 
in Eq. (249), we obtain, for v = 0.25, 

Substituting these 

+3(y+y)] 

The principle of virtual displacements gives the t#wo following 

av 
ac= 0 

av +a +a 
g& 6wo = 

0 ss --a --a 
q 62~0 cos 2 cos T$ dx dy/ 

Substituting expression (h) for V, we obtain from Eq. (i) 

c = 0.147 w”o 
a 

and from Eq. (j) 

w0 = 0.802a 

(9) 

expressions 

(h) 

equations:’ 

(6 

(.i) 

(250) 

This deflection at the center is somewhat larger than the value (236) 
previously obtained for a uniformly loaded circular membrane. The 
tensile strain at the center of the membrane as obtained from expressions 
(9) is 

4 E, = cU = z = 0.462 2 

and the corresponding tensile stress is 

u = Gv 0.462 2 = 0.616 y = 0.396 
3m 

J 
h”- (251) 

Some application of these results to the investigation of large deflections 
of thin plates will be shown in the next article. 

1 The right-hand side of Eq. (i) is zero, since the variation of the parameter c pro- 
duces only horizontal displacements and the vertical load does not produce work. 
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102. Large Deflections of Uniformly Loaded Rectangular Plates. We begin with 
the case of a plate with clamped edges. To obtain an approximate solution of the 
problem the energy method will be used.’ The total strain energy V of the plate is 
obtained by adding to the energy of bending [expression (117), page 881 the energ) 
due to strain of the middle surface [expression (249), page 4191. The principle of 
virtual displacemenns then gives the equation 

sv - GJJqwdzdy = 0 (cc) 

which holds for any variation of the displacements U, v, and w. By deriving the vitri- 
ation of V we can obt,ain from Eq. (a) the system of Eqs. (245) and (246), the exact 
solution of which is unknown. To find an approximate solution of our problem we 
assume for ZL, v, and w three functions satisfying the boundary conditions imposed by 
the clamped edges and containing several parameters which will be determined by 
using Eq. (a). For a rectangular plate with sides 2a and 2b and coordinate axes, es 
shown in Fig. 207, we shall take the displarements in the following form: 

!I = (UP - .P lb2 - r/“)s(b”,, + bO?y* + h”i.2 $- h.Py2) 
L’ = (a” - r2)(b2 - y’),y(c,,,, f C”??y + (‘2”?? + (‘,a.r2?/2) (b) 

1~ = (n2 -- .r2)2(b2 - v2)Yno” + aw!P + a&) 

The first t,wo of these expressions, which represent the displacements u and 0 in the 
middle plane of the plate, are odd functions in z and y, respectively, and vanish at 
the boundary. The expression for UJ, which is an even function in 2 and ~1, vanishes 
at the boundary, as do also its first derivatives. Thus all the boundary conditions 
imposed by the clamped edges are satisfied. 

Expressions (b) contain 11 parameters boo, . , UZO, which will now be determined 
from Eq. (n), which must be saGsfred for any variation of each of these parameters. 
In such a w;/.y we obt,ain 11 equations, 3 of the form 

and 8 equations of the form’ 

av aV -=Q 
abm. 

or -=0 
d&L?, 

These equations are not linear in the parameters amn, b,,,, and c,,,, as was true in the 
ease of small deflections (see page 344). The three equations of the form (c) will con- 
tain terms of the third degree in the paramct,ers o,na. Equations of the form (d) will 
be linear in the parameters b,, and c,,,, and quadratic in the parameters on,n. A solu- 
tion is obtained by solving Eqs. (d) for the b 7nn’~ and cmn’s in terms of the amn’s and 
then substituting these expressions in Eqs. (c). In this way we obtain three equa- 

* Such a solution has been given by S. Way; see Proc. Fifth Intern. Congr. Appl. 
Mech., Cambridge, Mass., 1938. For application of a method of successive approxi- 
mation and experimental verification of results see Chien Wci-Zang and Yell Kai- 
Yuan, Proc. Ninth Intern. Congr. Appl. Mech., Brussels, vol. 6, p. 403, 1957. Large 
deflections of slightly curved rectangular plates under edge compression were con- 
sidered by Sycd Yusuff, J. Appl. Mechanics, vol. 19, p. 446, 1952. 

2 The zeros on the right-hand sides of these equations result from the fact that the 
lateral load does not do work when u or v varies. 
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tions of the third degree involving the parameters an,, alone. These equat,ions can 
then bc solved numerically in each partictdar case by successive approximations. 

Numerical values of all the parameters have been computed for various intensities 
of the load Q and for three different shapes of the plate b/a = 1, b/a = $, and b/a = + 
by assuming Y = 0.3. 

It can be seen from the expression for w that, if we know the constant aoO, we can 
at once obtain the deflection of the plate at the center. These deflections are graphi- 
cally represent)cd in Fig. 208, in which wmnx /h is plotted against pb4/Dh. For com- 
parison the figure also includes the straight lines which represent the deflections 
calculated by using the theory of small deflections. Also included is the curve for 
b/a = 0, which represents deflections of an infiniMy long plate calculated as explained 
in Art. 3 (see page 13). It can be seen that the deflections of finite plates with 
b/a < g are very close to those obtained for an infinitely long plate. 

Knowing t,he displacements as given by expressions (b), we can calculate the strain 
of the middle plane and the corresponding membrane stresses from Eqs. (b) of the 

1.0 

w,,, 
h 

oyI 1 I I I I I I I I t-t I I I I I 
0 too n 200 

ob’ 
Tii 

FIG. 208 

preceding article. The bending stresses can then be found from Eqs. (101) and (102) 
for the bending and twisting moments. By adding the membrane and the bending 
stresses, we obtain the total stress. The maximum values of this stress are at the 
middle of the long sides of plates. They are given in gr>Lphical form in Fig. 209. For 
comparison, the figure also includes straight lines rcprescnting the stresses obtained 
by the theory of small deflections and a curve b/a = 0 representing the stresses for 
an infinitely Iong plate. It would seem reasonable to expect the total stress to be 
greater for b/a = 0 than for b/u = 4 for any value of load. We see that the curve 
for b/a = 0 falls below the curves for b/a = 4 and b/u = $. This is probably a 
result of approximations in the energy solution which arise out of the use of a finite 
number of constants. It indicates that the calculated stresses are in error on the 
safe side, i.e., that they are too large. The error for b/u = 6 appears to be about 
10 per cent. 

The energy method can also be applied in the case of large deflections of simply 
support4 rectangular plates. Howcvcr, as may be seen from the foregoing dis- 
cussion of the case of clamped edges, the application of this method requires a con- 
siderable amount of computation. To get an approximate solution for a simply 
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supported rectangular plate, a simple method consisting of a combination of the 
known solutions given by the theory of small deflections and the membrane theory 
can be used.’ This method will now be illustrated by a simple example of a square 
plate. We assume that the load p can be resolved into two parts q1 and pz in such a 
manner that part qr is balanced by the bending and shearing stresses calculated by 

L 
Dh 

FIG. 209 

the theory of small deflections, part q2 being balanced by the membrane stresses. 
The deflection at the center as calculated for a square plat,e wit,11 sides 2a by the 
theory of small dcflect,ions is2 

From this we determine 

woEh3 
ql=ilFzG (e) 

1 This method is recommended by Foppl; see “Drang und Zwang,” p. 345. 
2 The factor 0.730 is obtained by multiplying the number 0.00406, given in Table 8, 

by 16 and by 12(1 - 9) = 11.25. 
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Considering the plate as a membrane and using formula (250), we obtain 

from which 
w3,Eh 

q2 = 0.516~~ 

The deflection wg is now obtained from the equation 

q = PI + 42 = 
woEha w;Eh 

-+- 
0.730a4 0.516~~ 

which gives 

q= 

(f) 

(252) 

After the defiection wo has been calculated from this equation, the loads ql and pz are 
found from Eqs. (e) and (f), and the corresponding stresses are calculated by using 
for pl the small deflection theory (see Art. 30) and for ~2, Eq. (251). The total stress 
is then the sum of t,he stresses due to the loads q1 and qz. 

Another approximate method of practical interest is based on consideration of the 
expression (248) for the st,rain energy due to the stretching of the middle surface of 
the plate. 1 This expression can bc put in the form 

67) 

in which 

A similar expression can he writ,ten in po’ar coor~Jin:~tes, e2 being, in cast of axial 
symmetry, equal to e,ct. Tllc: rncrgy of bending must be added, of course, to the 
energy (9) in order to obtain the total strain energy of the plate. Yet an cxarnination 
of exact solutions, such as described in Art. 98, lends io tile conclusion that terms of 
the differential equations due to the presence of the term e2 in expression (y) do not 
much influence the final result. 

Starting from the hypolhcsis that the term containing ez actually can be neglected 
in comparison with e2, we arrive at, t,hc differential equation of the bent plate 

AAw -dAw =” 
D 

in which the quantity 

proves to be a constant. From Eqs. (b) of Art. 101 it follows that the dilatation 
e = e, + ey then also remains constant throughout the middle surface of the bent 
plate. The problem in question, simplified in this way, thus becomes akin to prob- 
lems discussed in Chap. 12. 

1 H. M. Berger, .I. Appl. Mechanics, vol. 22, p. 465, 1955. 
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For a circular plate under symmetrical loading, Eq. (i) must be replaced by 

In this latter case the constants of integrat,ion of Eq. (h) along with the c,onstant a 
allow us to fulfill all conditions prcscribcd on the boundary of the plxt,e. However, 
for a more accurate calculation of the membrane st,resscs N,, Nt from the deflections, 
the first of t,hc equations (231) should be used in place of the relation (j). 

The calculation of the membrane stresses in rectangular plates proves to be rela- 
tively more cumbersome. As a whole, however, t,he procedure still remains much 
simpler than the handling of the exact equations (245) and (246), and t,he numerical 
results, in cases discussed till now, prove to have an accuracy satisfactory for technical 
purposes. Nevertheless some reservation appears opportune in application of t,his 
method as long as the hypothesis providing its basis lacks a straight, mechanical 
interpretation. 

103. Large Deflections of Rectangular Plates with Simply Supported Edges. An 
exact solution1 of this problem, treated in the previous article approximately, ran be 
established by starting from the simultaneous equat,ions (245) and (246). 

The deflection of the plate (Fig. 5Qj may he taken in t,he n’avier form 

m m 
cc 

rnT.c 
UJ= nw to,,,, sm ~ sm - 

a b (a) 
m=l n=l 

the boundary conditions with regard to the dcflcctions and the bending moments 
thus being satisfied by any, yet unknown, values of the coefficients wmn. The given 
lateral pressure may be expanded in a dout~lc Fourier series 

cc m 

cc 
ms.c q= wv q7,,,L sin _ sin - 

a b (b) 
m=l n=l 

9 suitable expression I’or tbo Airy st,ress function, then, is 

cc m 

cc 
mm ncd 

fmn cos __ cos - 
a b 

m=O n=o 
(cl 

where P, and P, denot,e the total tension load applied on the sides 5 = 0, a and 
y = 0, b, respectively. Substituting the expressions (a) and (c) into Eq. (245), we 
arrive at the following relation between tho cocfflcients of both series: 

1 Due to S. Levy, NACA Tech. Note 846, 1942, and Proc. Symposia Appl. Math., 
vol. 1, p. 197, 1949. For application of the same method to platrs with clamped 
edges see this latter paper and NACA Tech. Notes 847 and 852, 1042: for application 
to slightly curved plates under edge compression se? J. M. Coan, J. Appl. Mechanics, 

vol. 18, p. 113, 1951. M. Stippcs has applied the Ritz method to the case where 
the membrane forces vanish on the boundary and two opposite edges aresupportcd; 
see Proc. First Natl. Congr. -Appl. Mech., Chicago, 1952, p. 339. 
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The sum includes all products for which r f p = orb and s f Q = n. The coefficient,s 
l)WW are given by the expression 

b rspp = 2rspy 22 WY* + S2P”) (e) 

where the sign is positive for T + p = m and s - y = n or for r - p = m and 
s + q = n, and is negative otherwise. Taking, for example, a square plate (a = h), 
we obtain 

f&4 = $P WI,IWI,S + 36w~~w~,~ + 36w~1w1.s + 64w~m,c, .) 

It, still remains to establish a relation between the deflect,ions, the stress function, and 
the lateral loading. Insertsing expressions (a), (b), and (c) into Eq. (24(i), we arrive 
at the equation 

The summation includes, this time, all products for which r f p = VL and s * (I = n, 
and the coefficients are given by 

(kpq = + (ry + sp)2 if T # 0 and s # 0 (9) 

:md are twice tliis value otherwise. The first sign is positive if either T - p = m or 
s - y = n. (hut not simultaneously), and is negative in all other cases. The second 
sign is positive if T + p = no and s - y = n or r - p = WL and s + r, = n, and is 
negative otherwise. For example, 

In accordance with conditions occurring in airplane structures the plate is con- 
sidered rigidly framed, all edges thus remaining straight’ after deformation. Then 
thr rlongation of the plate, say in the direction I, is independent of v. By Eqs. (h) 
and (f) of Art. 101 its value is equal to 

Using the series (a) and (c), this yields 
m El 

i.e., an expression which in fact does not include y. Similarly, one ohtains 

co m 
&&&g-f cc n2w2 mn 

m=l n=l 

(h) 

(3 

* A solution due to Kaiser, Zoc. cit., is free from this restriction. 
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Wit,h regard to t,he boundary conditions WC again consider two cases: 
1. Ail edges are immovable. Then 6, = 6, = 0 and Eqs. (i) and (j) allow us to 

express P, and P, thro77gh the coefficients wmtL. 
2. The external edge load is zero in t,he plane of the plate. WC have then simply 

P, = P, = 0. 
Xext we have to keep a limited number of terms in the scrics (n) and (b) and to 

;ul)stit,utc t,he corresponding expressions (d) in Eq. (f). Thus we obtain for an) 
assumed number of the unknown coefficients w mn as many cubic equations. Having 
resolved these equations we calculate the coefficients (d) and are able t’o obtain all 
data regarding t,he stress and st,rain of the plate from the series (a) and (c). The 
accuracy of the solution can be judged by observing the change in the numerical 
results as t.he n77mbcr of the coc%cients w ,,,,L introduced in the calculation is grad77:rll~ 
increased. Some data for the flexural and nlcmbrane strcssca obtained in this mnnner 
in thr cnsc of a uniformly loaded square plate \vit,h immova~~lc; edges are given in 
E’igs. 210 and 211. 



CHAPTER 14 

DEFORMATION OF SHELLS WITHOUT BENDING 

104. Definitions and Notation. In the following discussion of the 
deformations and stresses in shells the system of notation is the same as 
t,hat used in t,he discussion of plates. We denote the thickness of the 
shell by h, this quantity always being considered small in comparison 
wit,h the other dimensions of the shell and with its radii of curvature. 
The surface that bisect,s the thickuess of the plate is called the middle 
surface. By specifying the form of t’hc middle surface and the thickness 
of the shell at each point, a shell is cntircly defined geometrically. 

To analyze the internal forces we cut from the shell an infinitely small 
clement formed by two pairs of adjacent planes which are normal to the 
middle surface of the shell and which contain its principal curvatures 
(Fig. 212~). We take the coordinate axes x and 11 tangent at 0 to the 
lines of principal curvature and the axis x normal to the middle surface, 
as shown in the figure. The principal radii of curvature which lie in the 
xx and i/x planes are denoted by T, and rzI, respectively. The stresses 
acting on the plane faces of the element are resolved in the directions of 
t,he coordinate axes, and the stress components are denoted by our previ- 
ous symbols uZ, uV, 72U = Tuz, Tzz. With this notation1 the resultant forces 
per unit length of the normal sections shown in IGg. 212b are 

The small quantities z/‘r, and z/T!, appesr in expressions (a), (b), (c), 
because the lateral sides of the element shown in Fig. 212~ have a trape- 
zoidal form due to the curvature of the shell. As a result of this, the 
shearing forces N,, and N,, are generally not equal to each other, although 

1 In the r:mcs of surfaces of revolution in \~hich the posiCon of the element is drfinrd 
1)~ the angles 6 and ‘p (see Fig. 213) the subscripts 0 and (o arc used instwtl of zr and y 
in notation for stresses, resultmt forces, and resultmt Inomcnts. 

.XLY 
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it still holds that 7zU = ryz. In our further discussion we shall always 
assume that the thickness h is very small in comparison with the radii 
P,, T, and omit the terms X/T, a,nd X/T, in expressions (a), (b), (c). Then 
sz, = N,,, and the resultzrnt shearing forces are given by the same 
expressions as in the case of plates (see ,4rt. 21). 

The bending and twisting moments per unit length of the normal sec- 
tions are given by the expressions 

in which the rule used in determining the directions of the moments is 
the same as in the case of plates. In our further discussion we again 
neglect the small quantities z/r, and z/rU, due to the curvature of the 
shell, and use for the moments the same expressions as in the discussion 
of plates. 

In considering bending of the shell, we assume that linear elements, 
such as AD and BC (Fig. 212a), which are normal to the middle surface 
of the shell, remain straight and become normal to the deformed middle 
surface of the shell. Let us begin with a simple case in which, during 
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bending, the lateral faces of the element ABCD rotate only with respect 
to their lines of intersect’ion with the middle surface. If r; and T; are the 
values of t’he radii of curvature after deformation, the unit elongations of 
a thin lnmina at a distance x from the middle surface (Fig. 212~) are 

If, in addition to rotation, the lateral sides of the element are displaced 
parallel to themselves, owing to stretching of the middle surface, and if 
the corresponding unit elongations of the middle surface in the 5 and y 
directions are denoted by ~1 and c 2, respectively, the elongation cz of t,he 
lamina considered above, as seen from Fig. 212c, is 

Substituting 

WC obtain 

.\ similar expression can be obtained for the elongation +. In our fur- 
ther discussion the thickness h of the shell will be always assumed small 
in comparison with the radii of curvature. In such a case the quantities 
x/r, and z/r, can be neglected in comparison with unity. We shall neg- 
lect also the effect of the elongations ~1 and c2 on the curvature.l Then, 
instead of such expressions as (g), we obtain 

1 1 
~z=El-Z ri-- ( ) r, 

= 61 - x=x 

lx 1 
Ej, = t2 - z 

(- -- -> rI ry 
= c:! - xy2 

where xz and xzl denote the changes of curvature. Using these expres- 
sions for the components of strain of a Iamina and assuming that there 
are no normal stresses between laminae (cL. = 0), the following expres- 

1 Similar simplifications are usually made in the theory of hending of thin curved 
bars. It can he shown in this case that the procedure is justifiable if the depth of the 
cross section h is small in comparison with the radius r, say h/r < 0.1 ; see S. Timo- 
shenko, “Strength of Materials,” part I, 3d ed., p. 370, 1955. 



432 THEORY OB PLATES AND SHELLS 

sions for the components of stress are obtained: 

YXY)l 

VXJI 

Substituting these expressions in Eqs. (a) and (d) and ucglecting the 
small quantities z,/r 2 and z/r, in comparison with unity, we obtain 

Eh 
N, = ------ (c, + v4 

1 - v2 N, = i”“,z (62 + VEl) 
(253 

AR, = - wxz + vxy) Jf, = - D(x, + vxz) 
where D has the same meaning as in the case of plates [see Eq. (3)] and 
denotes the flexurnl rigidity of the shell. 

A more general cast of dcformat’ion of the element in Fig. 212 is 
obtained if we assume that,, in addition to normal stresses, shearing 
stresses also arc actiug on the lateral sides of the element. Denoting 
by y the shearing strain in the middle surface of the shell and by xzV dz 
the rotation of the edge BC relative to Ox about the x axis (Fig. 212~2) and 
proceeding as in the case of plates [see Eq. (42)], we find 

T w = (Y - 2zxzzJG 
Substituting this in Eqs. (b) and (e) and using our previous simplifications, 
we obtain 

YhE 
.vzll = N,= = 2(1 + v) 

(254) 
iv I,, = - ll!l ?/z = D(l - v)xzy 

Thus assuming that during bending of :I shell the linear clcments normal 
to the middle surface remain straight and become normal to the deformed 
middle surface, we can express the resultant forces per unit length N,, 
N,, and N,, and the moments M,, M,, and M,, in terms of six quantities: 
the three components of strain ~1, ~2, and y of the middle surface of the 
shell and the three quantities xz, xv, and xzv representing the chaugcs of 
curvature and the twist of the middle surface. 

In many problems of deformation of shells the bending strcsscs can be 
neglected, and only the stresses due to strain in the middle surface of the 
shell need be considered. Take, as an cxamplc, a thin spherical container 
submitted to the action of a uniformly distributed internal pressure nor- 
mal to the surface of the shell. Under this action the middle surface of 
the shell undergoes a uniform strain; and since the thickness of the shell 
is small, the tensile stresses can be assumed as uniformly distributed 
,mross the thickness. A similar example is afforded by a thin circular 
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cylindrical container in which a gas or a liquid is compressed by means of 
pistons which move freely along the axis of the cylinder. Under the 
action of a uniform internal pressure the hoop stresses that are produced 
in the cylindrical shell are uniformly distributed over the thickness of 
the shell. If the ends of the cylinder are built in along the edges, the 
shell is no longer free to expand laterally, and some bending must occur 
near the built-in edges when internal pressure is applied. A more com- 
plete investigation shows, however 
(see Art. 114), that this bending is of 
a local character and that the portion 
of the shell at some distance from the 
ends continues to remain cylindrical 
and undergoes only strain in the 
middle surface without appreciable 
bending. 

If the conditions of a shell are such 
that bending can be neglected, the 
problem of stress analysis is greatly 
simplified, since the resultant moments 
(d) and (e) and the resultant shearing 
forces (c) vanish. Thus the only un- 
knowns are the three quantities N,, 
N,, and N,, = N,,, which can be de- 
termined from the conditions of equi- 
librium of an element, such as shown in 
Fig. 212. Hence the problem becomes 
statically determinate if all the forces 
acting on the shell are known. The 
forces N,, N,, and N,, obtained in this FIG. 213 

manner are sometimes called membrane forces, and the theory of shells 
based on the omission of bending stresses is called membrane theory. The 
application of this theory to various particular cases will be discussed in 
the remainder of this chapter. 

106. Shells in the Form of a Surface of Revolution and Loaded Sym- 
metrically with Respect to Their Axis. Shells that have t,he form of 
surfaces of revolution find extensive application in various kinds of con- 
tainers, tanks, and domes. A surface of revolution is obtained by rota- 
tion of a plane curve about an axis lying in the plane of the curve. This 
curve is called the meridian, and its plane is a meridian plane. An ele- 
ment of a shell is cut out by two adjacent meridians and two parallel 
circles, as shown in Fig. 213~. The position of a meridian is defined by 
an angle 6, measured from some datum meridian plane; and the position 
of a parallel circle is defined by the angle cp, made by the normal to the 
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surface and the axis of rotation. The meridian plane and the plane 
perpendicular to the meridian are the planes of principal curvature at a 
point of a surface of revolution, and the corresponding radii of curvature 
are denoted by r1 and rz, respectively. The radius of the parallel circle is 
denoted by r. so that the length of the sides of the element meeting at 0, 
as shown in the figure, are rl dp and TO d0 = r2 sin cp d0. The surface 
area of the element is then rlr2 sin cp dp d6. 

From the assumed symmetry of loading and deformation it can be 
concluded that there will be no shearing forces acting on the sides of 
the element. The magnitudes of the normal forces per unit length are 
denoted by N, and No as shown in the figure. The intensity of the 
external load, which acts in the meridian plane, in the case of symmetry 
is resolved in two components Y and 2 parallel to the coordinate axes. 
Multiplying these components with the area rlr2 sin cp dp d0, we obtain 
the components of the external load acting on the element. 

In writing the equations of equilibrium of the element, let us begin 
with the forces in the direction of the tangent to the meridian. On the 
upper side of the element the force 

N,ro d0 = Ng-2 sin cp d0 (a) 

is acting. The corresponding force on the lower side of the element is 

(6) 

From expressions (a) and (O), by neglecting a small quantity of second 
order, we find the resultant in the y direction to be equal to 

The component of the external force in the same direction is 

Yrlro dq d6 (4 

The forces acting on the lateral sides of the element are equal to Nor1 dp 
and have a resultant in the direction of the radius of the parallel circle 
equal to Nor1 dp d9. The component of this force in the y direction 
(Fig. 2136) is 

-Nor1 cos cpdpdf? (e> 

Summing up the forces (c), (d), and (e), the equation of equilibrium in 
the direction of the tangent to the meridian becomes 

-& (N,rd - N .9r1 cos p + YrlrO = 0 (f) 
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The second equation of equilibrium is obtained by summing up the 
projections of the forces in the z direction. The forces acting on the 
upper and lower sides of the element have a resultant in the x direction 
equal to 

N,ru do dp (9) 

The forces acting on the lateral sides of the ~~lenic:lt and having the 
result,ant Serl & rl0 in the radial direction of t#he p:tr:tllel circle give a 
component in the z direction of the magnitude 

NorI sin cp dp do (h) 

The external load acting on the element has in the same direction a 
component 

Zrgo d0 dp (4 

Summing up the forces (g), (h), and (i), me obbain the second equation 
of equilibrium 

N,ro + NorI sin p + ZVO = 0 (j) 
R, 

From the two Eqs. (f) and (j) the forces 
No and N, can be calculated in each 

k ----ro --- - 
+I 

particular case if the radii ~0 and ~1 and 
the components Y and Z of the intensity 
of the external load are given. 

Instead of the equilibrium of an ele- 

cc$A I 
-3 

P P ,/-ML. NIP 

FIG. 214 
ment, the equilibrium of the portion of 
the shell above the parallel circle defined by the angle cp may be considered 
(Fig. 214). If the resultant of the total load on that portion of the shell 
is denoted by R, the equation of equilibrium is 

2m-ON, sin cp + R = 0 (255) 

This equation can be used instead of the differential equation (f), from 
which it can be obtained by integration. If Eq. (j) is divided by rlro, 

it can be written in the form 

(256) 

It is seen that when N, is obtained from Eq. (255), the force No can be 
calculated from Eq. (256). Hence the problem of membrane stresses 
can be readily solved in each particular case. Some applications of these 
equations will be discussed in the next article. 
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106. Particular Cases of Shells in the Form of Surfaces of Revolution.’ 
Spherical Dome. Assume that a spherical shell (Fig. 215a) is submitted 
to the action of its own weight, the magnitude of which per unit area is 
constant and equal to q. Denoting the radius of the sphere by a, we 
have r. = a sin cp and 

R = 2a i 0 Ip a’y sin cp dq = 2?ra2q(l - cos ‘p) 

Equations (255) and (256) then give 

N = _ 41 - cos Y> = _ aq 
(P sin2 cp Ify 

NH = aq 
1 

1 + cos y 
- cos $0 

> 

(257) 

It is seen that the forces N, are always negative. There is thus a com- 

JaAL 09 

Cc) 
FIG. 215 

pression along the meridians that 
increases as the angle cp increases. For 
y = 0 we have N, = --q/2, and 
for cp = n/2, N, = -aq. The forces 
No are also negative for small angles cp. 
When 

1 
1 + cos $9 

- cos y = 0 

i.e., for cp = 51”50’, No becomes equal 
to zero and, with further increase of cp, 
becomes positive. This indicates that 
for cp greater than 51’5O’there are tensile 
stresses in the direction perpendicular 
to the meridians. 

The stresses as calculated from (257) 
will represent the actual stresses in the 
shell with great accuracy2 if the sup- 
ports are of such a type that the reac- 
tions are tangent to meridians (Fig. 
215a). Usually the arrangement is 
such that only vertical reactions are 
imposed on the dome by the supports, 

whereas the horizontal components of the forces N, are taken by a 

1 Examples of this kind can bc found in the book by A. Pfliiger, “Elementare 
Schalenstatik,” Berlin, 1957; see also P. Forchheimcr, “Die Berechnung ebener und 
gekrtimmter Beh%lterbiiden,” 3d ed., Berlin, 1931, and J. W. Geckeler’s article in 
“Handbuch der Physik,” vol. 6, Berlin, 1928. 

2 Small bending stresses due to strain of the middle surface will be discussed in 
Chap. l(i. 
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supporting ring (Fig. 215b) which undergoes a uniform circumferential 
extension. Since this extension is usually different from the strain along 
the parallel circle of the shell, as calculated from expressions (257), 
some bending of the shell will occur near the supporting ring. An investi- 
gation of this bending1 shows that in the case of a thin shell it is of a very 
localized character and that at a certain distance from the supporting ring 
Eqs. (257) continue to represent the stress conditions in the shell with 
satisfactory accuracy. 

1 2 
,,- ‘$0 a 
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_* 

A 
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cb, 

FIG. 216 

Very often the upper portion of a spherical dome is removed, as shown 
in Fig. 215c, and an upper reinforcing ring is used to support the upper 
structure. If 2~0 is the angle corresponding to the opening and P is the 
vertical load per unit length of the upper reinforcing ring, the resultant R 
corresponding to an angle cp is 

R=21r ‘p 
/ 

a2q sin cp dp + 2?rPa sin cpo 
‘0 

From Eqs. (255) and (256) we then find 

N, = -aq 
cos po - COS p sin cpo 

sin2 cp 
-P-;-- 

sin2 cp 

NO = aq 
cos qo - cos $0 

sin2 cp -cosp +Pz; 
> 

(258) 

As another example of a spherical shell let us consider a spherical tank 
supported along a parallel circle AA (Fig. 216) and filled with liquid of a 
specific weight y. The inner pressure for any angle P is given by the 

1 See Art. 131. It should be noted, however, that in the case of a negative or zero 
curvature of the shell (QTZ 5 0) bending stresses due to the edge effect are not neces- 
sarily restricted to the edge zone of the shell. See, for instance, W. Fltigge, “Statik 
und Dynamik der Schalen,” p. 65, 2d cd., Berlin, 1957. The limitations of the mem- 
brane theory of shells are discussed in detail by A. L. Goldenveiser, “Theory of 
Elastic Thin Shells,” p. 423, Moscow, 1953. The compatibility of a membrane state 
of stress under a given load with given boundary conditions was also discussed by 
E. Behlendorff, 2. angew. Math. Me&., vol. 36, p. 399, 1956. 
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p = -2 = -/a(1 - cos ‘p) 

The resultant R of this pressure for the portion of the shell defined by 
an angle cp is 

R = -2aa2 IO’ ya(1 - cos cp) sin cp cos p & 

= -2Ta3y[+ .- 4 COY2 cp(l - 3 cos cp)] 

Substituting in Eq. (255), we obtain 

N, = co92 $L7(3 - 2 cos p)] = g 1 
2 cos2 $0 

- ~~ 
I + cos cp (259) 

and from Eq. (256) we find that 

(260) 

Equations (259) and (260) hold for p < P’O. In calculating the resultant. 
fz for larger values of cp, that is, for the lower Portion of the tank, we must 
take into account not only the internal pressure but also the sum of the 
vertical reactions along the ring AA. This sum is evidently equal to 
the total weight of the liquid 4aa3y/3. Hence 

R = -$ra3y - 27ra”y[Q - + cos2 cp(1 - 2 cos cp)] 

Substituting in Eq. (255), we obtnin 

N - -@ 
c 6 

5 + 2 cos” P 
1 - cos p > 

and from Eq. (256), 

Ns = 7: 1 - 6 cos cp - 2 cos2 p 
1 - cos $0 > 

(261) 

(262) 

Comparing expressions (259) and (261)) we see that along the supporting 
ring AA the forces N, change abruptly by an amount equal to 2ya2/ 
(3 sin2 ~0). The same quantity is also obtained if we consider the vertical 
reaction per unit length of the ring AA and resolve it into two compo- 
nents (Fig. 2160) : one in the direction of the tangent to the meridian and 
the other in the horizontal direction. The first of these components is 
equal to the abrupt change in the magnitude of N, mentioned above; 
the horizontal component represents the reaction on the supporting ring 
which produces in it a uniform compression. This compression can be 
eliminated if we use members in the direction of tangents to the meridians 
instead of vertical supporting members, as shown in Fig. 216~. AS may 

1 A uniform pressure producing a uniform tension in the spherical shell can be 
superposed without any complication on this pressure. 
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be seen from expressions (260) and (262), the forces No also experience 
an abrupt change at the circle AA. This indicates that there is an abrupt 
change in the circumferential expansion on the two sides of the parallel 
circle AA. Thus the membrane theory does not sat)isfy the condition of 
continuitly at the circle AA, and we may expect, some local bending to 
take place near the supporting ring. 

Conical Shell. In this case certain membrane stresses can be produced 
by a force applied at the top of the cone If a force P is 
applied in the direction of the axis of the cone, the stress 
distribution is symmetrical, and from Pig. 217 we obtain 

Equation (256) then gives No = 0. The case of a force 
applied at the top in the direction of a generatrix will be 
discussed in Art. 110 and the loading of the shell by its 
weight in Art. 133. FIG. 217 

If lateral forces are symmetrically distributed over the conical surface, 
the membrane stresses can be calculated by using Eqs. (255) and (256). 
Since the curvature of the meridian in the case of a cone is zero, r1 = 00 ; 

we can write these equations in the following 

(b) 

lCach of the resultant forces N, and Ns can be 
calculated indcpcudently provided the load dis- 

0 
FIG. 218 

tribution is known. As an example, we take the 
case of the conical tank filled with a liquid of 

specific weight y as shown in IQ. 218. Measuring the distances ?J from 
the bottom of the tank and denoting by d the tomI depth of the liquid in 
the tank, the pressure at any parallel circle mn is 

p = -2 = -f(d - y) 

Also, for such a tank p = (7r/2) + o( and rg = 1/ tan CL Substituting in 
t#he second of the equations (O), we obtain 

No = 
r(d - y)y tan a: 

cos a 

This force is evidently a maximum when y = d/2, and we find 
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In calculating the force N, we observe that the load R in the first of the 
equations (b) is numerically equal to the weight of the liquid in the conical 
part mno together with the weight of the liquid in the cylindrical part 
mnst. Hence 

and we obtain 
R = -ayy2(d - y + By) tan2 (Y 

b-0 

This force becomes a maximum when y = $d, at which point 

If the forces supporting the tank are in the direction of generatrices, as 
shown in Fig. 218, expressions (c) and (d) represent the stress conditions - 

in the shell with great accuracy. Usually 
there will be a reinforcing ring along the 
upper edge of the tank. This ring takes the 
horizontal components of the forces N,; 
the vertical components of the same forces 
constitute the reactions supporting the 
tank. In such a case it will be found that 
a local bending of the shell takes place at 
the reinforcing ring. 

FIG. 219 

Shell in the Form of an Ellipsoid of Revolu- 
tion. Such a shell is used very often for the 
ends of a cylindrical boiler. In such a case 

a half of the ellipsoid is used, as shown in Fig. 219. The principal radii 
of curvature in the case of an ellipse with semiaxes a and b are given by 
the formulas 

a2b2 a2 
” = (a” sin2 p + b2 COS’ (p>g r2 = (a2 sin2 cp + b2 COST (P)* (4 

or, by using the orthogonal coordinates x and y shown in the figure, 

b2 
7-l = rf - 

a4 
r2 = (a4y2 + b4x2)* 

b2 

If the principal curvatures are determined from Eqs. (e) or (f), the forces 
N, and No are readily found from Eqs. (255) and (256). Let p be the 
uniform steam pressure in the boiler. Then for a parallel circle of a 
radius rg we have R = -qr& and Eq. (255) gives 

(263) 



DEFORMATION OF SHELLS WITHOUT BENDING 441 

Substituting in Eq. (256), we find 

Ne=rzp-zN.=p(rr--2) 

At the top of the shell (point 0) we have r1 = r2 = a”/b, and Eqs. (263) 
and (264) give 

At the equator AA we have r1 = b2/a and rz = a; hence 

It is seen that the forces N, are always positive, whereas the forces Ns 
become negative at the equator if 

a2 > 2b2 (9 

In the particular case of a sphere, a = b; and we find in all points 
N, = No = pa/2. 

Shell in Form of a Torus. If a torus is obtained by rotation of a circle 
of radius a about a vertical axis (Fi g. 220), the forces N, are obtained by 

FIG. 220 

considering the equilibrium of the ring-shaped portion of the shell repre- 
sented in the figure by the heavy line AB. Since the forces N, along the 
parallel circle BB are horizontal, we need consider only the forces N, 
along the circle AA and the external forces acting on the ring when dis- 
cussing equilibrium in the vertical direction. Assuming that the shell is 
submitted to the action of uniform internal prcssure p, we obtain the 
equation of equilibrium 

from which 
2nroN, sin cp = ?rp(r2, - b2) 

(265) 
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Substituting this expression in Eq. (256), me find’ 

N 0 = prdro - b) = PA 
2ro 2 

A torus of an elliptical cross section may be treated in a similar manner. 

107. Shells of Constant Strength. -1s a first example of a shell of constant, strength, 
let us consider a, dome of nonuniform thickness supporting its own weight. The 
weight of the shell per unit area of the middle sllrface is yh, and the two components 
of this weight along the coordinate axes are 

Y = yh sin v 2 = yh cos $0 (a) 

In the case of a shell of constant strengtll the form of the meridians is determined in 
such a way that the compressive stwss is constant and equal to D in all the directions 
in the middle surface, i.e., so that 

N, = No = -uh 

Substituting in Eq. (266), we find 

= -,h cos 'p 

or, by substituting T? = I‘” sin p and solving for rl, 

From Fig. 2130, WC have 

Thus Eq. (c) can bc represented in the form 

6) 

(cl 

(4 

At the top of the dome where ‘p = 0, the right,-hand side of the equation becomes 
indefinite. To remove this difficulty we use Eq. (b). Because of the conditions of 
symmetry at the t,op, rl = rq, and we conclude that 

20 2u 
l-1 = f-2 = - and dro = r,dp = -dda 

Y Y 

1 Nevertheless, a consideration of the deformation of the shell shows that bending 
stresses inevitably must arise near the crown ro = b of the shell, and this in spite of 
the lack of any singularity either in the shape of the shell surface or in t,hc disi,ribu- 
tion of the loading. See W. R. Dean, Phil. Mug., ser. 7, vol. 28, p. 452, 1039, and 
also Fliigge, op. cit., p. 81. 
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Hence, for the top of the dome we have 

dro 20 -=- 
dv Y 

(e) 

Using Eqs. (ej and cd), we can obtain the shape of the meridian by numerical intc- 
gration, starting from t,hc top of the dome and calculating for each incrcmrnt Aq 

of the angle p the corresponding increment Are of the radius r~. To find the vari- 
ation of the thickness of the shell, Eq. (f), Art. 105, must be used. Substituting 
N, = No = -oh in this equation and observing that c is constant, we obtain 

- $ (hro) + hr, cos rp + ‘, rlrOh, sin q = 0 

Substituting expression (c) for I,, the i’ollol\-ing (quation is ol)tained: 

(.f) 

(9) 

For +D = 0, we obtain from Eq. Cf, 

It is seen that for the first increment A9 of the angle ‘p any constant value for h can 
be taken. Then for the otjhcr points of 
the meridian t,he thickness is found by 
the numerical integration of I’q. (9). In 
Fig. 221 the result of such a calculation 
is represented.’ It is seen that the 
condition 

No = N, = -oh 

brings us not only to a definite form of 
t,he middle surface of the dome hut also to a definite law of variation of the t,hiak- 
ness of the dome along the meridian. 

In the case of a tank of equal strength t,hat contains a liquid with a pressure ld at 
the upper point A (Fig. 222) we must find a shape of the meridian such that an internal 
pressure equal to yz will give rise at all point,s of thr shell to forces2 

N, = NO = const 

A similar problem is encountered in finding t,he shape of a, drop of liqllid resting on 
a horizontal plane. Because of the capillary forces a thin surface film of uniform 
tension is formed which envelops the liquid and prevents it from spreading over the 
supporting surface. Both problems are mathematically identical. 

1 This example has been calculated by Fliigge, op. cit., p. 38. 
2 A mat.hematical discussion of this problem is given in the book by C. Runge and 

H. Kiinig, “Vorlesungen iiber numerischw lievhnen,” p. :<20, Berlin, 1924. 
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In such cases, Eq. (256) gives 

NV 

Taking the orthogonal coordinates as shown in the figure, we have 

x dx 
i-2 = 7 r, dc = ds = ~ 

sm rp cos $0 

1 sin p 1 
Hence 

cos ‘p dq d sin ‘p -=__ -= rc- 
T2 5 7.1 dx dx 

and Eq. (h) gives 

(h) 

Observing that 
dz 

kin rp = d; 
and (A 

it is possible to eliminate sin ‘p from Eq. (i) and obtain in this way a differential 
equation for 2 as a function of x. The equation obtained in this manner is very 

B C 
FIG. 222 

complicated, and a simpler means of solving the problem is to introduce a new vari- 
able u = sin ‘p. Making this substitution in Eqs. (i) and (j), we obt,ain 

!F+~=$? UC) 
‘p 

ii=+ (0 

These equal,ions can be integrated numerically starting from the upper point A of 
the tank. At this point, from symmetry, r1 = r2, and we find from Eq. (h) that 

2N, r, = __ 
rd 
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By introducing the notation 

we write 
2a2 

Tl = - 
d 

Cm) 

With this radius we make the first element of the meridian curve rlAp = AZ, corre- 
sponding t,o the small angle Arp. At the end of this arc we have, as for a small arc of 
a circle, 

(Av)’ z=d+rl- 
2 

Ax 
u=-= 

Tl 

When the values u and z have been found from Eqs. (n), the values of du/dx and 
dz/dx for the same point are found from Eqs. (Ic) and (2). With these values of the 
derivatives we can calculate the values of z and u at the end of the next interval, and 
so on. Such calculations can be continued wit,hout difliculty up to an angle ‘p equal, 
say, to 50”, at which the value of u becomes approximately 0.75. From this point 
on and up to ‘p = 140” t.hc inc*rement,s of z are much longer than the corresponding 
increments of Z, and it is advantagcons to take z as the indcpcndcnt variable instead 
of 2. For ‘p > 140”, 5 must again be taken as the independent variable, and the 
calculation is continued up to point B, where the meridian curve has the horizontal 
tangent BC. Over the circular area BC the tank has a horizontal surfare of contact 
with the foundat.ion, and the pressure r(d + d,) is balanced by the reaction of the 
foundation. 

A tank designed in this manner’ is a tank of constant strength only if the pressure 
at A is such as assumed in the calculations. For any other value of this pressure 
the forces NE and N, will no longer be constant but will vary along the meridian. 
Their magnitude can then be calculated by using the general equations (255) and 
(256). It will also be found t,hat the equilibrium of the tank requires that vertical 
shearing forces act along the parallel circle BC. This indicates that close to this circle 
a local bending of the wall of the tank must take place. 

108. Displacements in Symmetrically Loaded Shells Having the Form 
of a Surface of Revolution. In the case of symmetrical deformation of a 
shell, a small displacement of a point can be resolved into two compo- 
nents: v in the direction of the tangent to the meridian and w in the 
direction of the normal to the middle surface. Considering an element 
AB of tbc mcridinn (Fig. 2X3), we see that the increase of the length of 
the element due to tangential displacements u and ZJ + (&J/&O) dq of its 
ends is equal to (du/dq) dq. Because of the rxlinl displacements w of the 
points A and B the length of the element decreases by an amount w dp. 
The change in the lengt,h of the clement due to the difference in the radial 
displacements of the points L4 and B can be neglected as a small quantity 

1 Tanks of this kind were ronstructcd by the Chicago Bridge and Iron Works; see 
C. I,. Day, Eng. News-Record, vol. 103, p. 416, 1929. 
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of higher order. Thus the total change in length of the element AB due 
to deformation is 

dv 
;i;;; & - w & 

Dividing this by the initial length rI dq of the elcmcnt, we find the strain 
of the shell in the meridional direction to be 

Considering an element of a parallel circle it 
may be seen (Fig. 223) that owing to displace- 
ments v and w the radius rg of the circle 
increases by the amount 

u cos p - w sin p 

in the same proportion The circumference of the parallel circle increases 
as its radius; hence 

1 
co = To (v 00s fp - w sin cp) 

or, substituting ro = r2 sin ‘;7, 
V 

es = - 
7-2 

cot cp - E 0)) 

Eliminating w from Eqs. (a) and (O), we obtain for v the differential 
equation 

dv 
- - v cot p = rlE, - r2eo 
& 

(cl 

The strain components Ed and ~0 can he expressed in terms of the forces 
N, and NO by applying Hooke’s law. This gives 

E B = & (N, - vNe) 

~0 = 2% (Ns - vN,) 
(4 

Substituting in IGl. (c), we obtain 

dr: 
- - v cot P = &$Np(rl + vrt) - Ns(rz + 
dp 

w)l (267) 

In each particular case the forces N, and No can be found from the load- 
ing conditions, nerd the displacement u will then be obtained by integration 
of the differential equation (267). Denoting the right-hand side of this 
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equation by f(cp), we write 

dv 
- - v cot (0 = f(y) 
& 

The general solution of this equation is 

v = sin cp 
ii^ 

WdpfC 
sin cp 3 

in which C is a constant of integration to be determined from the con- 
dition at the support. 

Take, as an example, a spherical shell of constant thickness loaded by 
its own weight (Fig. 215a). In such a case r1 = TZ = a, N, and No are 
given by expressions (257), and Eq. (267) becomes 

dv a”q(l + v) - - u cot p = -- 2 
dp Eh cos p - 1 + cos cp > 

The general solution (e) is then 

a%(1 + v) 
lJ = 7.-- [ 

sin cp log (1 + cos p) - 
sin y 

1 + cos p 1 
+ C sin cp (f) 

The constant C will now be determined from the condition that, for p = a 
the displacement v is zero (Fig. 215~). From this condition 

c _ ~W + v) 1 
Eh 1 + cos a 

- log (1 + co9 01) I 
The displacement v is obtained by substitution in expression (.f). The 
displacement w is readily found from Eq. (h). At the support, where 
v = 0, the displacement w can be cnlculnted directly from Eq. (b), with- 
out using solution (f), by substituting for ~0 its value from the second of 
the equations (d). 

109. Shells in the Form of a Surface of Revolution under Unsym- 
metrical Loading. Considering again an element cut from a shell by two 
adjacent meridians and two parallel circles (Fig. 221), in the general case 
not only normal forces N, and No but also shearing forces NV0 = Ns, 
will act on the sides of the element. Taking the sum of the projections 
in the y direction of all forces acting on the element, WC must add to the 
forces considered in Art. 105 the force 

representing the difference in the shearing forces acting on the lateral 
sides of the element. Hence, instead of Eq. (f), Art. 105, we obtain the 
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Tl - Nsr1 cos $9 + Y?yo = 0 (268) 

Considering the forces in the .2: direction, we must include the difference 
of the shearing forces acting on the top and bottom of the element as 

FIG. 224 

given by the expression 

N,s 2 dy de + !?f-&! 
dY 

r. dp do = $ (r,N+,) dp do 

the force 

@) 

due to variation of the force NO and the force 

Ne,rl cos y de dp (4 

due to the small angle cos 9 dtJ between the shearing forces Nap acting on 
the lateral sides of the element. The component in x direction of the 
external load acting on the clement is 

Xror, de dy (e> 

Summing up all these forces, we obtain the equation 

6 (roNvfJ) + g r1 + Nag-, cos y + xrorI = 0 (26% 

The third equation of equilibrium is obtained by projecting the forces on 
the z axis. Since the projection of shearing forces on this axis vanishes, 
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the third equation conforms with Eq. (%G), which was derived for sym- 
metrical loading. 

The problem of determining membrane stresses under unsymmetrical 
loading reduces to the solution of Eqs. (2G8), (269), and (256) for given 
values of the components X, Y, and Z of the intensity of the external load. 
The application of these eclr~:~tions to the case of shells subjected to wind 
pressure will be discussed in the next article. 

110. Stresses Produced by Wind Pressure.’ As a particular example 
of the application of the general equations of equilibrium derived in the 
previous article, let us consider the action of wind pressure on a shell. 
Assuming that the direction of the wind is in the meridian plane 0 = 0 
and that the pressure is normal to the surface, we take 

X=Y=O 2 = p sin cp cos 8 

The equations of equilibrium then become 

(a> 

& (TON,) + Lr$ r1 - Nsrl cos p = o 

& (roN,s) + 9 rl + Neg-1 cos c,o = 0 

N,ro + NorI sin ‘p = -prorl sin cp cos 0 

By using the last of these equations we eliminate the force No and obtain 
the following two differential equations2 of the first order for determining 
N, and Ns, = Npo: 

-prl cos p cos 0 
Cc) 

-prl sin 0 

Let us consider the particular problem of a apllcricnl shell, in which 
case r1 = 7-2 = a. We take the solution of ld:qs. (c) in the form 

N, = s, cos e No, = So, sin 0 (4 
1 The first investigation of this kind was nude by IT. Rcissner, ‘I Miillcr-Breslau- 

Festschrift,” p. 181, Leipzig, 7912; see also F. 1)ischinger in F. van Emperger’s 
“ Haudl~ch flir I<isenbetonb:tu,” 4th rd., vol. 0, lkrlin, 3928; k:. Kicdemann, Schweiz. 
Bauzty., vol. 108, p. 249, 1930; and Ii. Girlmmnn, Sti~hlbmr, vol. 6, 1933. Further 
developn~cnt of the theory of unsymmetrical deformation is due to C. Truesdcll, 
Trans. Llrn. Lath. Sot., vol. 58, p. 96, 194.5, and B&l. Am. Ma:h. Sm., vol. 54, p. 994, 
1948; I<>. Reissner, J. Math. and Whys., vol. 26, p. 290, 1948; and W. Zerna, Ingr.- 
Arch., vol. 17, p. 223, 1949. 

2 The application of the stress function in investigating wind stresses was used by 
A. Pucher, I-‘u6ls. Zntem. Assoc. Bridge Structural Engm., vol. 5, p. 275, 1938; see also 
Art. 113. 
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in which S, and So, are functions of cp only. Substituting in Eqs. (c), 

we obtain the following ordinary differential equations for the determi- 
nation of these functions: 

F$ + 2 cot YSQ + &y&Q = -pacoscp 

d+ + 2 cot y&Q + kySv = -pa 
(e) 

By adding and subtracting these equations and introducing the notation 

Ul = s, -I- se, uz = s, - Se, (.f) 

the following two ordinary differential equations, each containing only 
one unknown, are obtained: 

gl + 
( 

2 cot y + s& 
) 

7J1 = - pa(l + cos cp) 

dg+ 2cotlp- 
( 

+& 
> 

(9) 
UZ = pa(l - cos cp) 

Applying the general rule for integrating difierential equations of the 
first order, we obtain 

u 
1 

= 1 + cm Y 
sin3 y [Cl+pa(coay-icos3p)] (h) 

u 
2 

= 1 - cos Y 
sin3 cp 

[C2-pa(cosy-icos’p)] 

where C1 and CZ are constants of integration. Substituting in Eqs. (ji 
and using Eqs. (d), we finally obtain 

cos y + pa 
1 

co9 cp - - cm4 p 
3 >I 

(4 
cos y + pa 

1 
cos y - - cos” y 

3 

To determine the constants of integration C1 and Cz let us consider a 
shell in the form of a hemisphere and put cp = a/2 in expressions (i). 
Then the forces along the equator of the shell are 

N 
Q 

= Cl + cz 

2 
cos e N _ Cl - cz 

BP - __--- 
2 

sin e (j) 

Since the pressure at each point of the sphere is in a radial direction, 
the moment of the wind forces with respect to the diameter of the sphere 
perpendicular to the plane 0 = 0 is zero. Using this fact and applying 
the first of the equations (j), we obtain 

I 271 2* N,w” cos e de = Cl + cz a2. 7 
J 

~082 e de = 0 
. n 0 
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which gives 
Cl = -cz (k) 

The second necessary equation is obtained by taking the sum of the com- 
ponents of all forces acting on the half sphere in the direction of the 
horizontal diameter in the plane 0 = 0. This gives 

I 0 
2s Ns,a sin 0 de = - /cff”/ 

0 
2* p sin cp cos 0 a2 sin cp sin cp cos 0 dp dti 

or (0 
From (Ic) and (1) we obtain 

Cl = -gap C2 = sap 

Substituting these values for the constants in expressions (i) and using 
the third of the equations (b), we obtain 

* 
(0 

= _ pa cos 8 COY cp 

3 sins cp 
(2 - 3 COY $9 + cos3 cp) 

N =!?$p(2 e cos (0 - 3 sin2 cp - 2 cos4 ‘p) 

N 
@I 

= _ 21_a sin 0 3 Sin3 (2 - 3 cos $0 + cos” $9) 

(4 

By using these expressions the wind stresses at any point of the shell 
can be readily calculated. If the shell is in the form of a hemisphere, 
there will be no normal forces acting 
along the edge of the shell, since 
(N,).-r/2 = 0. The shearing forces 
No, along the edge are different from 
zero ‘and are equal and opposite to the 
horizontal resultant of the wind pres- -> p r’ 
sure. The maximum numerical value ,+. , 
of these forces is found at the ends of the 

/ 

diameter perpendicular to the plane 
0 = 0, at which point they arc equal 

f,, y,,/ 

to i2pa/3. 
FIG. & 

As a second application of Eqs. (c) let us consider the case of a shell 
having the shape of a circular cone and supported by a column at the 
vertex (Fig. 225). In this case the radius r1 is infinitely large. For an 
element dy of a meridian we can write dy = r1 dq. Hence 

d d 
& -=Qi 

In addition we have 

TO = y sin (Y 
dr,, . 
dy = sln a 

rz = y tan ff 
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Substituting in Eqs. (c), we obtain for a conical shell submitted to a 
wind pressure Z = p sin p cos 0 the equations 

-p sin u cos 0 

dNoq 21\-s, (4 

-+ Y ?Y 
__ = -p sin 0 

The second equation can be readily integrated to obtain 

No,= -$(gF+C)sin0 (0) 

The edge of the shell y = 1 is free from forces; hence the constant of 
integration in expression (0) is 

and we finally obtain 
Nap = E l3 - y3 

3 y2 
sin 6 

Substituting in the first of the equations (n.), we find 

aN, dy + ? = - ( g k& + p sin LY 
> 

cos 0 

The integration of this equation gives 

N 13 - y3 ~- ‘p 
= p yes 0 

( 
c2!z cos‘2 o( 

s1n a 3y2 2Y ) 

(P) 

which vanishes at the edge y = 1, as it should. The forces No are 
obtained from the third of the equations (b), which gives 

NO= -pysinacosB CT) 

The expressions (p), (q), and (7) give the complete solution for the 
stresses due to wind pressure on the conical shell represented in Fig. 225. 
At the top (y = 0) the forces N, and No, become infinitely large. To 
remove this dificulty we must assume a parallel circle corresponding to 
a certain finite value of y along which the conical shell is fastened to the 
column. The forces N,, No, distributed along this circle balance the 
wind pressure acting on the cone. It can be seen that, if the radius of 
the circle is not sufficient, these forces may become very large. 

In the case of a transverse load Q applied at, the top of the cone (Fig. 226~) we can 
satisfy Eqs. (n), in which the right-hand side becomes zero, by putting 

Q cos 6 
NV=-- 

xy sm2 01 
N,o = 0 (6) 
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It is readily verified by integration that the shearing force which results from the 
stresses N, for any section normal to the axis of the cone is equal to Q and that the 
moment of those stresses with respect to the axis 0 = 7r/2 of this section equalizes the 
moment Qy cos OL of the load. As for the stress components No, they vanish through- 
out the shell, as ensues from the third of 
the equations (b), where we have to assume 
r1 = m and p = 0. 

34, A4 

AQ s I \ 
Should a load S act in the direction of : 

the generatrix of the cone (Fig. 226b), we ,‘. I CY- 
t 

’ Ix&d 
must combine the effect of both its com- ? I [ 
ponents P = S cos 01 (Fig. 217) and Q = S :’ 
sin LY upon the forces N+,. 

The result is - r, - 

N, = 2:.; (2 cos e -- 1) NT (0) N, N, (b) N, 

which yields the extreme values of S/21rro 

43 

b‘ 
at 0 = 0 and 

I 
--3S/2aro at e = T, R’ 

respectively. 
111. Spherical Shell Supported at Iso- 

lated Points.’ We begin with the general (cl 
case of a shell having the form of a surface FIG. 226 
of revolutjion and consider the case when 
the forces are acting only along the edge of the shell so that X = Y = Z = 0. The 
general equations (b) of the preceding article then become 

; (roN,) + “f; TI - Nor, cos ‘p = 0 

; (roNsp) + z T-I + NO~I cos v = 0 (a) 

N,ro + Nor, sin p = 0 

Let us t,ake the solution of these equations in the form 

iv, = s,,, cos ne 
Ne = 80,~ cos n0 (6) 

No9 = Sevra sin no 

where S,,“, Son, and Sea,, are fumtions of (D only and n is an integer. Substituting 
expressions (b) in Eqs. (a), we obtain 

; hs,,) + nrL&,,, - r&9, cos $0 = 0 

$ (mSeqJ - nda,, + r&, cos $0 = 0 (cl 

S,,, + z SerL = 0 

1 Fliigge, op. cit. For the application of the stress function in solving such prob- 
lems, see the paper by Pucher, op. cit. 
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Using the third of these equations, we can eliminate t,he function Se,, and thus obtain 

+n;$ =o 
(4 

SBC”, + n&; = 0 

In the particular case of a spherical shell r, = r2 = a, ro = a sin p; and Eqs. (d) 
reduce to the following simple form: 

(e) 

Proceeding as in t,ho preceding article, by taking the sum and the difference of li:qs. 
(e) and introducing the notation 

we obtain 
dU,, 
x- + 2 cot $0 + $- u,,, = 0 

sm cp 

dUz,, 
-g + 2 cot $0 - n I!,,, = 0 

sin ‘p > 

The solution of t,hrse eque.tions is 

(Q) 

From ld;qs. (f) we then obtain 

If we have a shell wit,hout an opening at the top, expressions (i) must be finite for 
‘p = 0. This requires that the constant of integration Cr, = 0. Substituting this in 

Eqs. (a’) and using Eqs. (b), we find 

(A 

Ns+, = - ~ 

Substituting for ‘p the angle ‘pO corresponding to the edge of the spherical shell, we 
shall obtain the normal and the shearing forces which must be distributed along the 
edge of the shell to produce in this shell the forces (j). Taking, as an example, the 
case when p,, = a/2, that is, when the shell is a hemisphere, we obtain, from 
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expressions (j), 

(N&,-T~? = ‘$ cos n0 

c,,, . 
(NQ&-~,~ = - - sm n@ 

2 
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Knowing the stresses produced in a spherical shell by normal and shearing forces 
applied to the edge and proportional to cos no and sin n0, respectively, we can t,reat 
the problem of any distribution of normal forces along the edge by representing this 

distribution by a trigonometric series in which each term of the series is a solution 
similar to solution (j).l Take, as an example, the case of a hemispherical dome of 
radius a, carrying only its own weight of y psf and supported by four symmetrically 
located columns. If the dome is resting on a continuous foundation, the forces N, 
are uniformly distributed along the edge as shown in Fig. 227a, in which the int,ensity 
of force UN+, per unit angle is plotted against the angle 8. In the cast of four equi- 
distant columns the dist,ribution of reactions will be as shown in Fig. 227b, in which 
2e denotes the angle corresponding to the circumferential distance supported by each 
column. Subtracting the force distribution of Fig. 227~ from thr force distribution of 
Fig. 227b, we obtain the distribution of Fig. 227c, representing a system of forces in 
equilibrium. This distribution can be represented in the form of a series 

1 In using a series N, = 3 
c 

CP,, cos nf.3 for normal forces we obkrin a dis- 
n=1,2,3, . . 

trihutjion of these forces symmetrical with respect to the diamctjcr 0 = 0. In the 
general case the series will contain not only cosine terms but also sine terms. The 
solutions for sine terms can be obtained in exactly the same manner as used in our 
discussion of t)he cosine t,erms. It is only necessary to exchange the places of cos n0 
and sin ne in Eqs. (b). 
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in which only the terms n = 4, 8, 12, . . . must bc considered, since the diagram 
,227~ repeats itself after each interval of r/ 2 and has four complete periods in the 
angle 2~. Applying the usual method for calculating the coefficients of series (L), 
we find 

A,, = - ‘$ sin (ne) 

Hence the distribution shown by diagram 227~ is represented by the series 

m 

2qa2 

c 

Siil TX 
(aN,),,,/r = - e -- cos 778 

n 

n=4.8.12.. 

(ml 

Comparing each term of this series with the first, of t,hr equations (k) we conclude that 

4qa sin ne cz, = - - __~ 
e n 

The stresses produced in the shell by the forcrs (WL) are 110~ obtained by taking a 
solution of the form (j) corresponding to each term of series (VZ) and then super- 
posing these solutions. In such a manner we obtain 

w 

N,= -Ne= ->- 
e sm= ‘p 

II =4,8,12,. 

(n) 

n=4,8,12,... 

Superposing this solution on solution (257), which was previously obt,ained for a dome 
supported by forces uniformly dist,ributed along the edge (Fig. 215a), we obtain 
formulas for calculating the stresses in a dome resting on four columns. It must be 
noted, however, that, whereas the above-nlcntioned supcrposit ion gives the necessary 
distribution of the reactive forces N, as shown in Fig. 227h, it also introduces shear- 
ing forces NgV which do not vanish at the edge of the dome. Thus our solution does 
not satisfy all the conditions of the problem. In fact, so long as we limit ourselves to 
membrane theory, we shall not have enough constants to satisfy all the conditions 
and to obtain the complete solution of the problem. In actual constructions a 
reinforcing ring is usually put along the edge of the shell to carry the shearing forces 
N&O. In such cases the solution obtained by the combination of solutions (257) and 
(n) will be a sufficiently accurate rcprcsentation of the internal forces produced in a 

spherical dome resting on four columns. For a more satisfactory solution of this 
problem the bending t,hcory of shc~lls must be used.’ 

The method discussed in t,his article can also be used in the cast of a nonspherical 
dome. In such cases it is necessary to have recourse to Eqs. (d), which can be solved 
with sufficient accuracy by using numerical int,egration.” 

1 An example of such a solution is given in A. Aas-Jakobsen’s paper, Zngr.-Arch., 
vol. 8, p. 275, 1937. 

2 An example of such integration is given by Fliigge, op. cit. On p. 51 of this book 
the calculation of membranr forces in an apsidal shell, due to t,he weight of the 
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112. Membrane Theory of Cylindrical Shells. In discussing a cylin- 
drical shell (Fig. 22&z) we assume that the generator of the shell is hori- 
zontal and parallel to the z axis. An element is cut from the shell by 
two adjacent generators and two cross sections perpendicular to the x axis, 
and its position is defined by the coordinate x and the angle cp. The 
forces acting on the sides of the element are shown in Fig. 22%. In 

FIG. 228 

addition a load will be distributed over the surface of the element, the 
components of the intensity of this load being denoted, as before, by X, 
Y, and 2. Considering the equilibrium of the element and summing up 
the forces in the x direction, we obtain 

8NZ =rdpdx -I- 
tfN zzdpdx + Xrdpdx = 0 

h 

Similarly, the forces in the direction of the tangent to the normal cross 
section, i.e., in the y direction, give as a corresponding equation of 
equilibrium 

C3N 
$rdpdx +%dpdx + Yrdpdx = 0 

The forces acting in the direction of the normal to the shell, i.e., in the 

shell, is also discussed. For application of the complex variable method to the stress 
analysis in spherical shells, see F. Martin, Ingr.-Arch., vol. 17, p. 167, 1949; see also 
V. Z. Vlasov, Priklad. Mat. Mekhan., vol. 11, p. 397, 1947. 
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z direction, give the equation 

N, dp dx + Zr dq dx = 0 cc> 

After simplification, the three equations of equilibrium can be repre- 
sented in the following form: 

cg+;Eg= -x 

aN *+p!!T!& -y (270) 

N, = -Zr 

In each particular case we readily find the value of N,. Substituting 
this value in the second of the equations, we then obtain N,, by inte- 

FIG. 229 

gration. Using the value of N,, thus obtained we find N, by integrating 
the first equation. 

As an example of the application of Eqs. (270) let us consider a hori- 
zontal circular tube filled with liquid and supported at the ends.’ Meas- 
uring the angle cp as shown in Fig. 229b and denoting by PO the pressure 
at the axis of the tube, the pressure at any point is p. - ya cos cp. We 
thus obtain 

X=Y=O z = -p”+yacoscp (4 

Substituting in Eqs. (270), we find 

N, = pea - ya” cos q 
N,, = -J-ya sin cp d.c + C,(cp) = --ax sin cp + C,(P) 

N, = 
s 

y cos p x dx - ; 
.I 

‘y dx + C,(P) 

(9) 

The functions C,(cp) and C,(p) must now he d&ermined from the con- 
ditions at the edges. 

Let us first assume t,hat there are no forces N, at the ends of the tube. 

1 This problem was discussed by D. Thoma, Z. yes. Turbinenwesen, vol. 17, p. 49, 
1920. 
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Then 
(N,),=o = 0 (N2L = 0 

We shall satisfy these conditions by taking 

459 

C,(v) = 0 C,(p) = $ sin cp + C 

It is seen from expression (f) that the constant C represents forces Nzcp 
uniformly distributed around the edge of the tube, as is the case when 
the tube is subjected to torsion. If there is no torque applied, we must 
take C = 0. Then the solution of Eqs. (270) in our particular case is 

!V, = p,a - ya2 cos cp 

N,, = ya i - x sin cp 
( ) 

(271) 

N, = - ; x(Z - x) cos p 

It is seen that N,, and N, are proportional, respectively, to the shearing 
force and to the bending moment of a uniformly loaded beam of span 1 
and can be obtained by applying beam formulas to the tube carrying a 
uniformly distributed load of the magnitude’ na”y per unit length of the 
tube. 

By a proper selection of the function C,(cp) we can also obtain a solu- 
tion of the problem for a cylindrical shell with built-in edges. In such a 
case the length of the generator remains unchanged, and we have the 
condition 

J oz (N, - vN,) dx = 0 

Substituting 

N, = - ; x(Z - x) cos cp + C,(,) 

we obtain 

N, = pea - ya2 cos cp 

c?(p) = vpaa+(;- va’)ycosi- 

and N, = - F (1 - xj cos cp + vpoa + (&- vaz)ycos~ (272) 

Owing to the action of the forces N, and N, there will be a certain amount 
of strain in the circumferential direction at the end of the tube in contra- 
diction to our assumption of built-in edges. This indicates that at the 
ends of the tube there will be some local bending, which is disregarded in 
the membrane theory. A more complete solution of the problem can be 
obtained only by considering membrane stresses together with bending 
stresses, as will be discussed in the next chapter. 

1 The weight of the tube is neglected in this discussion. 
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Sections of cylindrical shells, such as shown in Fig. 230, are sometimes 
used as coverings of various kinds of structures. These shells are usually 
supported only at the ends while the edges AB and CD are free. In 
calculating the membrane stresses for such shells Eqs. (270) can again be 
used. Take, for example, a shell of a semicircular cross section sup- 

porting its own weight, which is assumed to be uniformly distributed 
over the surface of the shell. In 
such a case we have 

X=0 Y=psincp Z=pcoscp 

The third of the equations (270) gives 

N, = -pacoscp (h) 

which vanishes along the edges AB 
and CD, as it should. It is seen that 
this condition will also be sat(isfied if 

FIG. 230 some other curve is taken instead of 
a semicircle, provided that p = &-r/2 

at the edges. Substituting expression (h) in the second of the equations 
(270), we find 

N,, = -2pn: sin cp + C,(P) (4 

By putting the origin of the coordinates at the middle of the span and 
assuming the same end conditions at both ends, 2 = *l/2 of the tube, 
it can be concluded from symmetry that C,(cp) = 0. Hence 

N,, = -2px sin p (J3 

It is seen that this solution does not vanish along the edges AB and CD 
as it should for free edges. In structural applications, however, the edges 
are usually reinforced by longitudinal members strong enough to resist 
the tension produced by shearing force (j). Substituting expression (j) 
in the first of the equations (270), we obtain 

N z = @ cos cp + C,(p) a (k) 

If the ends of the shell are supported in such a manner that the reactions 
act in the planes of the end cross sections, the forces N, must vanish at 
the ends. Hence C,(q) = - (pP cos p)/4a, and we obtain 

N, = - F (12 - 4X2) (0 

Expressions (h), (j), and (1) represent the solution of Eqs. (270) for our 
particular case (Fig. 230) satisfying the conditions at the ends and also 
one of the conditions along the edges AB and CD. The second con- 
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dition, which concerns the shearing forces N,,, cannot be satisfied by 
using the membrane stresses alone. In practical applications it is 
assumed that the forces N,, will be taken by the longitudinal members 
that reinforce the edges. It can be expected that this assumption will be 
satisfactory in those cases in which the length of the shell is not large, 
say 1 6 2a, and that the membrane theory will give an approximate 
picture of the stress distribution in such cases. For longer shells a satis- 
factory solution can be obtained only by considering bending as well as 
membrane stresses. This problem will be discussed in the next chapter 
(see Arts. 124 and 126). 

5 
FIG. 231 

113. The Use of a Stress Function in Calculating Membrane Forces of Shells. 
In the general case of a shell given by the equat,ion z = f(zr,u) of its middle surface 
the use of a stress function’ defining all three stress components may be convenient. 
Let us consider an element of a shell submitted to a loading the magnitude of which 
per unit area in zy plane is given by its components X, I’, 2 (Fig. 231). The static 
equilibrium of the element t,hcn can be expressed by thr equations 

ah+, ani,, 
x+al/+x=o 

aiT,, aN, (a) 
as+ay+y=o 

; ie+iiL,~ 
( > ( 

+; .,g+,,,; 
) 

+z=o @I 

* The introduction of the .function considered here is due to A. Pucher, op. cit., and 
Beton u. Eisen, vol. 33, p. 298, 1934; see also Proc. Fifth Intern. Congr. flppl. Mech., 
Cambridge, Mass., 1938. Cylindrical coordinat,es, more suitable for shells in the form 
of a surface of revolution, are also used by Puchcr. For a general theory of defor- 
mation following Pucher’s approach, see W. Fliigge and F. Geyling, Proc. Ninth Intern. 
Congr, Appl. Mech., vol. 6, p. 250, Brussels, 1957. 
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in which the following notation is used: 

where tan ip = az/ax and tan 0 = &/a!/. Carrying out the differentiation as indi- 
cated in Eq. (b) and taking into a,rcount B:qs. itr), we obtain 

We can satisfy bot,h equations (a) by introducing a stress function F(z,?/) such t.hat 

X dx Y dy jq _ _-ax zy - ax ay (e) 

the lower and the upper limits of the integrals being zo, z and yO, :q, respectively, with 
~0 and yo fixed. Substituting this in Eq. (d) we obtain the following differential equa- 
tion governing the stress function F: 

in which the following abbreviation is used: 

X dz + z2 Y dy 

(f) 

(!I) 

If the membrane forces on the boundary of the shell are given, the respective 
boundary conditions can readily be expressed by means of Eqs. (e). If, in particular, 
the edge is connected with a vertical wall whose flexural rigidity is negligible or if t,he 

edge is free, then the edge forces normal to 
the elements ds of the boundary and pro- 
portional to a2F/as2 must vanish. Hence 
the variation of the st,ress function along 
such an edge must follow a linear law. 

A Shell in the Form oj an Elliptic Parabo- 
loid. To illustrate the application of the 
met,hod, let us take a shell in the form of an 
elliptic paraboloid (Fig. 232) with the middle 
surface 

z=jc2+/? 
h, hu 

(h) 

Y 
FIG. 232 

where ht and hz are positive constants. 

The sections z = const,ant and y = constant, 
then yield two s&s of parabolas, and the 

level curves are ellipses. Assuming solely a vertical load uniformly distributed over 
the ground plan of the shell and using Eqs. (f) and (g) we obtain 

where p = Z is the intensity of the load, 
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Let the shell be supported by four vert#ical walls z = $-a/2, y = + b/2 in such a 
way that the reactive forces normal to the respective wall vanish along the boundary. 
Consequently, the boundary conditions for the function F are aT/ag = 0 on 
z = +a/2 and a2F/as = 0 on y = &b/2. Thus F may be a linear function in 
z and y on the boundary. Since terms linear in x or y have no effect on stresses [see 
Eqs. (e)], this is equivalent to the condition F = 0 on the whole boundary. 

We satisfy Eq. (i) and make F = 0 on y = + b/2 by taking for F the expression 

F=$$-y’)+ 2 A.cosh~,,,~ (j) 

n= 1,3,5, . . . 

in which c = b Z/h,/h2. In order to fulfill the remaining condition F = 0 OIL 
z = + a/2, we first develop t,he algebraic t,erm in expression (j) into the Fourier series 

m 

c 
I (-l)(“-l,/z nny COB - 
?I h UC) 

n = lA.5, . 

Substituting this in Eq. (j), making z = *a/2, and equating the result to zero we 
obt,ain for each Y& = 1, 3, 5, . . the equation 

z (-.wl)(“-‘HZ + A, cosh F = 0 (1) 

This yields the value of the coefficient A,, and leads to the final solutJion 

ca 
n7T.z 

cost1 -  
1 c (-l)(nf1,‘2- .__ nTy 

n3 
cos -- 

1 

(ml 
ma 

c*osh - 
1) 

2c 

To obtain Ohe membrane forces we have only to differentiate t,his in accordance 
with the expressions (e) and to make use of the r&Ltions (c). The result is 

00 
sinh n”2 

N,, 2 6 c (-l)(n+l)/Z 
1 

- - - ~ c sin 7hTy - 
7r n 

cash n2 
b 

n=1.3.5,. 2c 

All series obtained above are convergent, the only exception being the last series, 
which diverges at the corners z = &a/2, y = k b/2. This fart is due to a specific 
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property of the shell surface under consideration obtained by translation of a plane 
curve. The elements of such a surface are free of any twist, and for this reason the 
membrane forces N,, fail to contribute anything to the transmission of the normal 
loading of the shell. As the forces N, and N, both vanish at the corner points of the 
shell, the shearing forces N,, near these points have to stand alone for the transmission 
of the loading. Owing t,o the ecro twist of the surface of the shells, this leads to an 
infinite increase of those shearing forces toward the corners of the shell. Practically, 
bending moments and kansverse shearing forces will arise in t,he vicinity of the 
corners, should the edge conditions N, = 0, N, = 0 be fulfilled rigorously. 

FIG. 233 

A Shell in the Form of a Hyperbolic Paraboloid.’ Another case where Pucher’s 
method may be applied to advantage is a shell with a middle surface given hy the 
equation 

*Y z= -- (0) 
C 

in which e = az/h (Fig. 233). Hence 

az Y az x a=2 a22 a22 1 --z-=0 -=__ 
G=-; G=-; ax2 327 ax a74 C 

(PI 

Provided we have to deal with a vertical loading only, the differential equation (f) 
becomes 

2 a2F -__ = -2 
caxay 

which yields the result 

Let us consider first a load of an intensity Z = Q, uniformly distributed over the 
horizont,al projection of a shell with edges free of normal forces. Then we have 

N -SC zv - 2 
N, = N, = 0 

Now consider the effect of the own weight of the shell equal to po = constant per 

1 See F. Aimond, GEnie civil, vol. 102, p. 179, 1933, and Proc. Intern. Assoc. Bridge 
Structural Engrs., vol. 4, p. 1, 1936; also B. Laffaille, Proc. Intern. Assoc. Bridge 
Structural Engrs., vol. 3, p. 295, 1935. Various cases of loading were discussed by 
K. G. Tester, Zngr.-Arch., vol. 16, p. 39, 1947. 
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unit area of the surface. To this area corresponds an area 

cos y = dx2 ;y” + c2 
of the horizontal projection of the shell. Hence 

and Eq. (r) yields 

Differentiating this with respect to y and then integrating t,he result with respect to z, 
or vice versa, both in accordance with Eqs. (e), we get 

m z = _ p”y log x + 4x2 + y2 + c2 
2 vGT2 

The true forces N, and N, are obtained from those expressions by means of Eqs. (c), 
in which the angles ‘p, 0 are given by tan ‘p = -y/c and tan 0 = -x/c. 

Scvcr:~I shells of this kind may bc combined to lorm a roof, such as shown in Fig. 
234. It should be noted, however, that neither the dead load of thr groin members, 
needed by such a roof, nor a partial loading-due, for instance, t,o snow-can be 
transmitted by the membrane forces alone; hence flexural stresses will necessarily 
arise. 1 

Of practical interest and worthy of mention are also the conoidal shells, which some- 
times have been used in the design of cantilever roofs and dam wall~.~ Roof shells of 
this kind, however, with curved gcncratrices instead of straight ones, have also been 
used in structural applications.3 

* See Fliigge, op. cit., p. 119, Fliigge and Geyling, op. cit., and F. A. Gerard, Tran~. 
Eng. Inst. Canada, vol. 3, p. 32, 1959. 

2 The theory of the conoidal shell has been elaborated by IS. Torroja, niv. ing., 
vol. 9, p. 29, 1941. See also M. Soare, Bauingenieur, vol. 33, p. 25G, 1958, and Fliigge, 
op. cit., p. 127. 

3 See I. Doganoff, Ba&rchnik, vol. 34, p. 232, 1957. 



CHAPTER 15 

GENERAL THEORY OF CYLINDRICAL SHELLS 

114. A Circular Cylindrical Shell Loaded Symmetrically with Respect 
to Its Axis. In practical applications WP frequent’ly clncount,er problems 
in which a circular cylindrical shell is submitted to the action of forces 
distributed symmetrically with respect to the axis of the cylinder. The 
stress distribution in cylindrical boilers submitted to the action of steam 
pressure, stresses in cylindrical containers having a vertical axis and sub- 
mitted to internal liquid pressure, and stresses in circular pipes under 
uniform internal pressure are examples of such problems. 

FIG. 235 

To cstnhlish t,hc equations required for the solution of these problems 
we consider an element, as shown in Figs. 22% and 235, and consider the 
equations of cquilibriuni. It can be concluded from symmetry that the 
membrane shearing forces N,, = N,, vanish in this case and that forces 
N, are constant along the circumference. Regarding the transverse 
shearing forces, it can also be concluded from symmetry that only the 
forces Qz do not vanish. Considering the moments acting on the ele- 
ment in Fig. 23.5, we also conclude from symmetry that the twisting 
moments M,, = JI,, vanish and that the bending moments M, are con- 
stant along the circumference. Under such conditions of symmetry 

466 
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t,hree of the six equat,ions of equilibrium of the element are identically 
satisfied: and we have to consider only the remaining three equations, 
&, t,hose obtained by projectin, 0‘ the forces on the .C and x axes and by 
t,aking the moment of the forces about the 1/ axis. Assuming that the 
external forces consist only of a pressure normal to the surface, these 
three equations of equilibrium are 

dh', 
dr a dx dp = 0 

dQz 
dL a dx dp + N, dx dp -I- Za dx dp = 0 

d.:l, 
--do- a de dp - Qza dx dp = 0 

(4 

The first one indicates that the forces N, arc constant,r and we take them 
eqwl to zero in our further discussion. If they are different from zero, 
the deformation and stress corresponding to such constant forces can be 
easily calculated and superposed on stresses and deformations produced 
by lateral load. The remaining two equations can be written in the 
following simplified form: 

dill, 
p-Q==0 d.1: 

(b) 

These two equat’ions contain three unknown quantities: N,, QZ, and M,. 
To solve the problem we must thcrcfore consider the displacements of 
points in the middle surface of the shell. 

From symmetry we conclude that the component v of the displace- 
ment in the circumfcrcntial direction vanishes. We thus have to con- 
sider only the components u and w in the IL and x directions, respectively. 
The expressions for the st’rain components then become 

Hence, by applying Hooke’s l:t\v, we obtain 

From the first of these equations it follows that 

du W 

dc -=“a 

1 The effect, of these forces on bending is neglected in this discussion. 



468 THEORY OF PLATES AND SHELLS 

and the second equation gives 

N, = _ Ehw 
a (e) 

Considering the bending moments, we conclude from symmetry that 
there is no change in curvature in the circumferential direction. The 
curvat#ure in the x direction is equal to -d2w/dx2. Using the same equa- 
tions as for plates, we then obtain 

M, = vil!z, 

where 

M =-Dd2w 
z dx2 

Eh3 
n = mrvq 

is the flexural rigidity of the shell. 
Returning now to Eqs. (6) and eliminating Qz from these equations, 

we obtain 

from which, by using Eqs. (e) and (f), we obtain 

(273) 

All problems of symmetrical deformation of circular cylindrical shells 
thus reduce to the integration of Eq. (273). 

The simplest application of this equation is obtained when the thick- 
ness of the shell is constant. LJnder such conditions Eq. (273) becomes 

Using the notation 

(275) 

Eq. (274) can be represented in the simplified form 

2 +. 4p4w = ; (276) 

This is the same equation as is obtained for a prismatical bar with a 
flexural rigidity D, supported by a continuous elastic foundation and 
submitted to the action of a load of intensity Z.* The general solution 
of this equation is 

w = e@(Cl cos /3x + C2 sin px) 
+ e-flz(C3 cos Px + C4 sin Pz) + f(z) (277) 

* &e 8. Timoshenko, “Strength of Materials,” part II, 3d ed., p. 2, 19%. 



GENERAL THEORY OF CYLINDRICAL SHELLS 469 

in which f(x) is a particular solution of Eq. (276), and 61, . . . , CJ are 
the constants of integration which must be determined in each particular 
case from the conditions at the ends of the cylinder. 

Take, as an example, a long circular pipe submitted to the action of 
bending moments Mu and shearin, (7 forces Qo, both uniformly dist,ributed 
along the edge x = 0 (Fig. 236). In this case 
there is no pressure 2 distributed over the sur- Qo 

face of the shell, and f(z) = 0 in the general solu- MO 
tion (277). Since the forces applied at the end x 

z = 0 produce a local bending which dies out 
rapidly as the distance x: from the loaded end 
increases, we conclude that the first term on 
the right-hand; side of Eq. (277) must vanish.’ 
Hence, C1 = CZ = 0, and we obtain D 

--- 

MO 
QO 

w = e-oz(C, cos /3x + Cd sin ox) (9) FIG. 236 

The two constnnts C, and C’4 can now be determined from the: conditions 
at the loaded end, which may be written 

(QzL=o = r$)z=o = -D (;$)zzo = Qo 
(h) 

Substituting expression (9) for w, WC obtain from these end conditions 

1 
c, = - @jjj (Qo + PM”) 

111 0 
c4 = 2jD (4 

Thus the final expression for w is 

w = & [/3Mo(sin pz - cos Px) - Qo cos PX] (278) 

The maximum deflection is obtained at the loaded end, where 

1 
(wL=o = - 2paD (PM0 + Qo) (279) 

The negative sign for this deflection results from the fact that w is taken 
positive toward the axis of the cylinder. The slope at the 10:&d end is 

1 Observing the fact that the system of forces applied at8 the end of t,he pipe is a 
balanced one and that the length of the pipe may be increased at will, this rol1ov-s also 
from the principle of Saint-Venant; see, for example, 8. Timoshenko and J. N. Good&, 
“Theory of Elasticity,” 2d ed., p. 33, 1951. 
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obtained by differentiating expression (278). This gives 

(2pM0 cos 6x + QO(COS Px + sin &)]A 

= Y&D (2~Mo + Qo) W30) 

By introducing the notation 

p(@x) = e-Px(cos @x + sin /3x) 
$(/3x) = e-P~(cos /3x - sin /3z) 
fq3s) = e-pz cos /3x 
{(fix) = eds sin fiz 

(281) 

the expressions for deflection and its consecutive derivatives can be 
represented in the following simplified form : 

dW -rzz 
dx 

d2w (282) 
&T= - & F~kfocp@~) + 2Qor(~~)l 
d3w 
- = $ P/3~oWr) - QoWx)1 dx3 

The numerical values of the functions &kc), $J(@), O(pz), and {(pz) are 
given in Table 84.l The functions cp(Ps) and $(Pz) are represented graph- 
ically in Fig. 237. It is seen from these curves and from Table 84 

-0.4 

-0.2 

0 PX 
0.2 

0.4 

0.6 

0.8 

'.OOil 
FIG. 237 

that the functions defining the bendin g of the shell :tppro:xh zero as the 
quantity 0.z becomes large. This indicates that the bending produced in 
the shell is of a local character, as was already mentioned at the beginning 
when the constants of integration were calculated. 

If the moment M, and the deflection w are found from expressions 

1 The figures in this table are taken from t,he book by H. Zimmermann, “Die 
Berechnung des Eisenbahnoberbnues,” Berlin, 1888. 
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(282), the bending moment ~$1, is obtained from the first of the equa- 
tions (f), and the value of the force N, from Eq. (e). Thus all neccs- 
sary information for calculating stresses in the shell can be found. 

116. Particular Cases of Symmetrical Deformation of Circular Cylin- 
drical Shells. Bending 01 a, Long Cylindrical ShcTl by a Load Uniformly 
Distributed along a Circular Section (Fig. 238). If the load is far enough 
from the ends of the cylinder, solution (278) can be used for each half of 

the shell. From considerations of symmetry we conclude that the value 
of Qo in this case is -P/2. We thus obtain for the right-hand portion 

W = 2s Wo(sin px - cos px) + p cos px 
[ I 

(a) 

where x is measured from the cross section at which the load is applied. 
To calculate the moment M,l which appears in expression (a) we use 
espression (280), which gives the Aope at .2: = 0. In our case this slope 
vanishes because of symmetry. Hence, 

zpn/r, - ; = 0 

and we obtain 
P 

Mo = 3p (b) 

Substituting this value in expression (a), the deflection of t,he shell 
becomes 

w = &i (sin 0.c + 1 P 
LOS (3-e) = @q &3x) 

and by differentiation we find 

(283) 

dw P . -zz 
dx --2p gp3D ~ e-flz sin /3x = - 4pzD p !T(Px) 

d2w _ z 2pz 
dx” 

& e-02 (sin px - cos /3X) = - $& #(Pz) cc> 
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TABLE 84. TAULE OF FUNCTIONS p, $, 0, AND 1 

PX P 0 

0 1.0000 1.0000 1.0000 
0.1 0.9907 0.8100 0.9003 
0.2 0.9651 0.6398 0.8024 
0.3 0.9267 0.4888 0.7077 
0.4 0.8784 0.3564 0.6174 

.c -. 
0 
0.0903 
0.1627 
0.2189 
0.2610 

0.5 0.8231 0.2415 0.5323 0.2908 
0.6 0.7628 0.1431 0.4530 0.3099 
0.7 0.6997 0.0599 0.3798 0.3199 
0.8 0.6354 -0.0093 0.3131 0.3223 
0.9 0.5712 -0.0657 0.2527 0.3185 

1.0 0.5083 -0.1108 0.1988 0.3096 
1.1 0.4476 -0.1457 0.1510 0.2967 
1.2 0.3899 -0.1716 0.1091 0.2807 
1.3 0.3355 -0.1897 0.0729 0.2626 
1.4 0.2849 -0.2011 0.0419 0.2430 

1.5 0.2384 -0.2068 0.0158 0.2226 
1.6 0.1959 -0 2077 -0.0059 0.2018 
1.7 0.1576 -0.2047 -0.0235 0.1812 
1.8 0.1234 -0.1985 -0.0376 0.1610 
1.9 0.0932 -0.1899 -0.0484 0.1415 

2.0 0.0667 -0.1794 -0.0563 0.1230 
2.1 0.0439 -0.1675 -0.0618 0.1057 
2.2 0.0244 -0.1548 -0.0652 0.0895 
2.3 0.0080 -0.141G -0.0668 0.0748 
2.4 -0.0056 -0.1282 -0.0609 O.OG13 

2.5 -0.0166 -0.1149 -0.0658 0.0492 
2.6 -0.0254 -0.1019 -0.0636 0.0383 
2.7 -0. 0320 -0.0395 -0.0608 0.0287 
2.8 -0 0369 -0.0777 -0.0573 0.0204 
2 9 -0.0403 -0.0666 -0.0534 0.0132 

3.0 -0.0423 -0.0563 -0.0493 0.0071 
3.1 -0.0431 -0.0469 -0.0450 0.0019 
3.2 -0.0431 -0.0383 -0.0407 -0.0024 
3.3 -0.0422 -0.0306 -0.0364 -0.0058 
3.4 -0.0408 -0.0237 -0.0323 -0.0085 

3.5 -0.0389 -0.0177 -0.0283 -0.0106 
3.6 -0.0366 -0.0124 -0.0245 -0.0121 
3.7 -0.0341 -0.0079 -0.0210 -0.0131 
3.8 -0.0314 -0.0040 -0.0177 -0.0137 
3.9 -0.0286 -0.0008 -0.0147 -0.0140 



- 
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The results obtained are all graphically represented in Fig. 239. It is 
seen that the maximum deflection is under the load P and that its value 

as given by Eq. (283) is 

P 
W **ax = ~~ = 8/33D g (285) 

The maximum bending moment is 
also under the load n,nd is deter- 
mined from Eq. (284) as 

H/w The maximum of the absolute value 
of the shearing force is evidently 
equal to P/2. The values of all 
these quantit,ies at a certniu dis- 

mf) tance from the load can be rcndilJ 

Fro. 239 
obtained by using Table 84. We 
see from this table and from Fig. 

239 that all the quant,ities that determine the bending of the shell are small 
for I% > r/p. This fact indicates that the bending is of a local character 
and that :I shell of length 1 = 2a/p loaded at the middle mill have practi- 
cally the same maximum deflection and the s:Lme maximum st>ress as a very 
long shell. 

Having the solution of the problem for the case in n-hich a load is con- 
centrated at a circular cross section, we can 
readily solve the problem of a load dis- 
tributed along a certain length of the cylinder 
by applying the principle of superposition. 
As an example let us consider the case of a 
load of intensity Q uniformly distributed 
along :L length I of a cylinder (Fig. 240). 
Assuming that the load is at a considerable 
distance from the cuds of the cylinder, we can FIG. 240 
use solution (2813) to calculate the deflections. 
The deflection at a point A produced by an elementary ring load of an 
intensity1 q dl: at a distance .$ from A is obtained from expression (283) 
by substituting q dt for P and .$ for x and is 

JLC!L e-oE(cos /3( + sin /3.$) 
sp30 

The deflection produced at A by the total load distributed over the 

1 q dt is the load per unit length of circumference. 
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length 1 is then 

w= 
I 

b &$j e-oE(cos fit + sin pl) + 
I 

’ JiS’- e+c(Cos /3( + sin /3f) 
0 . 0 WD 

= $Y& (2 - e--86 cos $5 - e--PC cos PC) 

The bending moment at a point A can be calculated by similar appli- 
cation of the method of superposition. 

Cylindrical Shell with a Uniform Internal Pressure (Fig. 241). If the 
edges of the shell are free, the internal pressure p produces only a hoop 
stress 

pa CTt = - 
h 

and the radius of the cylinder increases by the amount 

If the ends of the shell are built in, as shown in Fig. 241a, they cannot 
move out, and local bending occurs at the edges. If the length I of the 

FIG. 241 

shell is sufficiently large, we can use solution (278) to investigate this 
bending, the moment MO and the shearing force Q0 being determined 
from the conditions that the deflection and the slope along the built-in 
edge CC = 0 (Fig. 241~) vanish. According to these conditions, Eqs. 
(279) and (280) of the preceding article become 

- & (Wo + Q3 = 6 

& (%Mo + Qo) = 0 

where 6 is given by Eq. (d). 
Solving for MO and Qo, we obtain 

Q. = -@SD6 = - ; (287) 
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We thus obtain a positive bending moment and a negative shearing force 
acting as shown in Fig. 241a,. Substituting these values in expressions 
(282), the deflection and the bending moment at any distance from the 
end can be readily calculated using Table 84. 

If, instead of built-in edges, we have simply supported edges as shown 
in Fig. 241b, the deflect,ion and the bending moment’ 111, vanish along the 
edge M. = 0, and we obtain, by using Eq. (279), 

Qo = -2p”LX 

By substituting these values in solution (278) the deflection at any dis- 
tance from the end can be calculated. 

It was assumed in the preceding discussion that t’he length of the shell 
is large. If this is not8 the wse, the bending at one end cannot be con- 
sidered as independent of -the conditions at the other end, and recourse 
must be had to the general sohnion (273, which comains four constants 
of integration. The particular solution of la:q. (276) for the case of uni- 
form load (2 = -p) is -p/4/3”D = -pa2jEh. The general solution 
(277) can then be put in the following form by the introduction of hyper- 
bolic functions in place of the exponential functions: 

w = - $$f + Cl sin flz sinh 0s + Cz sin 0-r: cash px 

+ C, cm fix sinh fix + Cq cos /3x cash pz (e) 

If the origin of coordinates is taken at the middle of the cylinder, as shown 
in Fig. 241b, expression (e) must be an even function of x. Hence 

cz = c:, = 0 (f) 

The constants C1 and Cd must nom be selected so as to satisfy the con- 
ditions at the ends. If the ends are simply supported, the deflection and 
the bending moment, Al, must vanish at the ends, and we obtain 

(W)d,‘L = 0 g ( . L,? = 0 
Substituting expression (e) in these relations and remembering that 
Cz = C, = 0, we find 

-E!!+p .lsincusinhoc+C~cos~coshcr=O 

C1 cos CY cash O( - Cq sin a~ sinh (Y = 0 
(h) 

where, for the sake of simplicity, 

Pl 
-=a 

2 (i) 
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From these equations we obtain 

477 

c,2? . sin N sinh cy pa2 2 sin a: sinh (Y 
Eh sm* 01 sinh2 a! + cos2 cy cash” o( = Eh cos 2a + cash 2a! 

c,=21141. cos as cash 01 pa2 2 cos a cash CY (33 
_-- 

Eh sin2 a: sinh2 o( + cos2 01 cosh2 01 = eh cos 201 + cash 2cr 

Substituting the values (j) and (.f) of the constants in expression (e) and 
observing from expression (275) that 

we obtain 

Eh 64a”ll 
- = 4Dp4 = I” a2 

P14 2 sin cx sinh cr 
w = - (j4&” ’ - cos 2a + cash Za sin bx smh b 

2 cos a cash oc 
~~~ ~ .-- cos P-c cash /3x cos 2a + cod1 2a 

(1) 

In each particular case, if the dimensions of the shell are known, the 
quantity 01, which is dimensionless, can be calculated by means of 
notation (i) and Eq. (275). By substituting this value in expression (I) 
the deflection of the shell at any point can be found. 

For t>hc middle of the shell, substituting 2 = 0 in expression (Z), we 
obtain 

(ml 

When the shell is long, OL becomes large, the second term in the paren- 
theses of expression (m) becomes small, and t,hc deflectlion approaches 
the value (d) calculated for the case of free ends. This indicates that in 
the case of long shells the effect of the end supports upon the deflection 
at the middle is negligible. Taking another extreme case, Gz., the case 
when (Y is very small, we can show by expanding the trigonometric and 
hyperbolic flmctions in power series that the expression in parentheses in 
Eq. (m) approaches the value 5a4/6 and that the deflection (I) approaches 
that for a uniformly loaded nlld simply supported beam of length I and 
flexurnl rigidity 11. 

Differentiating expression (1) t,wice and multiplying it by I>, the bend- 
ing moment is found as 

cos a cash CY -~ 
cos &I + cash 2a 

sin 6.r: sinh fix (n) 
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Xt the middle of the shell this moment is 

It is seen that for large values of 01, that is, for long shells, this moment 
becomes negligibly small and the middle portion is, for all practical pur- 
poses, under the a&m of merely the hoop stresses pu/h. 

The case of a cylinder with built-in edges (Fig. 241~) can be treated in 
a similar manner. Going directly to the final result,’ we find that the 
bending moment X0 acLing along the built-in edge is 

where 

p sinh 2oi - sin ZCY 
Mo=- . 

2flz smh 20( + sin 2cy = g$ x2(24 

x2(2a) = S& 20( - sin 2(~ 
sinh 20( + sin zcz 

WW 

In the case of long shells, CY is large, the factor XS(~CY) in expression (288) 
approaches unity, and the value of t,he moment approaches that given 
by the first, of the expressions (287). For shorter shells the value of the 
factor x,(~cx) in (288) can be taken from Table 85. 

TAHLE 85 

2cu x1(2,) x2(201) XP(2LY) 

0.2 5.000 0.0068 0 100 
0.4 2.502 0.0268 0.200 

0.6 1.6il 0.0601 0,300 
0.8 1.267 O.lOG5 0.400 
1.0 1.033 0.1670 0.500 

1.2 0.890 0 2370 0.596 
1.4 0.803 0.3170 0.689 
1.6 0.755 0.4080 0.775 
1.8 0.735 0.5050 0.855 
2.0 0.738 0.6000 0.925 

2.5 0.802 0.8220 1.045 
3.0 0.893 0.9770 1 O!)O 
3 5 0.966 1.0500 I ,085 
4.0 1.005 1.0580 1.050 
4.5 1.017 1.0400 1.027 
5.0 1.017 1.0300 1.008 

Cylindrical Shell Bent by Forces and Moments Distributed along the 
Edges. In the preceding section this problem was discussed assuming 

1 Both cases are discussed in detail by I. Cr. Boobnov in his “Theory of Structure 
of Ships,” vol. 2, p. 368, St. Petersburg, 1913. -41~0 included arc numerical tables 
which simplify the calculations of moments and deflections. 
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that the shell is long and that each end can be treated independently. 
In the case of shorter shells both ends must be considered simultaneously 
by using solution (e) with four constants of integration. Proceeding as 
in the previous cases, the following results can be obtained. For t,he 
case of bending by uniformly distributed shearing forces Q. (Fig. 242a), 
the deflection and the slope at the ends are 

(w).=o,z=1 = - 
2Qo&~~ cash 2a + cos 2a 2QoPa2 

Eh sinh 2ar + sin ICY - 7 XlW 

+ 2Q@a? sinh 20~ - sin 2a = + 2Qo@a2 (2W 

pi,,z=z = - Eh sinh 2cr + sin ZCY - Bh x2@) 

In the case of bending by the moments ,110 (Fig. 21%0), we obtain 

2Mo,B2a2 sinh 2a - sin 2cu 

(290) 

In the case of long shells, the factors x1, xz, aud x3 in expressions (289) 
and (290) are close to unity, and the results coincide with those given by 

FIG. 242 

expressions (279) and (280). To simplify the calculations for shorter 
shells, the values of functions x1, ~2, and x3 are given in Table 85. 

Using solutions (289) and (290), the stresses in a long pipe reinforced 
by equidistant rings (E’ig. 243) and submitted to the action of uniform 
internal pressure p can be readily discussed. 

Assume first that there are no rings. Then, under the action of internal 
pressure, hoop stresses CT~ = pa/h will b e produced, and the radius of the 
pipe will increase by the amount 

Nom, taking the rings into consideration and assuming that they are abso- 
lutely rigid, we conclude that reactive forces will be produced between 
each ring and the pipe. The magnitude of the forces per unit length of 
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the circumference of the tube mill be denoted by P. The magnitude of 
P will now be determined from the condition t’hat the forces P produce a 
deflection of the pipe under the ring equal to the expansion 6 creat’ed by 
the internal pressure p. In calculating this deflection \ve observe that a, 
portion of the t>ube between two adjacent rings may be considered as the 
shell shown in Fig. 242~~ and b. In this cast Qo = ‘--$P, and t’he msg- 
nitude of the bending moment Jr0 under a ring is det,ermiJled from the 

condition that dw/cEx: = 0 at that point. 
Hence from Eqs. (289) and (290) we find 

rp2a’ 4Mo/33a2 
- -j;i- x2@) + TF’h x&LY) = 0 J 

from which 

If the distance I between the rings is large,’ the quantity 

is also large, the functions x2(%) nnd x3(2ai) approach unity, and the 
moment MO approaches the value (2%). For cnlcnlntiug t,he force I’ 
entering in Eq. (p) the expressions for dcflcctions as gi\-cn in IZqs. (289) 
and (290) must be used. These expressions give 

or 

For large values of 20~ this reduces t’o 

ma2 - 6 
2Eh 

which coincides with Eq. (285). When 20( is not large, the value of the 
reactive forces P is calculated from Eq. (291) by using Table 85. Solv- 
ing Eq. (291) for P and substituting its expression in expression (p), 
we find 

M, = JL x2(20() 
a/Y (292) 

This coincides with expression (288) previously obtained for a shell with 
built-in edges. 

To take into account the extension of rings we observe that the reuctivc 

1 For Y = 0.3, 201 = 1.2851/&& 
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forces P produce in the ring a t’ensile force Pa and that the corresponding 
increase of the inner radius of the ring is’ 

Pa2 
61 = AE 

where A is the cross-sectional area of the ring. To take this extension 
into account we substitute 6 - 61 for 6 in Eq. (291) and obtain 1 xi@(r) I Ph 

XICJ~) - 2 X3(200 = p - A (293) 

From this equation, P can be readily obt’ained by using Table 85, and 
the moment found by substituting p - (F’h/n) for p in Eq. (292). 

If the pressure p acts not only on the cylindrical shell but also on the 
ends, longitudinal forces 

N =p z 2 

:we produced in the shell. The extension of the radius of the cylinder is 
then 

and the quant,ity ~(1 - tv) must, be subst,it,uted for p in Eqs. (292) and 
(293). 

Equations (293) and (291) can also be used in the case of external 
uniform pressure provided the compressive stresses in t’he ring and in 
the shell arc far enough from the critical strcsscs at \yhich buckling may 
occur. 2 This case is of practical importance in the design of submarines 
and has been discnsscd by several nutllors.3 

116. Pressure Vessels. The n&hod illustrated by the examples of t,he 
preceding article can also be applied in the analysis of stresses in cylindri- 
cal vessels submitted to the action of internal prcssurc4 In discussing 
the “ membrane theory ” it was repeatedly indicated t,hnt this theory fails 
to represent1 the true stresses in those portions of a shell close to the 

1 It is assumed that the cross-sectional dimensions of the ring arc small in com- 
parison with the radius n. 

2 l%uclrling of rings and cylindrical shells is discussed in S. Timoshenlro, “Theory 
of Elastic Stability,” 1936. 

3 See paper by Ii. van Sanden and R. Giint,hcr, “Wcrft und Reederei,” vol. 1, 1920, 
pp. 163-168, 189S195, 216 -221, and vol. 2, 1921, pp. X6510. 

4 See also RI. &slinger, “Stntische Berechnung van Iiesselbiiden,” Berlin 1952; 
G. Salet and J. Barth&my, HuZZ. Assoc. Tccli. AIuritinw ~~leronaut., vol. 44, ;. 505, 
1945; J. L. l\laulbctsch and Al. Hetknyi, ASCE Designs Data, no. 1, 1944, and 1~‘. 
Schrlltz-Grunow, I~q~~.-Arch., vol. 4, p. 545, 1933; N. L. Svcnsson, J. ilppl. Mechanics, 
vol. 25, p, 8’) 1058. ,, * 
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edges, since the edge conditions usually cannot be completely satisfied 
by considering only membrane stresses. A similar condition in which 
the membrane theory is inadequate is found in cylindrical pressure vessels 
at the joints between the cylindrical portion and the ends of the vessel. 
,4t these joints the membrane stresses are usually accompanied by local 
bending stresses which are dist’ributed symmetrically with respect to the 
axis of the cylinder. These local stresses can be calculated by using 
solution (278) of Art. 114. 

Let us begin with the simple case of a cylindrical vessel with hemi- 
spherical ends (Fig. 244).l At a sufficient distance from the joints mn 

- 

FIG. 244 
(b) 

and mlnl the membrane theory is accurate enough and gives for the 
cylindrical portion of radius a 

N =?!t 
z 2 

N, = pa 

where p denotes the internal pressure. 
For the spherical ends this theory gives a uniform tensile force 

The extension of the radius of the cylindrical shell under the action of 
t,he forces (a) is 

Cc) 

and the extension of the radius of the spherical ends is 

Comparing expressions (c) and (d), it can be concluded that if we con- 
sider only membrane stresses we obtain a discontinuity at the joints as 
represented in Fig. 244b. This indicates t)hat at the joint there must act 

1 This case was discussed by E. Meissner, Schweiz. Bauzty., vol. 86, p. 1, 1925. 
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shearing forces Q. and bending moments MO uniformly distributed along 
the circumference and of such magnitudes as to eliminate this discon- 
tinuity. The stresses produced by these forces are sometimes called 
discontinuity stresses. 

In calculating the quantities Qo and MO me assume that the bending is 
of a local character so that solution (278) can be applied with sufficient 
accuracy in discussing the bending of the cylindrical portion. The 
investigation of the bending of t,he spherical ends represents a more 
complicxted problem which will be fully discussed in Chap. 16. Here 
we obtain an approximate solution of the problem by assuming that the 
bending is of importance only in the zone of the spherical shell close to 
the joint and that this zone can be treated as a, port,ion of a long cylindri- 
cal shell1 of radius a. If the thickness of the spherical and the cylindrical 
portion of the vessel is the same, the forces QO produce equal rotations 
of the edges of both portions at the joint (Fig. 244b). This indicates 
that MO vanishes and that QO alone is sufkieut to eliminate the discon- 
tinuity. The magnitude of Qo is now det,ermined from the condition that 
the sum of the numerical values of t)he deflections of the edges of the two 
parts must be equal to the differeirce 6 1 - 82 of the radial expansions 
furnished by the membrane theory. Using Eq. (279) for the deflections, 
we obtain 

Qo = a1 - a2 = 2?? 
P3D 2Eh 

from which, by using notation (275), 

Q”2g+& (e) 

Having obtained this value of the force Qo, the deflection and the bend- 
ing moment M, can be calculated at any point by using formulas (2!32), 
which give2 

Suh,+itntilIg expression (c) for Q. and expression (275) for /3 in the 
formula for M,, we obtain 

M, = - ahp -2 i-(m) 
8 &(I - V”) 

1 15. Meissncr, in the above-mentioned paper, showed that the error in the m&g- 
nitudc of thr berldirig stresses :LS calculated from such an approximate solution is small 
for thiu hemispherical shells and is smaller than 1 per cent if a/h > 30. 

2 iVote that the direction of (3” in Fig. 244 is opposite to the direction in Fig. 236. 
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This moment attains its numerical maximum at, the distance x = 7r/4/3, 
at which point the derivative of the moment is zero, as can be seen from 
the fourth of the equations (282). 

Combining the maximum bending stress produced by M, with the 
membrane stress, we find 

This stress which acts at the outer surface of the cylindrical shell is about~ 
30 per cent larger than the membrane stress acting in the axial direction. 
In calculating st)resses in the circumferential direction in addition to t’he 
membrane stress pa/h, the hoop stress caused by the deflection 20 as well 
as the bending stress produced by the moment iWP = VM, must be con- 
sidered. In this way we obtain at the outer surface of the cylindrical shell 

Taking v = 0.3 and using Table 84, WC find 

(dmer = 1.032 T at@ = 1.85 (h) 

Since the membrane stress is smaller in the ends than in the cylinder 
sides, the maximum stress in the spherical ends is 

In always smaller than the calculated stress (h). Thus 
the latter stress is the determining factor in the design 
of the vessel. 

The same method of calculating discontinuity stresses 
can be applied in the case of ends having the form of an 
ellipsoid of revolution, The membrane shresses in this 

n 
case are obtained from expressions (263) and (264) (see 

FIG. 245 page 440). At the joint mn which represents the 
equator of the ellipsoid (Fig. 245), the stresses in the 

direction of the meridian and in the equatorial direction are, respectively, 

pa up = - 2h 
.,+(1-$ 

The extension of the radius of the equator is 

(9 

Substituting this quantity for 62 in the previous calculation of the shear- 
ing force Qo, we find 

6 -#A!!!!12 1 2 Eh 2b2 
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and, instead of Eq. (e), we obtain 

Qoz”a2 
8,d b2 

It is seen that the shearing force Q, in the case of ellipsoidal ends is 
larger than in the case of hemispherical ends in t,he ratio a2/b2. The 
discontinuity stresses will evidently increase in the same proportion. 
For example, taking a/b = 2, we obtain, from expressions (g) and (h), 

(uJ~,~~ = 1.128 y 

Again, (uJ Lllnl is the largest stress and is consequently the determining 
factor in de5ign.l 

117. Cylindrical Tanks with Uniform Wall Thickness. If ;L tank is sub- 
mitted to t,he action of a liquid pressure, as shown in Fig. 246, the stresses 
in the wall can be analyzed by usin, r Eq. (276). Substit,uting in this 
equation 

z = --y(d - z) (a) 

where y is the weight per unit volume of the liquid, we obtain 

r(d - 2) T!! + 4/yw = - D-~~ (b) 
p --.-..-- *a __--__-_ ‘tl 

A particular solution of this equation is 
T 

WI = r(d - 5) -f(d - x)d A 
- -&r = - E’h Cc) 

x 

This expression represents the radial expansion 
I- 

z Q. MO! 

of a cylindrical shell with free edges under the / 

action of hoop stresses. Substituting expres- 
FIG. 246 

sion (c) in place of f(x) in expression (277)) we obtain for the complete solu- 
tion of Eq. (b) 

-y(cl - x)a” 
w = e@x(C1 cos fix + C2 sin /3x) + e-pz(Cs c0s px + C4 sin /3.~) - PE’hP i 

In most practical cases the wall thickness h is small in comparison with 
bot,h the radius a and the depth d of the tank, and wc may consider the 
shell as infinitely long. The constants Cl and Ct are then equal to zero, 

1 More detail regarding stresses in boilers with ellipsoidal ends can be found in the 
book by Hijhn, “nber die Festigkeit der gcw6lbten Biiden und der Zylinderschale,” 
Z<irich, 1927. Also included are the results of experimental in\%tigations of dis- 
continuity stresses which are in a good agreement, with the approximate solution. 
See also Schultz-Grunow, lot. cit. 
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and we obtain 
y(d - x)d 

w = e-bz(C, cos /3x + C4 sin /3x) - Eh kc 

The constants Ca and Cq can now bc obtained from the conditions at the 
bottom of the tank. Assuming that the lower edge of the wall is built 
into an absolutely rigid foundation, the boundary conditions are 

ya2d 
(w),=o = c, - x = 0 

(%),=, = [ -/3C3e-~z(cos px + sin pz) 

2 
+ PC4e+z(cos Px - sin Px) + g 

I 

2 
z=. = p(C, - C,) + g = 0 

From these equations we obtain 

Expression (d) then becomes 

from which, by using the notation of Eqs. (281), me obtain 

w~-?g 1-z [ - e(b) - (1 - +w] (4 

From this expression the deflect’ion at any point can be readily calculated 
by the use of Table 84. The force N, in the circumferential direction is 
then 

jjl, = - Ehw = 
a wd[l -s - 0~~s) - (1 - &)HD~)] (f) 

From the second derivative of expression (e) we obtain the bending 
moment 

j 
z 

= -D d2w _ 2P2w2Dd 

dX2 ,jh [ -i?bx> + (l - h) t@x)] 

radh 
= 2/12(1 - 3) 

[ -.wx) + (1 - &) s(/3.r)] (g) 

Having expressions (,f) and (g), the maximum stress at any point can 
readily be calculated in cnch particular case. The bending moment has 
its maximum value at the bottom, where it is equal to 

(M,),=. = MO = 1 - b __ yadh 
( ) &2(1 - v”) 

(h) 
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The same result can be obtained by using solutions (279) and (280) 
(pages 469, 470). Assuming that the lower edge of the shell is entirely 
free, we obtain from expression (c) 

To eliminate this displacement and rotation of the edge and thus satisfy 
the edge conditions at the bottom of the tank, a shearing force Qo and 
bending moment MO must be applied as indicated in Fig. 246. The 
magnitude of each of these quantities is obtained by equating expressions 
(279) and (280) to expressions (i) taken with reversed signs. This gives 

- & (Wo + Qo) = + 2 

kD (WM, + Qo> = - ;i 

From these equations we again ohta.in expression (h) for MO, whereas for 
the shearing force we find’ 

Taking, as an example, a = 30 ft, d = 26 ft, h = 14 in., y = 0.03613 lb per in.3, 
and Y = 0.25, me find fi = 0.01824 in.-’ and pd = 5.691. For such a value of pd our 
assumption that the shell is infinitely long results in an accurate value for the moment 
and the &caring force, and we obtain from expressions 
(h) and (j) 

iWO = 13,960 in.-lb per in. Q. = -563.6 lb per in. 

In the construction of steel tanks, metallic sheets of 
several different thicknessas are very often used as 
shown in Fig. 247. Applying the particular solution 
(c) to each portion of uniform thickness, we find that 
the differences in thickness give rise to discontinuities 
in the displacement WI along the joints mn and mlnl. 

These discontinuities, together with the displace- 
ments at the bottom crb, can be removed by apply- 

a b ’ 
FIG. 247 

ing moments and shearing forces. Assuming that the vertical dimension of each 
portion is sufficiently large to justify the application of the formulas for an infinitely 
large shell, WC calculate the discontinuity moments and shearing forces as before by 
using Eqs. (279) and (280) and applying at each joint the two conditions that the 
adjacent portions of the shell have equal deflections and a common tangent. If the 
use of formu1n.s (279) and (280) derived for an infinitely long shell cannot be justified, 
the general solution containing four constants of integration must be applied to each 
portion of the tank. The determination of the constants under such conditions 
becomes much more complicated, since the fact that each joint cannot be treated 

1 The negative sign indicates th& Q0 has the direction shown in Fig. 246 which is 
opposite to the direction used in Fig. 236 when deriving expressions (279) and (280). 
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independently necessitates the solution of a system of simultaneous equations. This 
problem can be solved by approximate methods.’ 

118. Cylindrical Tanks with Nonuniform Wall Thickness. In the case of tanks of 
nonuniform wall thickness the solut.ion of the problem requires the integration of 
Eq. (273), considering the flexural rigidity D and the thickness h as no longer constant 
but as functions of 2. WC have thus to deal with a linear diffcrcntial equation of 
fourth order with variable coefficients. As an example, let us consitlcr the case when 
the thickness of the wall is a linear function of the coordinate z. * Taking the origin 
of the coordinates as shown in Fig. 248, we have for the thickness of the wall and for 
the flcxural rigidity the expressions 

and Eq. (273) becomes 

The particular solution of this equation is 
yQ2X -X0 f”, = --__ 
I3 (cl a x 

This solution represents the radial expansion of a shell 
: with free edges under the internal pressure y(z - ~0). 

:?s a result of the displacement (c) a certain amount of 
bending of the generatrices of the cylinder occurs. 
The corresponding bending morncnt is 

d%c’1 ydu2xo 
Al, = -I> (& = ~ ~__- 

G(1 - 2,s) (4 

This moment is indrpendcnt of .c and is in all practical 
,+ . pa . p cases of such small mngnitutl(~ that its action can 

FIG. 248 
usually be ncglcctcd. 

To obtain the conlpiete solution of Eq. (h) we have 
to add to the particular solution (c) the solution of the homogeneous equation 

1 An approximate method of’ solving this problem was given by C. Runge, 8. Math. 
I’h~/sik, vol. 51, p. 254, 1904. Tl$s method was applied by K. Girknlann in a design 
of a large welded tank; see Stahlbau, vol. 4, p. 25, 1931. 

* H. Reissncr, Beton U. E&X, vol. 7, p. 150, 1908; see also \I-. Fliiggr, “Statik und 
Dynamik der Schalen,” 2d ed., p. 167, Berlin, 1957. For tanks slightly deviating 
from the cylindrical form see K. Fcdcrhofer, &err. Bauzeitschr~~f,, vol. 6, p. 149, 1951; 
and for tanks with thickness varying in accordance with a quadratic law, see Fcder- 
hofcr, &err. Ingr.-Arch., vol. 6, p. 43, 1952. A parameter method, akin to that 
explained in Art. 40, has been used by H. Faure, Proc. Ninth Congr. Appl. Mech. 
Brussels, vol. 6, p. 297, 1957. Many data regarding the design of water tanks arc 
found in W. S. Gray, “Reinforrcd Concrete Reservoirs and Tanks,” London, 1954, 
and in V. Lewe, “Handbuch fiir Eisenbetonbau,” vol. 9, Berlin, 1934. 
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which, upon division by 2, can be also written 

12(1 - 9) 
+-rw=o (e) 

The solution of this equation of the fourth order can be reduced to that of two equa- 
tions of the second order’ if we obscrvc that 

For simplification we introduce the following symbols: 

L(w) = if 
dw 

( 1 
x2 z 

12(1 - 9) g = ~..__ 
da2 

Equation (e) then becomes 
L[L(w)] + p’Lw = 0 

and can be rewritten in one of the two following forms: 

(f) 

(9) 

(h) 

where i = d/-1. 

L[L(w) + i/?w] - ip*[L(w) + ip%] = 0 
L&(w) - ip2w] + ip2[L(w) - ip2w] = 0 (i) 

We see that Eq. (h) is satisfied by the solutions of the second-order equations 

L(w) + i&J = 0 
L(w) - ip2w = 0 

Assuming that 
WI = rpl + iP2 w2 = ‘p3 + is% 

are the two linearly independent solutions of Eq. (j), it can bc seen that 

(j) 
(k) 

(1) 

203 = ipp1 - ippy and WI = ‘pa - ipp, (ml 

arc the solutions of Eq. (k). All four solutions (1) and (m) together then represent 
the complete system of indcpcndcnt solutions of Eq. (h). By using the sums and the 
diffcrenccs of solutions (1) and (m), the general solution of Eq. (h) can be represented 
in the following form: 

w = ClPl + cm + CM3 + CUPI (n) 

in which (,“I, . . , C, are arbitrary constants. Thus the problem reduces to the 
determination of four functions ‘pl, . . , (p4, which can all be obtained if the com- 
plete solutjion of either Eq. (j) or Eq. (k) is known. 

Taking Eq. (j) and substituting for L(w) its meaning (f), WC obtain 

d2w dw 
z-+2-+ip*w=o 

dxz dx 

‘This’reduction was shown by G. Kirchhoff, “Berliner Monatsberichte,” p. 815, 
1879; see also I. Todhunter and K. Pearson, “A History of the Theory of Elasticity,” 
vol. 2, part 2, p. 92. 
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By introducing new variables 

7=2pvG r=UJ.\/ 

Eq. (0) becomes 

9 z2 + 9 2 + (71 - 1)s = 0 

(PI 

(r) 

We take as a solution of this equation the power series 

~1=u0+a~tl+a27P+~~- (8) 

Substituting this series in Eq. (r) and equating the coefficients of each power of 7 to 
zero, we obtain the following relation between the coefficients of series (s): 

(n” - 1)U” + f&L-2 = 0 0) 

Applying this equation to the first two coefficients and taking ael = IX-~ = 0, we find 
that a~ = 0 and that (II can bc taken equal to any arbitrary constant. Calculating 
the further coefficients by means of Eq. (t), we find that series (s) is 

11 
[ 

9 ?I4 ?” ____ C=“‘2 1 -24+2.4e6 2.(4.@24+. . . I 
= C’Jdd (u) 

where J,(q) is the Bcsscl function of the first kind and of the first order. For our 
further discussion it is advantageous to use the relation 

v6 1 dJo ___ - - c2. 4. ~2 + . . * = - d,, (‘I 

in which the series in brackets, denoted by JO, is the Bessel function of the first kind 

and of zero order. Substituting the expression 2p 4%; for 7 [see notation (p)] in 
the series representing J,,(q) and collecting the real and the imaginary terms, we 
obtain 

where 

The solution (u) then gives 

Cl = -cw:(2P v% + i&(2&7 &,I (a’) 

where ${ and +i denote the derivatives of the functions (294) with respect to the 

argument 2p d/r. 
The second integral of Eq. (T) is of a more complicated form. Without derivation 

it can be represented in the form 



x h(t) 
dtil(x) 

dz 

0.00 

0.10 
0.20 

0.30 

0.40 

+ I 0000 0 0000 0.0000 
+1.0000 -0.0025 -0.0001 

$1.0000 -0.0100 -0.0005 
+o. 9999 -0.0225 -0.0017 
$0.9996 -0.0400 -0.0040 

0.50 +o. 9990 -0.0625 -0.0078 
0.60 +o. 9980 -0.0900 -0.0135 
0.70 +o. 9962 -0.1224 -0.0214 
0.80 +O. 9936 -0.1599 -0.0320 
0.90 +O. 9898 -0.2023 -0.0455 

1.00 
1.10 
1.20 
1 .30 

I .40 

+O. 9844 -0.2496 -0.0624 
-to.9771 -0.3017 -0.0831 
+0.9676 -0.3587 -0.1078 
$0.9554 -0.4204 -0.1370 
f0.9401 -0.4867 -0.1709 

1.50 +0.9211 -0.5576 -0.2100 
1.60 +o. 8979 -0.6327 -0.2545 
1.70 $0 8700 -0.7120 -0.3048 

1.80 4-O. 8367 -0.7953 -0.3612 
1.90 +o. 7975 -0.8821 -0 4238 

2.00 +o. 7517 -0.9723 -0.4931 
2.10 +O. 6987 -1.0654 -0.5690 
2.20 +O. 6377 -1.1610 -0.6520 
2.30 +o. 5680 -1.2585 -0.7420 
2.40 +O. 4890 -1.3575 -0.8392 

2.50 +o .4000 -1.4572 -0.9436 
2.60 +0.3001 -1.5569 -1.0552 
2.70 +O. 1887 -1.6557 -1.1737 

2.80 +0.0651 -1.7529 - 1.2993 
2.90 -0.0714 -1.8472 -1.4315 

3.00 
3.10 
3.20 
3.30 
3.40 

-0.2214 -1.9376 -1.5698 

-0.3855 -2.0228 -1.7141 
-0.5644 -2.1016 - 1.8636 

-0.7584 -2.1723 -2.0177 
-0.9680 -2.2334 -2.1755 

3.50 -1.1936 -2.2832 -2.3361 

3.60 -1.4353 -2.3199 -2.4983 
3.70 - 1 ,693:~ -2.3413 -2.6608 

3.80 -1.9674 -2.3454 -2.8221 

3.90 -2.2576 -2.3300 -2.9808 
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TABLE 86. TABLE OF THE IL(x) FUNCTIONS 

I 
-I- 

1 

- 

T di1/2(x) 
(-1X 

0.0000 
-0 0500 
-0.1000 
-0.1500 
-0.2000 

-0.2499 
-0.2998 
-0.3496 
-0.3991 

-0.4485 

-0.4974 
-0.5458 
-0.5935 

-0.6403 
-0.6860 

-0.7302 
-0.7727 

-0.8131 
-0.8509 
-0.8857 

-0.9170 
-0.9442 
-0.9661 
-0.9836 
-0.9944 

-0.9983 
-0.9943 
-0.9815 
-0.9589 
-0.9256 

-0.8804 

-0.8223 
-0.7499 
-0.6621 
-0.5577 

-0.4353 
-0.2936 
-0.1315 
+0 .0526 

+O. 2596 
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TABLE 86. TABLE OF THE $(z) FUNCTIONS (Contimed) 

h(x) *z(x) 
&l(X) d&(x) 

dx d.c 
~___- - ..__ 

-2.5634 -2.2927 -3.1346 +0.4912 
-2.8843 -2.2309 -3.2819 $0.7482 
-3.2195 -2.1422 -3.4199 f1.0318 
-3.5679 -2.0236 -3.5465 +1.3433 
-3.9283 -1.8726 -3.6587 +1.6833 

-4.2991 -1.6860 -3.7536 +2.0526 
-4.6784 -1.4610 -3.8280 $2.4520 
-5.0639 -1.1946 -3.8782 +2.8818 
-5.4531 -0.8837 -3.9006 i-3.3422 
-5.8429 -0.5251 -3.8910 i-3.8330 

-6.2301 -0.1160 -3.8454 f4 3542 
-6.6107 +O. 3467 -3.7589 $4.9046 
-6.9803 +O. 8658 -3.6270 +5.4835 
-7.3344 j-1.4443 -3.4446 $6.0893 
-7.6674 +2.os45 -3.2063 $6.7198 

-7.9736 +a. 7890 -2.9070 +7.3729 
-8.2466 +3.5597 -2.5409 +8.0453 
-8.4794 j-4.3986 -2.1024 f8.7336 
-8.6644 +5.3068 -1.5856 +9.4332 
-8.7937 +6.2854 -0.9844 f10.1394 
-8.8583 +7.3347 -0.2931 f10.3462 

2 

4.00 
4.10 
4.20 
4.30 
4.40 

4.50 
4.60 
4.70 
4.80 
4.90 

5.00 
5.10 
5.20 
5.30 
5.40 

5.50 
5.60 
5.70 
5.80 
5.90 
6.00 

in which $i and \L: are the derivatives with respect to the argument 2p 6 of the 
following functions: 

where 

R,=~~~2-~~~)“+(5.~~53).2)?(~)‘“_. . . 

R 
2 

SC’31 I2 
+ (6.5.4.3.2)z - ’ * * 

log fl = 0.57722 
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TABLE 86. TABLE OF THE +(x) FUNCTIONS (Continued) 

x h(z) 
&s(x) d$a(x) 

dx dx 

0.00 +o .5000 -cc 0.0000 +m 
0.10 +O. 4946 -1.5409 -0.0929 +6.3413 
0.20 +O. 4826 -1.1034 -0.1419 +3.1340 
0.30 +O. 4667 -0.8513 -0 1746 +2.049s 
0.40 +o .4480 -0.6765 -0.1970 +1.4974 

0.50 +0 .4275 -0.5449 -0.2121 +1.1585 
0.60 +o. 4058 -0.4412 -0.2216 +o. 9273 
0.70 +o .3834 -0.3574 -0.2268 $0.7582 
0.80 +0.3606 -0.2883 -0.2286 +0 .6286 
0.90 +0.3377 -0.2308 -0.2276 +O. 5258 

1.00 +o. 3151 -0.1825 -0.2243 +0 4422 
1.10 +o. 2929 -0.1419 -0.2193 -to. 3730 
1.20 +O. 2713 -0.1076 -0.2129 +0.3149 
1.30 +O. 2504 -0.0786 -0.2054 +O. 2656 
1.40 +O. 2302 -0.0542 -0.1971 +O. 2235 

1.50 +0.2110 -0.0337 -0.1882 +o. 1873 
1.60 +O. 1926 -0.0166 -0.1788 +O. 1560 
1.70 +O. 1752 -0.0023 -0.1692 +o 1290 
1.80 +o. 1588 +o. 0094 -0.1594 +0 .1056 
1.90 +o. 1433 +0.0189 -0.1496 $0.0854 

2.00 +o. 1289 +O. 0265 -0.1399 $0.0679 
2.10 +o. 1153 +0 .0325 -0.1304 +O. 0527 
2.20 +O. 1026 -to.0371 -0.1210 +0.0397 
2.30 $0.0911 +o. 0405 -0.1120 +O. 0285 
2.40 +o. 0804 $0.0429 -0 1032 +0.0189 

2.50 +o .0705 +o .0444 
2.60 -tO 0614 to.0451 
2.70 +0.0531 +o. 0452 
2.80 +o .0455 +o .0‘147 
2.90 +o. 0387 +0.0439 

-0.0948 
-0.OBG8 
-0.0791 
-0.0719 
-0.OG50 

+0.0109 
+o. 0039 
-0.0018 
-0.0066 
-0.0105 

3.00 +O. 0326 -to.0427 
3.10 $0.0270 +0.0412 
3.20 +o .0220 +o (0394 
3.30 +0.0176 i-O.0376 
3.40 +0.0137 +O. 0356 

-0.0586 
-0.0526 
-0.0469 
-0.0417 
-0.0369 

-0.0137 
-0.0161 
-0.0180 
-0.0194 
-0.0204 

3.50 +o. 0102 +o. 0335 
3.60 $0.0072 +0.0314 
3.70 +0.0045 +o .0293 
3.80 +o .0022 +O. 0271 
3.90 +o. 0003 +0.0251 

-0.0325 
-0.0284 
-0.0246 
-0.0212 
-0.0180 

-0.0210 
-0.0213 
-0.0213 
-0.0210 
-0 0206 

- 

- 



iL4(r) 

- 

.- 
+o .0230 
+0.0211 
+0.0192 
f0.0174 
+0.0156 

+0.0140 
+0.0125 
-to.0110 
+o .009i 
--io. 0085 

4.00 -0.0014 
4.10 -0.0028 
4.20 -0.0039 
4.30 -0.0049 
4.40 -0.0056 

4.50 -0.0062 
4.60 -O.OOGG 
4.70 -0 0069 
4.80 -0.0071 
4.90 -0.0071 

5.00 -0.0071 
5.10 -0.0070 
5.20 -0.0069 
5.30 -0.0067 
5.40 -0.0065 

5.50 -0.0062 
5.60 -0.0059 
5.70 -0.0056 
5.80 -0.0053 
5 -90 -0.0049 
6.00 -0.0046 

I  

+o. 0073 
+o. 0063 
+o. 0053 
+o. 0044 
+o .0037 

+o .0029 
+0 .0023 
+0.0017 
+0.0012 
+0.0008 
+o. 000-t 

- 
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TABLE 86. TABLE OF THE $(z) FUNCTIONS (Continued) 

&4x.) &a(x) 
dx dx 

__-- 

-0.0152 -0.0200 
-0.0127 -0.0193 
-0.0104 -0.0185 
-0.0083 -0.0177 
-0.0065 -0.0168 

-0.0049 
-0.0035 
-0.0023 
-0.0012 
- 0 .0003 

-0.0158 
-0.0148 
-0.0138 
-0.0129 
-0.0119 

+0.0005 
+0.0012 
$0.0017 
+o .0022 
$0.0025 

-0.0109 
-0.0100 
-0.0091 
-0.0083 
-0.0075 

$0.0028 -0.0067 
+o. 0030 -0.0060 
+O. 0032 -0.0053 
+0.0033 -0.0047 
t-o.0033 -0 0041 
i-o.0033 - 0.0036 

- 

Having solutions (a’) and (b’) of Eq. (r), we conclude that the general solution (a) 
of Eq. (e) is 

-i- 

Numerical values of the functions $1, . . , fiq and their first derivatives are given 
in Table 86’ -4 graphical rcprcscntation of the functions +i, . . . , $i is given in 
Fig. 249. It is seen that the values of these functions increase or decrease rapidly as 
the distance from the end increases. This indicates that in calculating the constants 
of integration in solution (c’) we can very often proceed as WC did with functions 
(281), i.e., by considering the cylinder as an infinitely long one and using at each 
edge only two of the four constants in solution (c’). 

1 This table was calculated by F. Schleicher; see “ Kreisplatten auf elastischer 
Untcrlage,” Berlin, 1926 The well-known Kelvin functions may be used in place 
of the functions $, to which they relate as follows: $1(r) = ber x, $2(x) = - bei z, 
z)~(x) = -(2/?r) kei zr, $L1 = -(2/7r) ker x. For more accurate tables of the functions 
under consideration see p. 266. 
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In applying the gcncral theory to particular casts, the calculation of the consecutive 
derivatives of ur is simplitkd if we use the following relations: 

where the symbol E is used in place of Zp x&. From expression (c’) we then obtain 

N, = - Ew = - ? Z/i[(i,+:(E) + C,+:(i) + C&:(E) + C&k(G] (e’) 
(1 

dw 1 
-= 
dz 2x & 

IC*[E$b(.E) - w:(t)1 - C,[Gfh(E) + WLl?(Ql 

+ c:3[5&4(0 - w:(F)1 - CdEh(U -I- w’,w11 (f’) 

JI, = -1) g = - ~~ #S>) dx~~1!w~;(~) - 4(uIc?(a + WC:(E)1 

- (‘*1(E)w:(t) - J(Z-Ml(E) - slc;(t)J 
+ G[wG;(S) - 4(E)G4(0 + w;w1 

- Cd(E)v:(~) - 4(EMs(i) - 8G11(5)11 (9’) 
d&l, 

(31 = 2;. = 24(1 _ VI) Ea3p2 d&xEm + 2&E)J 

+ C2[&(.9 - 2dl(Ul + CdEIC/3(8 + w:w1 + cdE+4(4) - 3&011 (0 

By means of these formulas the deflections and the stresses can bc calculated at 
any point, provided the constants Cl, . , C, arc d&rrnined from the edge condi- 
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tions. The values of the functions $1, . . . , qa and their derivatives are to be taken 
from Table 86 if 2p 4; 5 6. For larger values of the argument, the following 
asymptotic expressions are sufficiently accurate: 

(296) 

As an example, consider a cylindrical tank of the same general dimensions as that 
used in the preceding article (page 487), and assume that the thickness of the wall varies 
from 14 in. at the bottom to 3+ in. at the top. In such a cast the distance of the 
origin of the coordinates (Fig. 248) from the bottom of t,bc tank is 

d + x0 = +d = 416 in. 

Hence, (2~ %A) r--r,+d = 21.45. For such a large value of the argument, the functions 
$1, . . . , +r and their first derivatives can be replaced by their asymptotic expressions 
(296). The deflection and the slope at the bottom of the tank corresponding to the 
particular solution (c) are 

(WI) 
ya2 d dull w2 x0 z3zO+d = - -- 
Ea d +x0 (6) dx =-z(zo w Z.Q+d 

Considering the length of the cylindrical shell in the axial direction as very large, we 
take the constants C’s and Cq in solution (c’) as equal to zero and determine the con- 
stants C, and CZ so as to make the deflection and the slope at the bottom of the shell 
equal to zero. These requirements give us the two following equations: 
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Calculating the values of functions tin, +Z and their derivatives from the asymptotic 
formulas (296) and substituting the resulting values in IQs. (j’), we obtain 

Substituting these values of the constants in expression (q’) wc find for the bcmding 
moment at the bottom 

df,, = 13,000 lb-in. per in. 

In the same manner, by using expression (I&‘), WC find the magnitude of the shearing 
force at the bottom of the tank as 

These results I.IO not tliffrr milch from the vnlucs obtained cariier for a tank wit,h 
uniform wall thickness (page 487). 

119. Thermal Stresses in Cylindrical Shells. ~~ytciform Ttmperature 
Distribution. If a cyliuclricnl shell with free edges undergoes a uniform 
temperature chnnge, 110 thermnl stresses will be produced. But if the 

edges are supported or clamped, free expansion of the shell is prevented, 
and local bending stresses are set up at the edges. Knowing the thermal 
expansion of a shell when the edges are free, the va,lucs of the reactive 
moments and forces at the edges for any kind of symmetrical support 
can be readily obt’aincd by using Eqs. (379) and (2210), as was done in 
the cases shown in Fig. 241. 

Temperature Gradient in the Radial Direction. Assume that tl and tz 
are the uniform temperatures of the cylindrical ma!1 at the inside and the 
outside surfaces, respectively, and that the variation of the temperature 
through the thickness is linear. In such a case, at’ points at a large dis- 
tance from the ends of the shell, there will be no bending, and the stresses 
can be calculated by using Eq. (51), which was derived for clamped plates 
(see page 50). Thus the stresses at the out,er and the inner surfaces are 

uz = up = + 
Ea(f1 - ta) 

- 2(1 - v) 

where the upper sign refers to the outer surface, indicating that. a trllsile 
stress will act on this surface if tl > ts. 

Near the ends there will usually be some bending of the shell, and t’he 
total thermal stresses will be obtained by superposing upon (a) such 
stresses as are necessary to satisfy the boundary conditions. Let us con- 
sider, as an example, the condition of free edges, in which case the stresses 
CT, must vanish at the ends. In calculating the stresses and deformations 
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in this case we observe that at the edge the stresses (a) result in uni- 
formly distributed moments MO (Fig. 250~) of the amount 

J/f 0 = _ E4tr - tz)h2 
12(1 - Y) 

To obtain a free edge, moments of the same magnitude but opposite in 
direction must be superposed (Fig. 25Ob). Hence the stresses at a free 
edge are obtained by superposing upon the stresses (a) the stresses pro- 
duced by the moments ---MO (Fig. 2506). These latter stresses can be 
readily calculated by using solution (278). From this solution it follows 
that 

Ea(tl - tz)h2 
(Mz).=o = 12(1 _ v) W,).=o = v(fif,>.=, = 

vEa(tl - t2jh2 (c) 
12(1 _ v) 

(d) 

It is seen t’hnt at the free edge the maximum thermal stress acts in the 
circumferential direction and is obtained by adding to the stress (a) the 
stresses produced by the moment M, and the force N,. Assuming that 
l1 > t2, we thus obtain 

For v = 0.3 this stress is about 25 per cent greater than the stress (a) 
calculated at, point,s at a large distance from the ends. We can therefore 

conclude that if a crack will occur in a brittle 
x material such as glass due to a temperature 

difference tl - t2, it will start at the edge and 
will proceed in the axial direction. In a similar 

-MO 
-x manner the stresses can also be calculated 

in cases in which the edges are clamped or 

03 
supported. f 

FIG. 250 Temperature Gradient in the Axial Direction. 
If the temperature is constant through the 

thickness of the wall but varies along the length of the cylinder, the pro- 
blem can be easily reduced to the solution of Eq. (274).2 Let t = F(x) be 
the increase of the temperature of the shell from a certain uniform initial 
temperature. hssuming that the shell is divided into infinitely thin rings 
by planes perpendicular to the z axis and denoting the radius of the shell by 
a. the radial expansion of the rings due to the temperature changeis auF(z). 

1 Several examples of this kind are discussed in the paper by C. H. Kent, Tmn.s. 
.lSME, vol. 53, p. 167, 1931. 

2 See Timoshenko and Lrssells, “Applied Elasticity,” p. 146, 1925. 
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This expansion can be eliminated and the shell can be brought to its initial 
diameter by applying an external pressure of an intensity 2 such that 

which gives 

z = q%(x) (f) 

A load of this intensity entirely arrests the thermal expansion of the shell 
and produces in it only circumfcrcnt,ial stresses having a magnitude 

uz 
cQ = - T -= - Ea!F(z) (cl) 

To obt,ain the t,ot,al thermal stresses, we must superpose on thcx st,resses (9) 
the stresses that will be produced in the shell 
by a load of the intensit#y -2. This latter xX. 

pi- b -+ 

load must be applied in order to make t,he / 
lateral surface of the shell free from the ex- za 
ternnl load given by Eq. (f). The stresses 
produced in the shell by the load -2 are ob- I.. 
tained by the integration of the differential 
equation (276), which in this case becomes 

(a) 

11s an example of the application of this 
equation let us consider a long cylinder, as 
shown in Fig. 251a, and assume that the part 
of the cylinder to the right of the cross section Cc) 
mn has a constant temperst’ure to, whereas that FIG. 251 

to the left side has a t’empcrature that decreases linearly to a t.emperature 
tI at the end IC = b according to the relation 

The temperature change at, a point in this portion is thus 

(to - h).x F(z) = t - to = - -7- (i) 

Substituting this expression for the temperature change in Eq. (h), wo 
find that the particular solut’ion of that equation is 

Wl == y (l” - l*).L. Cj) 
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The displacement corresponding to this particular solution is shown in 
Fig. 2516, which indicates that there is at the section mn an angle of dis- 
continuity of the magnitude 

To remove t,his discouti~luity the moments Alo must be applied. Since 
the stress gV corrwponding to the particular solution (j) cancels the 
stresses (q), we conclude that the stresses produced by the moments M, 
are the total thermal stresses resulting from t’he above-described decrease 
in temperature. If t’he distances of the cross section mn from the ends 
of t,he cylintlm arc lxge, t,he magnitude of the moment MO can be obtained 
at, once from l&l. (280) hy ~ul&tuting 

to obt,ainl 

Substituting for /3 its value from expression (273) and taking v = 0.3, 
we find that the maximum thermal stress is 

It was assumed in t,his calculation that the length b to the end of the 
cylinder is large. If this is not the case, a correction to t,hc moment (1) 
must be calculated as follows. In an infinitely long shell the moment &irO 
produces at the distance 1: = b a moment and a shearing force (E’ig. 25lc)z 
that are given by the general solution (282) as 

(n) 

Since at the tli,+lnw .I’ z 0 Ke have a free edge, it is necessary to apply 
t,here a moment a:~1 :L force of the magnitude 

-Jir, = -dIocp(/Ih) -a = 2/3Jfoi-(pb) 

in order t,o climinntc the forces (n) (Fig. 251~). 

(0) 

1 IF lo - ti is psitive, ns was assumed in the derivation, MO is negative and thus 
has the direction sho~vn in Pig. 2510. 

2 The tlirections dl, :mil Qt shown in Fig. 25lc are the positive dir&ions if tile 
.T m% h:m the dirwtion shown in Fig. 251a. 
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The moment produced by the forces (0) at the cross section rn?L gives 
t’he desired correction A>fo which is to bc npplicd to the moment (I). Its 
value can be obtained from the third of the equations (282) if we substi- 
tute in it --~l~~~(~b) for MO and -2&ll0{(/3~) * for Qo. These substitutJions 
give 

(P) 

As a numrric8.1 csnmple, consider 3, cast-iron cylinder having the following dimen- 
sions: a = 9jft in., h = IQ in., b = 3i in.; cy = 101 lo-:, 13 = 14 106 psi, 

l” - II = ISO”C 
The formula (7)~) then gives 

r,,18x = 7,720 psi 

In cnlculnting the correction (p), we have 

and, from Table 8‘!, 

IIence, from Eq. (p), 
&b) = 0.x%3 (Qb) = 0.22s 

Ah’ = --dlo(O.ZW + 2 O.22:32) = -0.156&fa 

This indicates that the above-cnlcul:rted maximum stress (q) must be diminished by 
15.6 per cent to obtain the correct maximum value of the thermal stress. 

The method shown here for the cnlculnt’ion of thermal st,rcsses in the case of a linear 
temperature gradient (i) can also be easily applied in cctses in whirh P(r) has other 
than a linear form. 

120. Inextensional Deformation of a Circular Cylindrical Shell.1 lf 
the ends of a thin circular cylindrical &cl1 arc free and the loading is not 
symmetrical nith respect to t’hc axis of the cylinder, the deformation con- 
sists principally in bending. In such cases the magnitude of defl&ion 
can be obtnincd with sufficient accuracy by neglecting ent)irely the strain 
in the middle surface of the shell. An example of such a loading con- 
dition is shown in Fig. 252. The shortening of the vertical diameter 
along which the forces P act can be found with good accuracy by con- 
sidering only the bending of the shell and assuming that the middle sur- 
face is inextensible. 

Let us first consider the limitations to which the components of dis- 
placement are subject if the deformation of a cylindrical shell is to be 
inestensional. Taking an clcmcnt in the middle surface of the shell at 

a point 0 and directing the coordinate axes as shown in Fig. X3, \ve shall 

* The opposite sign to that in expression (0) is used here, since Eqs. 282 arc derived 
for the direction of the z axis opposite to that shown in Fig. 251~~. 

1 The theory of inextensional deformations of shells is due to Lord Rayleigh, Proc. 
London Math. Sot-., vol. 13, 1881, and Proc. Roy. Sot. (London), vol. 45, 1889. 
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denote by u, v, and w the components in the x, y, and z directions of the 
displacement of the point 0. The strain in the x direction is then 

f3U 
E, = - 

ax 
(a) 

In calculating the &rain in the circumferential direction we use Eq. (a) 
(Art. 108, page 140). Thus, 

ia0 ~7 
cca = ---_ 

a&p a 
(b) 

The shearing strain in t,he middle surface GUI 1)~ espressed by 

Y ..=g+g Cc) 

which is the same as in the case of small deflections of plates except that 
a dp takes the place of dy. The condition that the deformation is inexten- 

FIG. 252 
L 

FIG. 2.5:~ 

sional then requires t)hat, the three strain components in the middle surface 
must vanish; i.e., 

au 0 ldv ‘W -= 
ax a,dp a 

= 0 aG+g=o 

These requirements are satisfied i 
following form: 

(4 

f we take the displacements in the 

Ul = 0 
m 

v1 = a, 
c 

(a,, cos Roy - a: sin ~0) 
n=l 

D) 
wI = -a 

c 
n(a, sin 71~ + aA cos ny) 

?l=l 

(e) 

where a is the radius of the middle surface of the shell, cp the ceutral 
angle, and a, and a; constants t,hat must be calculated for each particular 
case of loading. The displacements (e) represent the case in which all 
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cross sections of the shell deform identically. On these displacement)s 
we can superpose displacements two of which vary along the length of 
the cylinder and which are given by the following series: 

m 

u2 = -a 
c 

i (b, sin ?zcp + 6; cos np) 
n=l 

m 

v2 = 2: 
c 

(b, cos np - 6; sin n+,) 

II = 1 
m 

wz= --L 
c 

n(b,, sin np + b,!, cos ncp) 

?l=l 

(f) 

It can be readily proved by substit.ution in Eqs. (d) that these expressions 
also satisfy the conditions of inextensibility. Thus the general expres- 
sions for displacements in inextensional deformation of a cylindrical shell 
:Ll’C 

u = IL1 + U‘J I’ = 111 + v2 w = ‘101 + wz (9) 

In calculat8ing the inexteusiowA deformations of a cylindrical shell 
under the action of a given system of forces, it is advantageous to use 
the energy method. To cstublish the required expression for the strain 
energy of bending of the shell, we begin with 
the calculation of the changes of curvature of 
the middle surface of the shell. The change 
of curvature in the direction of the generatris 
is equal to zero, since, as can be seen from 
expressions (e) and (f), the gcncratrices re- 
main straight. The change of curvature of 
the circumference is obtained by comparing 
t)he curvature of an element mn of the circum- 

FIG. 253 

ference (Fig. 254) before deformation with that of the corresponding ele- 
merit rnlnl after deformation. Before deformation the curvature in the 
circumferential direction is 

av + 1 
&F = asp = ; 

The curvature of the element rnlnl after deformation is 

hl 
rho + $if ds 

-- = -(T- w) dp as1 
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Hence the change in curvature is 

By using t,he second of the equations (d) we can also write 

xq=~(~+~) 

The bending moment producing this change in curvature is 

(h) 

and the corresponding strain energy of bending per unit, area can be calcu- 

lat,ed as in the discussion of plates (see page 46) and is equal to 

&(g-+gg = ~(w+~)z (i) 

In addiCon to bending, there will be a twist of each element such as 
that, shown at point 0 in Fig. 253. In calculating this twist we note that 
during deformation an element of a gcneratrix rotates1 through an angle 
eciu:~l to --&w/&z about the y axis and through an angle equal to &J/&X 
about the x axis. Considering a similar element of a generatrix at a 
circumferential distance a &C from the first one, we see that its rotation 
about the TJ axis, a.s a result of the displacement w, is 

aw d”w 
ax alp ax & (.?) 

The rotation of the same elcmcnt in the plane tangent, to the shell is 

Because of the central angle &,o between the two elements, the latter 
rotat,ion has a component with respect to t’he y axis equal t,02 

From results (j) and (1~) WC conclude that the total angle of t)wistJ between 
the two elements under considerntiou is 

1 In determining the sign of rotation the right-hand screw rule is used. 
2 A small quantity of second order is neglected in this expression. 
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and that the amount of strain energy per unit area due to twist is (see 
page 47) 

(4 

Adding together expressions (i) and (I) and integrating over the surface 
of the shell, the total &rain energy of a cylindrical shell undergoing an 
inextensional deformation is found to be 

Substit’ut,ing for w and 2’ their expressions (q) and integrating, we find for 
a cylinder of a Icngth 21 (Fig. 252) the following esprcssion for strain 
energy : 

This expression does not contain a term with 7~ = 1, since the corre- 
sponding displaccrnent,s 

v1 = a(al cos p - a{ sin +9) 
WI = --a(~~ sin cp + ai cos cp) (ml 

represent the displacement’ of the circle in its plnnc as a rigid body. The 
vertical and horizontal components of this displacement. are found by 
substituting cp = ?r/2 in expressions (WL) to obtain 

(Pl).~,,:! = -an: (WI),=,/:. = --au1 

Such a displacement does not contribute to the strain energy. 
The same conclusion ca,n also be made regarding the displ:Lc:c:rrlellt,s 

represented by the terms with n = 1 in expressions (J). 

Let us now apply expression (297) for the strain energy to the calculation of the 
deformation produced in a cylindrical shell by two equal and opposite Forces P acting 
along a diameter at a distance c from the middle’ (Fig. 252). These forces product 
work only during radial displacements w of their point’s of application, i.e., at the 
points z = c, ‘p = 0, and (D = r. Also, since the terms with coefficients a, and b, 
in the expressions for WI and w2 [see Eqs. (e) and (fj] vanish at these points, only terms 
with coefficients ai, and b: will enter in the expression for deformation. By using the 

1 The case of a cylindrical shell reinforced by elastic rings with two opposite forces 
acting along a diameter of every ring was discussed by 11. S. Levy, J. Appl. Nechnnirs, 
vol. 15, p. 30, 1948. 



SO6 THEORY OF PLATES AND SEIELLS 

principle of virtual displacements, the equations for calculating the coefficients cz: 
and b:, are found to bc 

Substit,uting expression (29i) for T’, we obtain, for t,Jlo case where n is an even number, 

If 1z is an odd numbrr, we obtain 
a”; = 6’ = cl II 

Hence in this case, from expressions (e) and (Jj, 

(n) 

(0) 

The increase in the horizontal diameter is 

2Pa3 
61 = -[(W)@-a,2 + (?U)+4r,*l = .,rnDj c 

( _ ])“‘Z+l (76% - I)2 = 0.137 ;;; (7”) n = 2,4,fi , 
The change in length of any other diameter can also be readily calculated. The same 
calculations can also be made if c is diffrrcnt from zero, ant1 tllc deflections vary with 
the distance z from the middle. 

Solution (p) does not satisfy the conditions at the free edges of the shell, since it 
requires the distribution of moment,s M, = vJIB to prevent any bending in meridional 
planes. This bending is, however, of a local character and does not, substantially 
affect the deflections (n) and (T), which are in satisfactory agreement with experiments. 

The method just described for analyzing the inextensional defornmtion of cylindrical 
shells can a.lso he used in calclrlating the deformation of a portion of a cylindrical 
shell which is cut from a romplct,c cylinder of radius n by two axial sect,ions rna.king 
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an angle 01 with one another (Fig. 255). For example, taking for the displacements 
the scrirs 

Eve obtain an incxt,cnsionnl deformation of the shell suc*h that the displacements u 
:tnd UI and also the bending moments M, vanish along the edges mn and mln,. Such 
conclitions are obtained if the shell is 
supported at points wI, “, wl,, r~, by bars 
directed radia!ly and is loaded by a 
load l’ in the plane of symmetry. The 
dcMcction produced by this load can be 
found by applying the principle of 
virtual displacements. 

121. General Case of Deformation 
of a Cylindrical Shell.’ To cstnblish 
the differential equations for t,he dis- 
placements U, P, and w which define 
the deformation of a shell, we proceed as in the case of plates. We begin 
with t’he equations of equilibrium of an clement cut out from the cylindri- 
cal shell by two adjacent axial sections and by two adjucewt sections 
pcrpendiculnr to t,hc axis of the cylinder (Fig. 253). The corresponding 
element of the middle surface of the shell after deformation is shown in 
Fig. 256, and b. In Fig. 256n the resultant forces and in Fig. 2560 the 

’ A gcncral theory of bending of thin shells has been devclopcd by A. E. H. Love; 
see I’llil. ?!‘IwM. EOIJ. Sot. (Lo~dor~), ser. -4, p. 491, 1888; and his book “Elasticity,” 
4th ed., chap. Z-4, p. 515, 1927; see also H. Lnmb, Proc. London .Vath. Sot., vol. 21. 
J’or bending of cylindrical shells see also H. Rcissncr, Z. an~,ew. Jluth. Alech., vol. 13, 
p. 133, l!G3; 1,. EL l>onnell, NB Crl Ilcp~. 479, 19X3 (simplified theory); E. Torroja 
and J. Batancro, “ Cubicrtos laminurcs cilindros,“ Madrid, 1950; H. Parkus, ikerr. 
fnyr.-Arch., vol. 6, p. 30, 1951; I\:. Zerna, Inq/..-Arch., vol. 20, p. 357, 1952; P. Csonka, 
.icta Tech. dcad. Sci. Hung., vol. 6, p. 167, 1953. The effect of a concentrated load 
has been considcrcd by A. has-Jakobsen, BaGnqcnieur, vol. 22, p. 343, 1941; by 
Y. N. Rabotnov, Doh-lady ‘lkad. Naltk S.S.S.R., vol. 3, 194G; and by V. Z. Vlasov, 
“A General Theory of Shells,” Moscow, 1949. For cylindrical shells stiffened by 
ribs, see IV. J. FToff, J. Appl. Mechanics, vol. 11, p. 235, 1944; “H. Reissner Anniver- 
sary Volume,” Ann Arbor, Mich., 1949; and W. Schnell, 2. Pllqwiss., vol. 3, p. 385, 
1955. .-Inisotropic shells (together wit,h a gcncral theory) have been treated by 
IV. Fliigg-e, Inngr.-A&., vol. 3, 1-1. 463, 1932; also by Vlasov, op. cit., chaps. 11 and 12. 
For strws clistril,ution around stiffcncd cutouts, see bibliography in I,. S. D. Morley’s 
paper, Sal/. L~r~i/(ua,c~, tub. hppts., p. :<ti’L, 4msterdam, 1950. A theory of thick 
cylindrical shells is due to %. Hazant, /+oc. ilssoc. Blitlye Sfrvctural EILyTB., vol. 4, 1936. 
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resultant moments, discussed in Art. 10-l, are shown. Before defor- 
mation, the axes I%, ZJ, and x at any point 0 of the middle surface had the 
direct,ions of the generat’rix, the tangent to the circumference, and the 
normal to the middle surface of the shell, respectively. After defor- 
mation, which is assumed to be very small, these directions are slightly 
changed. We then take the z axis normal to the deformed middle sur- 
face, t’he z axis in the direction of a tangent to the generatrix, which may 
have become curved, and the y axis perpendicular to the zx plane. The 

--*_ 

I- 
--- dp --____ 

(6) 

FIG. 256 

directions of the resultant forces lvill also have been slightly changed 
accordingly, and these changes must be considered in writing the equa- 
tions of equilibrium of the element OABC. 

Let us begin by establishing formulas for the angular displnccments of 
the sides BC and AB with reference to the sides OA and OC of the cle- 
ment’, respectively. In these calculations we consider the displacements 
U, v, and w as very small, calculate the angular m&ions produced by 
each of these displacements, and obtain the resultant angular displace- 
ment by superposition. We begin with the rotation of the side BC with 
respect to the side OA. This rotatJion can be resolved into three com- 
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ponent rotations with respect to the x, y, and z axes. The rotations of 
t,he sides OA and BC with respect to the x axis are caused by the dis- 
placements v and w. Since the displacements v represent motion of the 
sides OA and BC in the circumferential direction (Fig. 253), if a is the 
radius of the middle surface of the cylinder, the corresponding rotation 
of side OA about the .2: axis is P/Q, and that of side BC is 

Thus, owing to the displacements v, the relative angular motion of BC 
with respect to OA about the R: axis is 

(a) 

Because of the displacements w, the side OA rotates about the z axiS 
through the angle aw/(a &), and the side BC through the angle 

Thus, because of the displacements w, the relative angular displace- 
ment is 

Summing up (a) and (b), the relative angular displacement about the 
x axis of side BC with respect to side OA is 

Cc) 

The rot,ation about the y axis of side BC with respect to side OA is caused 
by bending of the generatrices in axial planes and is equal to 

The rotation about the z axis of side RC with respect to side OA is due to 
bending of the gencratrices in tangential planes and is equal to 

The formulas (c), (d) , and (e) thus give t’he t)hree components of rotation 
of the side BC with respect to the side 0‘4. 

Let us now establish t,he corresponding formulas for the angular dis- 
placement of side AB with respect to side OC. Rccause of the curvature 
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of the cylindrical shell, the initial angle betlvecn these lateral sides of the 
element ORRC is clq Holvever, because of the displacements v and w 
this angle vvill be changed. The rotation of the lateral side OC about 
the 2 axis is 

: + $p 

The corresponding rotation for the lateral side A R is 

0”) 

Hence, inst,ead of the initial angle dq, \ve must non use the expression 

In calculating the angle of rotation about the y axis of side ilB lvith 
respect to the side OC \ve use the expression for twist from the preceding 
article (see page 504); this gives the required angular displacement as 

-(&f$)di^ (h) 

Rotation about the z axis of the side AB Jvith respect to OC is caused by 
the displacements u and w. Because of the displacement 11, the angle of 
rotation of side OC is &/ax, and that of side AB is 

g+Ap g .: 0 
0 tlcp 

so that the relat,ive angular displacement, is 

a a!) 
-~ (6) u ap a.c CL dp (9 

Because of the displacement w, the side iZB rotates in the axial plane 
by the angle dw/dx. The component of t,his rotation with respect to the 
2 axis is 

at0 
- dP a.2: (*i) 

Summing up (i) and (j), the relative angular displacement about the 
z axis of side AB with respect to side 06 is 

(kj 

Having the foregoing formulas1 for the angles, [v-e may noxv ot)tain 
three equations of equilibrium of the element OABC (Fig. 256) by pro- 
jecting all forces on the x, ~1, and z axes. Beginning \vith those forces 

1 These formulas can be readily obtained for a cylindrical shell from the gcrwr:tl 
formulas given by h. E. H. Love in his book “Elasticity,” 4th ed., p. 523, 1927. 
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parallel to the resultant forces N, and N,, and projecting them on the 
.c axis, we obtain 

aN, d3: dx a dp aN 
3’ dp dx 

aY 

Bccausc of the angle of rotation represented by expression (k), the forces 
parallel to N, give a component in the x direction equal to 

-N(& - t$dudx 

Because of the rotation represented by expression (e), the forces parallel 
to N,, give a component in the .2: direction equal to 

Finally, because of angles represent’ed by expressions (d) and (IL), the 
forces parallel to (Jr and Q, give components in the .r direction equal to 

Kegarding the external forces acting on the element, we assume that 
there is only a normal pressure of intensity g, the projection of which 
on the x and y axes is zero. 

Summing up all the projcct,ions calculated above, we obtain 

In the same manner two ot,hcr cquntions of equilibrium can be written. 
After simplification, all three equations can be put in the following form: 

dN, 
adz+ 

a-v,, d”W 

dY 
aQZ ---- - aN 

a% 
~ 

dX? “q a.2 

-Qq($+$)-&(&-$$=O 
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Going now to the three equations of moments with respect to the x, 1~, 
and x axes (Fig. 23%) and again taking into consideration the small angu- 
lar displacements of the sides BC and AB with respect to 08 and OC, 
respectively, we obtain the following equations: 

By using the first two of these equations1 we can eliminate Qz and Q, 
from Eqs. (298) and obtain in this way three equations containing the 
result’ant forces N,, N,, and N,, and the moments M,, Jf+,, and M,,. 
By using formulas (253) and (2%) of Art. 104, all these quantities can be 
expressed in terms of the three strain components Ed, Ed, and yzP of the 
middle surface and the three curvature changes xz, x~, and xzP. By 
using the results of the previous article, these latter quantities can be 
represented in t’erms of the displacements U, v, and w as follows:2 

(300) 

Thus we finally obtain the three dirfcrentinl equations for the determi- 
nation of the displacements U, v, and w. 

In the derivation equations (29s) and (299) the change of curvature 
of the element OABC was t,aken into consideration. This procedure is 
necessary if the forces N,, N,, and N,, are not small in comparison with 
their critical values, at which lateral buckling of the shell may occur.3 
If these forces are small, their effect on bending is negligible, and we can 
omit from Eqs. (298) and (299) all terms containing the products of the 
resultant forces or resultant moments with the dcrivativcs of the small 
displacements U, v, and w. In such a case the three Eqs. (298) and the 

1 To satisfy the third of these equations the trapezoidal form of the sides of the 
clement OAl3C must be considered as mentioned in Art. 104. This question is dis- 
cussed by IT’. Fliiggc, “Statik und I>ynamik dcr Schnlen,” 2d ed., p. 148, Berlin, 1057. 

2 The same expressions for the change of curvature as in the preceding article ars 
used, since the effect of strain in the middle surface on curvature is nrglected. 

:: The problems of buckling of cylindrical shells are discussed in 8. Timoshenko, 
“Theory of Elastic Stability, ” and will not be considered here. 
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first two equations of system (299) can be rewritten in the following 
simplified form : 

(301) 

Eliminating the shearing forces Qz and Q,, we finally obtain the three 
following equat,ions : 

(302) 

By using Eqs. (253), (254), and (SOO), all the quantities entering in these 
equations can be expressed by the displacements U, U, and w, and we 
obtain 

1~” _ +J!aqFL+A& 
12 > 

More elaborntc investigations sho~vl that the last two terms on the 
left-hand side of the second of these equations and the last term on the 
left-hand side of the t,hird equation are small quantities of the same order 
ZlS those which we already disregarded by assuming a linear distribution 
of stress t,hrough the thickness of the shell and by neglecting the stretch- 
ing of the middle surface of the shell (see page 431). In such a case it 

1 See Vlasov, op. cit., p. 316, and, for more exact equations, p. 257. 
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will be logical to omit the above-mentioned terms and to use in analysis 
of thin cylindrical shells the following simplified system of equations: 

Some simplified expressions for the stress resultants which are in 
accordance with the simplified relations (304) between the displacements 
of the shell will be given in Art. 125. 

From t’he foregoing it is seen that the problem of a laterally loaded 
cylindrical shell reduces in each particular case to the solution of a sys- 
tem of three differential equations. Several applications of thcsc equa- 
tions will be shown in the next articles. 

122. Cylindrical Shells with Supported Edges. Let us consider the 
case of a cylindrical shell supported at the ends and submitted to the 

b -------- t _____ -4 

(a) 
E‘IG. 257 

pressure of nn enclosed liquid as shown in Fig. 257.l The conditions at 
t,he supporls and the conditions of symmetry of deformation will be 
satisfied if me take the components of displacement in the form of the 
following series : 

?A= 
cc 

A,, cos ny cos 7 

II = 

cc 

B,,, sin ay sin 7 

w= 
cc 

C,, cos ‘r~ip sin Prz 

in which 1 is the length of the cylinder and cp is the angle measured as 
shown in Fig. 257.2 

1 See S. Timoshenko, “Theory of Elasticity,” vol. 2, p. 385, St. l’etersburg, 1916 
(Russian). 

2 By substituting expressions (u) in Eqs. (300) it can he shown that the tensile 
forces AV, and the moments M, vanish at the ends; the shearing forces do not, vanish. 
however, since yZq and M,, are not zero at the ends. 
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The intensity of the load Q is represented by the following expressions: 

q = -yz(cos $0 - cos a) when p < N 
q=o when cp > ff (b) 

in which y is the specific weight of the liquid and the angle CY defines the 
level of the liquid, as shown in Fig. 2578. The load q cau be represented 
by the series 

q= 
cc 

D,, cos np sin mT Cc) 

in which the coefficients D,, can be readily calculated in the usual way 
from expressions (0). These coefficients are represented by the expression 

D 8-o mn = - rrLmr2(rL~ - I) (cos (Y sin na - n cos ~L(Y sir1 a) (4 

where m = I, 13, 5 9 and n = 2, 3, 4, 

whereas n 4ya . 
m cl = - 3 (sin cy - O( cos a) (e) 

and D ml = - 2 (2cu - sin 2a) (f) 

In the case of a cylindrical shell completely filled with liquid, we denote 
the pressure at the axis of the cylinder’ by rcl; then 

q = -~(d+acos$o) (9) 

and we obtain, instead of expressions (d), (c), and (,f), 

D - 0 4Td 
n&n - D,o = - m?r Dml = - 2 (h) 

To obtain the deformation of the shell we substitute expressions (a) 
and (c) in Eqs. (304). In this way we obtain for each pair of values of 
m and n a system of three linear equations from which the corresponding 
values of the coefficients A,,, B,,, and C,, can be calculated.2 Taking a 
particular case in which d = a, we find that for n = 0 and m = 1,3,5, 
these equat’ions are especially simple, and we obtain 

where 

1 In xx closed cylindrical vessel this pressure can be 1:trgcr than ay. 
* Such calculations have been made for several particular cases by I. A. Wojtasxak, 

Phil. Mug., ser. 7, vol. 18, p. 1099, 1934; see also the paper by II. Hcissner in 2. angew. 
Math. Mech., vol. 13, p. 133, 1933. 
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For n = 1 the expressions for the coefficients are more complicated. To 
show how rapidly the coefficients diminish as m increases, we include in 
Table 87 the numerical values of the coefficients for a particular case in 
which a = 50 cm, 1 = 25 cm, h = T cm, v = 0.3, and o( = r. 

TABLE 87. '~IIE VALUES OF THE ~~EBTICIENTS IN EXPRESSIONS (a) 

2 ’ 103 2 . 103 2.103 2 . 103 
?n A 

nLo x-- 
Cm” -~- 

* 1 

AJh “1-c / B,, 5;: Cm1 ~ 
Nh 

~-__- 
1 57.88 -1,212. 49.18 -66.26 -1,183 
3 0.1073 -6.742 0.1051 -0.0432 - 6.704 
5 0.00503 -0.526 0.00499 -0.00122 - 0.525 

It is seen that the coefficients rapidly diminish as m increases. Hence, 

FIG. 258 

by limiting t’he number of coeffi- 
cients t,o those given in the table, 
WC shall obtain the deformation of 
the shell with satisfactory accuracy. 

123. Deflection of a Portion of 
a Cylindrical Shell. The method 
used in the preceding article can 
also be applied to a portion of a 
cylindrical shell which is supported 
along the edges and submitted to 
the action of a uniformly distrib- 
uted load Q normal to the surface 
(Fig. 238). 1 We take the compo- 

nents of displacement in the form of the series 

in which 01 is the central angle subtended by the shell and 1 is the length 
of the shell. It can be shown by substitution of expressions (a) in Eqs. 
(300) that in this tray WC shall satisfy the conditions at the boundary, 
which require that along the edges p = 0 and y = CY the deflection w, 
the force N,, and the moment M, vanish and that along the edges x = 0 
and x = 1 the deflection w, the force N,, and the moment M, vanish. 

1 See Timoshenko, “Theory of Elasticity,” vol. 2, p. 386, 1916. 
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The intensity of the normal load CJ can be represented by the series 

(b) 

Substituling series (a) and (b) in Eqs. (30-2)) we obtain t,hc following sys- 
tem of linear algebraic equations for calculating the cocfhcients A,,, B,,, 
and CL: 

To illustrate the application of these equations let us consider the case 
of a uniformly distributed load’ acting on a portion of a cylindrical shell 
having a small angle LY and a small sag f = a[1 - cos ((r/2)]. In this 
particular case expression (b) becomes 

!I= c c * sin Zx sip nrp 
9mn 1 CY 

1,3,5,. 1,3,5,. 

and the coefficients D,, are given by the expression 

(4 

Substituting these vnlucs in Eqs. (c), we can calculate the coefficients 
A mn, EC,,,, nntl e,,,,,. The cnlculnt,ions made for a part,icular case in which 
eta = I and for several values of the ratio f/h show that for small values 
of this ratio, series (a) are rapidly convergent and the first few terms give 
the displacements with satisfactory accuracy. 

The calculatjions also show that the maximum values of the bending 
strcsscs produced by the moments M, and M, diminish rapidly as f/h 
mcreases. The calculation of t,hese stresses is very tedious in the case of 
larger values of j/h, since the series representing the moments become 
less rapidly convergent and a larger number of terms must be taken. 

The method used in this article is similar to Navier’s method of calculating bending 
of rectangular plates with simply supported edges. If only the rectilinear edges 
C,D = 0 and ‘p = 01 of the shell in Fig. 258 are simply supported and the ot)hcr two edges 
are built in or free, a solution similar to that of 14. Lkvy’s method for the cast of 
rectangular plates (SW page 113) wn be applied. We assume the following series 
for the corllponents of displacc!lllent: 

! The load is assumed to art toward the axis of the cylinder. 
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(f) 

in which U,,, V,, and W, are functions of .r only. Substituting t,hese series in 
Eqs. (304), we obtain for U,, V nL, and W,, three ordinary differential equations with 
constant coefficients. These equations can be integrated by using exponential func- 
tions. An analysis of this kind made for a closed cylindrical shell’ shows that the 
solution is very involved and that results suitable for practical application can be 
obtained only by introducing simplifying assumptions. It could be shown that each 
set of the functions Ui,, I’,,,, IV,,, contains eight constants of integration for each 
assumed value of m. Accordingly, four conditions on each edge z = constant must 
be at our disposal. Let us formulate these conditions in the following three cases. 

Built-in Edge. Usually such a support is considcrcd as perfectly rigid, and the 
edge conditions then are 

aw 
ZL=O v=o w=o -=o 

az (.Q) 

Should it happen, however, that the shell surface on the edge is free to move in the 
direction z, then the first of the foregoing conditions has to be replaced by t,he condi- 
tion N, = 0. 

Simply Supported Edge. Such a hinged edge is not able to transmit a moment 
M, needed to enforce the condition awlax = 0. Assuming also that there is no edge 
resistance in the direction z, we arrive at the boundary conditions 

v = 0 Ia=0 N, = 0 N, = 0 (h) 

whereas the displacement a arid the stress resultants Nza, M,,, and Qz do not vanish 
on the edge. 

The reactions of the simply supported edge (Fig. 259~) deserve brief consideration. 
Thr: action of a twist,ing couple M,, ds, applied to an element AHCD of the edge, is 
statically equivalent to the action of three forces shown in Fig. 259b. A-1 variation of 
the radial forces M,, along the edge yields, just as in the case of a plate (Fig. 50), an 
additional shearing force of the intensity -&lZ,,/as, the total shearing force being 
(Fig. 259~) 

aA1 z ‘p 
T, = Qz - ~ 

a aw (i) 

The remaining component M,, dq (Fig. 2596) may be considered as a supplementary 
membrane force of the intensity MzP dq/ds = M,,/a. Hence the resultant mem- 
brane force in the direction of the tangent to the edge becomes 

i SW paper by K. Miesel, Znyl.-Arch., vol. 1, p. 29, 192!1. rln application of the 
theory t’o t,hc calculation of stress in the hull of a submarine is shown in this paper, 
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tree Edge. Letting all the stress resultants vanish on the edge, we find that the 
four conditions characterizing the free edge assume the form 

N, = 0 M, = 0 s, = 0 T, = 0 

where S, and T, are given by expressions (j) and (i), respectively.’ 

(k) 

124. An Approximate Investigation of the Bending of Cylindrical Shells. From the 
discussion of the preceding article it may bc concluded that the application of the 
general theory of bending of cylindrical shells in even the simplest cases results in 
very complicated calculations. To make the theory applicable to the solution of 
practical problems some further simplifications in this theory are ncccssary. In con- 
sidering the membrane theory of cylindrical shells it was stated that this theory 
gives satisfactory results for portions of a shell at a considerable distance from the 
edges but that it is insufficient to satisfy all the conditions at the boundary. It is 
logical, thcrcforc, to take the solution furnished by the membrane theory as a first 

ds =ody 

(a) 

Mx,dv 
(b) 

(cl 

FIG. 259 

approximation and use the more elaborate bending theory only to sat,isfy the cond- 
tions at the edges. In applying this latter theory, it must be assumed that no external 
load is distributed over the shell and that only forces and moments such as are neces- 
sary to satisfy the boundary conditions arc applied along the edges. The bending 
produced by such forces can be investigated by using Eqs. (303) after placing the 
load q equal to zero in these equations. 

In applications such as are encountered in structural engineering2 the ends z = 0 
and zr = 1 of the shell (Fig. 260) are usually supported in such a manner that t,he 

1 For a solution of the problem of bending based on I,. H. Donnell’s simplified 
differential equations see N. J. Hoff, J. A&. Mechanics, vol. 21, p. 343, 1054; see also 
Art. 125 of this book. 

2 In recent times thin reinforced cylindrical shells of concrete have been successfully 
applied in structures as coverings for large halls. Descriptions of some of these 
str~lrturcs can be found in the article by F. Dischingcr, (i Handbuch fur Eisenbeton- 
bnu,” 3d ed., vol. 12, Berlin, 1928; see also the paper by F. Dischinger and U. Finster- 
mnldcr in Hnuingeniew, vol. 9, 1928, and references in Art. 126 of this book. 
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displacements v and ‘w at the ends vanish. Experiments show that in such shells 
the bending in the axial planes is negligible, and WC can assume M, = 0 and Qz = 0 
in the equations of equilibrium (301). We can also neglect the twisting moment AT,,. 
With these assumptions the system of Eqs. (301) can be considerably simplified, and 

Fro. 260 

the resultant forces and components of displacement can all be expressed in terms’ of 
moment M,. From the fourth of the equations (301) we obtain 

,,=;$f 

Substituting this in the third equation of the same systrm, wc obtain, for 9 = 

The second and the first of the equations (301) then give 

(a) 

0, 

(6) 

Cc) 

Cd) 

The components of displacement can also bc cxprcssrd in terms of M, and its deriva- 
tives. We begin with the known relations [see Eqs. (253) and (254)] 

a0 w 
El? = -~~~ - - Uap a 

= kh (N, - vNr) 

(e) 

* This approximate theory of bending of cylindrica.1 shells was developed by U. 
Finsterwalder; XC Ingr.-L4rch., vol. 4, p. 43, 1933. 
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From these equations we obtain 

521 

au 
- L (N, - UN,) 

%c - Eh 

Using these expressions together with Eqs. (b), (c), and (d) and with the expression 
for the bendine: moment 

M,= A(;+$) 

we finally obtain for the determination of M, the following differential equation of the 
eighth order: 

= 0 (h) 

A particular solution of this equation is afforded by the expression 

Substituting it in Eq. (h) and using the notation 

mm 
-1 = 

A 

(i) 

Cd 

the following algebraic equation for calculating 01 is obtained: 

a8 + [2 - (2 + v)X-$-d~ + [(l + 2Y)h” - 2(2 + v)X” + I]<?4 

+ [--A6 + (1 + v)%” - (2 + v)X”W + 12(1 - 9) ; x4 = 0 (k) 

The eight roots of this equation can be put in the form 

oll,P,Z,P = z!I(-Yl f ibl) N5,6,7,‘3 = k (72 i $2) (4 

Beginning with the edge ‘p = 0 and assuming that the moment .?I, rapidly diminishes 
as ‘p increases, wc use only those four of the roots (I) which satisfy this requircmcnt. 
Then combining the four corresponding solutions (i), we obtain 

hf, = [e-71q(C, cos Blp + C2 sin piq) + e-Yzq(C, cos p2+0 + CA sin fl9)] sin 7 (m) 

which gives for ‘P = 0 

M, = (Cl + C,) sin ‘FTT 
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If instead of a single term (i) we take the trigonometric series 

M,= .,I 
c 

max 
dP~~* sin -- 

1 

any distribution of the bending moment M, along the edge v = 0 can be obtained. 
Having an expression for ill@, the resultant forces Q,, N,, and N,, are obtained from 
Eqs. (n), (b), and (c). 

If in some particular case the distributions of the moments Mp and the resultant 
forces Qq, N,, and N,, along the edge ‘p = 0 are given, we can represent these dis- 
tributions by sine series. The values of the four coefficients in the terms containing 
sin (m~~/l) in these four series can then be used for the calculation of the four con- 
stants (‘I, . , C, in solution (m); and in this way the complete solution of the 
problem for the given force distribution can be obtained. 

If t,he expressions for u, v, and w in terms of M, are obtained by using Eqs. (f), we 
can use the resulting expressions to solve the problem if the displacements, instead 
of the forces, are given along the edge ‘p = 0. Examples of such problems can be 
found in the previously mentioned paper by Finsterwalder,’ who shows that the 
approximate method just described can be successfully applied in solving important 
structural problems. 

126. The Use of a Strain and Stress Function. In the general case of bending of 
a cylindrical shell, for which the ratio l/a (Fig. 260) is not necessarily large the effect 
of the couples M, and AZ,, cannot be disregarded. On the other hand, the simplified 
form [Eqs. (304)] of the relations between the displacements allows the introduction 
of a function2 P(z,p) governing the state of strain and stress of the shell. Using the 
notation 

h,= p = ~~~ 
12a2 

(2 A=a”+E 
a ap dQ” (a! 

WC can rewrite Eqs. (304) in the following form, including all three components X, Y, 
and Z of the external loading, 

a211 1 - Y CPU 
ai”+,- 

1 + Y &I 

Y c3Qp’ 
+,-- 

ai aQ at Eh 

(305) 

all a21 v-++----w@AAu,= _ (I - v”)a” 
Z 

a$ arp Eh 

‘rhc set of t,hese simultaneous equations can be reduced to a single different,ial equation 
by putting 

$14’ a3F 
u- v ~ + uo 

ai aQ2 at’ 
aw f33F u=-s-(2+Y) - + 00 (30’3 

w 8~ 
w = -AAF + WC, 

I Ibid. 
1 Due to Vlasov, op. cil. Almost equivalent results, without t,he use of a stress 

function, wcrc obtained byI>. H. Donncll, NACA Reps. 479, 1033. See also N. J. Hoff, 
J. A&. Mechanics, vol. 21, p. 343, 1954. 
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where uO, ZJ~, UI~ are a system of particular solutions of the nonhomogeneous equations 
(305). As for the strain and stress function F(.$,+J), it must satisfy the differential 

equation 
1 - Y2 a4F 

AAAAF + --- G = 0 
c2 

(307) 

which is equivalent to the group of Eqs. (305), if X = Y = Z = O.* It ran be shown 
that in this last case not only the function P but also all displacement and strain 
components, as well as all stress resultants of the shell, satisfy the diffcrcnt,ial equa- 
tion (307). 

For the elongations, the shearing strain, and the changes of the curvature of the 
middle surface of the shell, the expressions (300) still hold. The stress resultants 
may be represented tither in terms of the displacements or directly through the func- 
tion F. In accordance with the simplifications leading to Eqs. (304), t,he effect of 
the displacements u and a on the bending and twisting moments must by considered 
as negligible. Thus, with the notation 

Eh K=-- Eh3 
I! = 

1 - 92 12(1 - 9) 

the following expressions are obtained: 

M,= -$(g+“$)=$($+2)AAF 

D(1 - V) a% M,, = --II!l,,r = ______ __ = 
a2 aE aq 

-;(I - v+&A;lP 

Representing the differential equation (307) in the form 

where 

(308) 

cm) 

(310) 

* Further stress functions P,, F,, F, were introduced by Vlasov, op. cit., to represent 
the particular integral of Eqs. (305) if X, Y, or 2, respectively, is not zero. 
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we see that Eq. (307) is also equivalent to the group of four equations 

for the four new functions <I>,, :I set of four cqustions 

A*,, + I*&, = 0 

is obtained, in mllich for the constant p,& we have to assume 

(4 

(f) 

(Y) 

The form of r:lc*h of the cqllations (f) is analogous to that of the equation of vibration 
of a membrnnc. In comparison with Eqs. (rE), Eqs. (j) have the advantage of being 
invariant against a change oi” coordinates on the cylindrical surface of the shell. 

(b) 

F1c:. Xl 

126. Stress Analysis of Cylindrical Roof Shells.1 Three typical roof laponts are 
sho\vn in Figs. 261 and X.5. The shells may bc tither continuous in the direction r 
or rlsc support~l only t\\ ice, s:cy in the pkrnos z = 0 and cc = 2. 1i-e shall ronfinc 
ollrsclves to the latter case. \Ve suppose the supporting structures to be rigid witlr 

’ See :tlso “Design of Cylindrical Concrctc Shell Roofs,” ASCE MUILII& o~EIL~. 
E’mctire, no. 31, 1952; J. E. Gibson and D. TT-. Cooper, “The Design of Cylindrical 
Shell IXoofs,” Xem York, ll95.1; R. S. Jenkins, “‘I’hcory and Design of Cylindrical 
Shell Structuws,” T,ontlon, 1947; .4. Ans-Jxkobscn, “ Die Berechnung der Zylinder- 
shalen,” Berlin, 1958. Many data on tlwign of roof shells mcl an interesting compari- 
so11 of djgercnt methods of stress analysis may- be found in ProccedirL$7 of a SyntposiUnl 
011 C’rJrcoek Shell Rooj Constwctio,~, Cklnent and Corrcrctc Association, London, 1954. 
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respect to forces acting in their own planes, z = constant, but as perfectly flexible 
with respect to transverse loading. In Fig. 261a the tension members at +0 = (oO are 
flexible, whereas the shells shown in Figs. 261b and 265 are stiffened by beams of 
considerable rigidity, especially so in the vertical plane. 

Any load distribution over the surface of the shell may be represented by the maa- 
nitude of its t,hrcc component,s in thr: form of the series 

Y= 
c 

A,d~ 
Y,(p) sin 

u 
m=l 

m 

Z= 
c 

L7l.c Z,,,(v) sin -- 
u 

“L = 1 
in which 

iaj 

Likewise, let us represent the particular solutions 710, ~0, ~1~ in expressions (306) in 
the form 

m c lJ,,m(v) 
A”& 

NO = C”S --- 
u 

WL=l 
m 

Expressions for the stress resultants AT, and M, obtained from these series by means of 
Eqs. (308) and (310), in which 4 = z/n, show that the conditions (h) of Art. 123 for 
hinged edges are fulfilled at the supports z = 0 and .r = 1. 

In order to obtain the general expressions for the displacements in the case 

we make use of the resolving function F (Art. 125) by taking it at first in the form 

a 

Substitution of this expression in the differential equation (307) yields the following 
characteristic equation for cu: 
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in which c2 = h2/12a*. The eight roots of this equation can be represented in the 
form 

a1 = YI -t $3, 016 
a2 = 71 - $3, LY6 
013 = 72 + 9% a, 
cl4 = ye - $2 a3 

with real values of y and 8. Using the notation 

we obtain 

(9) 

(h) 

Returning to the nerirs form of solution, wc find t,hat the general expression for the 
stress function becomes 

where 

and (I,,, C,,,, . . are arbitrary constants. 
WC arc able now to calculate the rcspcctive displacements by means of the rela- 

tions (306). Adding to the result the solution (c), we arrive at the following expres- 
sions for the total displacements of the middle surface of the shell: 

LO= 
c 

(2Qji - j; ” - X$jm + W,,) sin +! 
a 

m = 1 

(k) 

where primes denote dift’erentiation with respect to rp. 
The strain and stress components now are obtained by means of expressions ~300)~ 

[309), (310), and (311). In the most general case of load distribution four conditions 
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on each edge q = kppa are necessary and sufficient to calculate the constants C,,, 
. . . , CntS associated with each intcgcr m = 1, 2, 3, . . . 

As an example, let us consider the case of a vert,ical load uniformly distributed 
over the surface of the shell. From page 460 we have 

x=0 Y = p sin ‘p z = p cos lp (1) 

Hence the rocfficients of the series (a) are 

defined by 

x, =; 
s 

1 
x cos xm” CLX = 0 

0 a 

Y, = ; 
/ 

I 
I’ sin * rls = * sin ‘p (m) 

0 a m7? 

z, = ; 
s 

1 
Z sin &!E dx = D cos p 

0 0 mr Fro. 262 

in which m = 1, 3, 5, . . . An appropriate particular solut,ion (c) is given by 

CJ,, = A,, co8 ‘p V,, = B,, sin (0 IV,, = C,,, cos ‘p (n) 

The coefficients A,,, B,,, and C,, are readily obtained by substitution of the exprcs- 
sions (c), (n), and (m) in Eqs. (305). 

TO satisfy the conditions of symmetry with respect to the meridian plane P = 0, a 
suitable form of the function (j) is 

fm(pP) = 141, cos PIP cash YI’P + A zrn sin Pip sinh ~~(0 + A:$,,, cos p?~ rosh T~(P 
+ A,,, sin 02~ sinh ysrp (0) 

in which pi, &, yr, and ye are defined by the expressions (h) and )PL = I, 3, 5, 
In order to formulate the edge conditions on Q = ,qpo in the simplest way, let us 

write the cxprcssions for the vertical and horizontal components of the edge displacc- 
ment and of the membrane forces on the edge as well (Fig. 262). 1i-c obtain 

7j = II sin +0” + w cos ppo 
6 = 2) cos ‘p. - w sin qpo 

H = N, cos c,~po - 

Finally, the rotation of the shell with respect to the edge line is expressed by 

x=2)+dw 
a a aq 

(PI! 
(74 

(Pd 

(P4) 

CP5‘i 

In all terms on the right-hand side of the foregoing expressions we have to put rp = ppo. 
The following three kinds of edge conditions may bc considered in particu1a.r. 

Roof with Perfectly Flexible Tension Eods (Fig. 261a). Owing to many connrctcd 
spans supposed to form the roof, the deformation of the roof can bc considcrcd as 
symmetrical with respect to the vertical plane through an intermediate edge (O = + pii, 
where the displacement 6 and the rotation x must vanish. IIence 
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v cos ‘p0 - w sin (00 = 0 !Yl) 

,+;=o ((12) 

on ‘p = ~0. Letting Qo be the weight of the tension rod per unit length, we have, by 
Eq. (p3), a further condition 

2v = Qo (43) 

in which QO, if constant, can be expanded in the series 

Q. = 4Qu c 1 A,3 
- sm ~ 

x m a 
m= 1,3,5, . 

(Pd 

Finally, the elongation e, of the shell on the edge ‘p = ppo must be equal to the elonga- 
tion of the tension member. If -40 denotes the cross-sectional area of the latter and 
E. the corresponding Young modulus,’ then we have, for p = w,, 

in which the int,cgral represents the tension force of the rod. 
The further procedure is as follows. We calculate four coefficients A rrn, . . _ , fl 4n, 

for each m = 1, 3, 5, from tlie conditions (pl), . , (q,,). The stress functionF 
is now defined by Eqs. (o) and (i), and the respective displacements are given by the 
expressions (306) or (i;). Finally, WC obtain the total stress rcsult,ants by means of 
expressions (309) to (311), starting from the known displacements, or, for the general 
part of the solution, also directly from the stress function I’. 

Roof”over Many Spans, Stiflmed 67~ Beums (Fig. 2616). The conditions of symmetry 

v cos tpp0 - w sin (00 = 0 h) 

and 
aw v+-==o 
ap 

on p = (co arc the same as in the prercding case. To establish a third condition, let 
Q0 bc the given weight of the beam per unit length, ho its depth, EO10 the flexural 
rigidity of the beam in the vertical plane, and rlo the cross-sectional area. Then the 
tliffercntial equation for the deflection q of the beam becomes 

the functions 7, V, and Qo being given by the cxprcssions (pi), (p3), and (pe), respec- 
tively. The last term in Eq. (1.3) is due to the difi’crcnce of level between the edge 
of the shell and the axis of the beam. 9s for the elongation ez of the top fibers of the 
beam, it depends not only on the tension force but also on the curvature of the beam. 
Observing the effect of the curvature dZ~/dx2, we obtain in plrtce of Eq. (qa) the 
condition 

2 .Z 
~ 
EuA 0 .i o 

N,, dx + f 2 = I?_” 
s 8X 

G.4) 

1 In the CRSC of a tension mrmbcr composed of two rnat,c:ri:tls, say steel and concrete, 
a transformc,d cross-sectional area must be used. 
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The further procedure of analysis remains essentially the same as in the foregoing 
case. 

The distribution of membrane forces and bending moments M, obtained’ for the 
middle span of a roof, comprising three such spans in all, is shown in Fig. 263. In the 
direction z the span of the shell is 1 = 134.5 ft, the surface load is p = 51.8 psf, and 
the weight of the beam QO = 448 lb per ft. Stress resultants obtained by mwns of 

the membrane theory alone are represented by broken lines. 

Fro. 263 

One-spun Roof, Stiffened by Beams (Fig. 265). In such a case me have to observe 
not only the deflection of the beam, given by the edge displaccmcntjs 7 and 6, but the 
rot,ation of the beam x as well (Fig. 264). The differential equation for the vertical 
deflection is, this time, of the form 

d% ho NV,, 
EoZo - = &o - v + - __ 

dX4 2 ax 
(a) 

1 By Finsterwalder, lot. cit., using the method described in Art. 124; see also Proc. 
I,ltc).tL. ilSSOC. Bridge Structwal Enpx., vol. I, p. 127, 1932. 
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the notation being the same as in the previous case. The horizontal deflection is 
governed in like manner by the equation 

= -H (sp) 

in which EC&, denotes the flexural rigidity 
of the beam in the horizontal plane, 
whereas 6, x, and H are given by the 
cxprcssions (pz), (p5), and (pa). 

The condition of equilibrium of couples 
acting on an element of the beam and 
taken about the axis of the beam (Fig. 
264) yields a further equation 

dMt Hho 

dz 
2 fM,=O (U 

where drl, is the torsional moment of the 
beam. Now, the relation between the 
moment M,, thr twist 0 = ax/ax, and 
the torsional rigidity Co of the beam is 

Substituting this in Eq. (t), we obtain the third edge condition 

in which x is given by the expression (pj) and ‘p = pa. 
The elongation cT of the top fibers of the beam due to the deflection 6 may be 

neglected, the avcragc value of E= through the thickness of the bran1 being zero. 
Therci’orc, the condition (rj) of the foregoing case can be rewritten in the form 

Again the remaining part of the stress analysis is reduced to the determination of the 
constants ill,, . , A4?” for each wz = 1, 3, 5, . from Eqs. (sl) to (sq) and to 
the computation of stresses by means of the respective series. 

Figure 265 sl~ous thr stress distribution in t,ha cast of a shell with I = 08.4 ft ant1 
‘pi = 45”. It is seen in particular that tho distribution of the membrane stresses gz 
over the drpth of the whole beam, composrtl b.y the shell and both stiffeners, is far 
from being linear. Howcvcr, by int.roducing 6 = 0 as the edge condition instcad of 
the condition (s?), an almost linear stress diagram 2 could be obtained. If we sup- 
pose, in addition, that the rotation x vanishes too, we arrive at a stress distribution 
given by curve 3.* 

* For particulars of the calculation see K. Girkmann, “Fl~chentragwcrkc,” 4th ed., 
p. 490, Springer-Vcrlag, Vienna., 1956. The diagrams of Figs. 265 and 263 arc 
rrnroduccd from that book by prrmission from the author and the publisher. 
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Various simplifications can be introduced into the rather tedious procedure of stress 
calculation described above. 

Thus, if the ratio l/a is sufficiently large, the stress resultants M,, Qz, and M,, can 
be disregarded, as explained in Art. 124. -4gain, the particular solution (c) may be 
replaced by a solution obtained directly by use of the membrane theory of cylindrical 

T i 
01 

FIG. 265 

shells (Art. 112). The corresponding displacements, nccded for the formulation 
of the boundary condit,ions, could be obtained from Eqs. (300). The method con- 
sidered in Art. 121 is simplified still more if from all derivatives with respect to (n 
needed to represent the strain and skess components, only those of the highest order 
are retained.’ 

On the other hand, the procedure of the stress computation can be greatly reduced 
by use of special tables for strain arrd stress components due to the action of the edge 

1 Set, li. Schorer, t-‘,,oc. ASCE, vol. 61, p. 181, 1935. 
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forces on the cylindrical shrll.’ A method of iteration2 and the method of finite 
differences3 have also been used in stress analysis of shells. 

If edge conditions on the supports z = 0, z = I of the shell are other than those 
:issumcd on page 524, the stress disturbance arising from the supplementary edge 
forces would rcquirc special investigation.4 

Provided I/u is not sr~mll, the roof shell may also be considered primarily as a beam.s 
Various methods of de,&+ of such a beam are based on different assumptions with 
rcspcct to the distribution of membrane forces N, over the depth of the beam. A 
possible procedure, for example, is to dist,ribute the membrane forces along the contour 
of the shell according to the theory of elasticity and to distribute them along the 
generatriccs according to the elcmcntary beam theory. 

In the cast of very short roof shells continuous over many supports, the edge condi- 
tions on p = f p,, become secondary, and a further simplification of the stress analysis 
proves possible.0 

So far only circular cylindrical shells have been considered; now let us consider 
a cylindrical ahcll of any synimctrical form (Fig. 266). Given a vertical loading 

Funicular varying only with the angle ‘p, me always can obtain a 
curve , cylindrical surface of pressure going through the gen- 

eratrices 8, C, and B. If, for instance, the load is 

s”eJkp distributed uniformly over the ground plan of the shell, 
the funicular curve dCB would be a parabola. h’om 

A \ 

\ 

El suppose the middle surface of the shell to coincide with 
the surface of pressure due to a given load. The total 
load then is transmitted by the forces A’, toward the 

FIG. 266 cdgcs R and R of the shell to be carried finally by the 
side beams over the whole length of the cylinder. If, 

instead, we want the load to be transmitted toward the end supports of the shell by 
the action of the membrane forces N, and N zc, a shell contour overtopping the 
funicular (thrust-line) curve must be chosen (Fig. 266). 

From the relation AT9 = -2~ [see Eqs. (270)] we also conclude that for a vertical 
load, i.e., for Z = p, cos (D, we have N, = --p,a cos ‘p, where p, is the intensity of the 
load. Therefore the ring forces N, on the edge vanish only when ~0 = r/2, that is, 
when the tangents to the contour line of the shell are vertical at the edges A and U. 
This condition is satisfied by such conlours as a semicircle, a semicllipsc, or a cycloid,7 
which all overtop the pressure line due to a uniformly distributed load. 

‘Such tables (for Y = 0.2) arc given by H. Lundgren in his book “Cylindrical 
Shells,” vol. 1, Copcnhngcn, 1949. For tables based on a simplified differential 
equation, due to L. H. l>onnell, see I>. Kiitligcr and J. Urban, “I<reiszylinderschalen,” 
Leipzig, 1955. See also referenccn, p:tgc 521. 

2 A. Aas-Jakobscn, Bauingcnieur, vol. 20, p. 394, 1939. 
3 H. Hencky, “Yeuere Vcrfahrcn in der Fcstigkeitslehrc,” Munich, 1951. For the 

first application of the m&hod to stress analysis of shells, SW H. Keller, Schweiz. 
Baztzt~., p. 111, 1913. The relaxation method has been applied to stress analysis of 
shells by W. Fliiggc, “Fcdcrhofcr-Girkmann-Festschrift,” p. 17, Vienna, 1950. 

1 By application of Miesel’s theory, op. cit., or by an approximate method due to 
Finstcrwnldcr, op. cit. 

5 This approacli has especially been used by A. Aas-Jakobsen, op. cit., p. 93. 
6 See B. Thiirlimann, R. 0. Bereuter, and B. G. Johnston, Proc. First U.S. Natl. 

Co/~/r. Appl. Met:lr.., 1952, p. 347. For application of the photoelasticity method to a 
cylindrical shell (t,unnel tube), see G. Sonntag, BuuingerLieur, vol. 31, p. 408, 1956. 

’ For menibrane stresses in shells of this kind see, for exxmplc, Girkmann, op. cit., 
and A. l’lliigcr, “ 1i:lementare Schalenstatik,” Berlin, 1957. The bending of scmi- 
c~llipticul shells was considered by A. Ras-dnkohsrn, C%nie ci~‘il, 1). 275, 1937. FOI 
rrthcar shaprs of c~ylintlrical roofs, see E. Wiedemann, 171yr.-.4r~+t., vol. 8, 1’. :Wl, 1937. 



CHAPTER 16 

SHELLS HAVING THE FORM OF A SURFACE OF 

REVOLUTION AND LOADED SYMMETRICALLY 

WITH RESPECT TO THEIR AXIS 

127. Equations of Equilibrium. Let us consider the conditions of 
equilibrium of an element cut from a shell by kvo adjacent meridian 
planes and two sections perpendicular to the meridians (Fig. 267).l It 
can be concluded from the condition of symmetry that only normal 
stresses will act on the sides of the element lying in the meridian planes. 
The stresses can be reduced to the resultant force Nti rl do and the 
resultant moment MB TI dp, No and MB being independent of the angle 0 
which defines the position of the meridians. The side of the element, 
perpendicular to the meridians which is defined by the angle p (Fig. 267) is 
acted upon by normal stresses which 
result in the force N, r2 sin cp d0 
and the moment M, T:! sin cp d0 and 
by shearing forces which reduce 
t,he force Q, rz sin cp d0 normal to t.he 
shell. The external load act’ing 
upon the element can be resolved, 
as before, into two components 
YQT2 sin cp dp d0 and Zrlrz sin y dp cl8 
tangent to the meridians and nor- 
mal to the shell, respectively. 
Assuming that the membrane forces 
No and AT9 do not approach their 
critical values,2 we neglect the 
change of curvature in deriving the 
equations of equilibrium and pro- 
teed as was shown in Art. 105. In Eq. (f) of that article, obtained by 
projecting the forces on the tangent to the meridian, the term -QJ~ 
must now be added to the left-hand side. Also, in Eq. (j), which was 

1 We use for radii of curvature and for angles the same notation as in Fig. 213. 
* The question of buckling of spherica. shells is discussed in S. Timoshenko, “Theory 

of Elastic Stability,” p. 491, 1936. 
533 
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obtained by projecting the forces on the normal to the shell, an additional 
term d(Q,ro)/d~ must be added to the left-hand side. The third equation 
is obtained by considering the equilibrium of the moments with respect to 
the tangent to the parallel circle of all the forces acting on the element. 
This gives’ 

After simplification, this equation, t.ogether with the two equations of 
Art. 105, modified as explained above, gives us the following system of 
three equations of equilibrium: 

g (NJ,,) - v I orI cos 9 - roQw + rorlY = 0 

N,ro + Nsrl sin p + ~QVr(‘) F + %rlro = 0 

or1 cm p - QprlrO = 0 

(312) 

In these three equations of equilibrium are five unknown quantities, 
three resultant forces N,, No, and Q, and two resultant moments MB and 
M,. The number of unknowns can be reduced to t’hree if we express the 
membrane forces N, and No and the moments M, and MO in terms of 
the components v and w of the displacement. In the discussion in Art,. 
108 of the deform&ion produced by membrane stresses, we obtained for 
the strain components of the middle surface the expressions 

Idv w 
t,$ = - --- 

r1 da r1 
c* = A! cot $9 - 2 

7-2 r2 

from which, by using Hooke’s law, we obtain 

NV=& qk(g - w) +~(vCot’iF - w)] 

Ne=iq~(ivCOt2 .-w,+;(+)] 

(317) 

’ * 
r2 P 

To get similar expressions for the moments 112, and Us let us consider 
the changes of curvature of the shell element shown in Fig. 267. Con- 
sidering the upper and the lower sides of that element, we see that the 
initial angle between t’hese two sides is dq. Because of the displace- 
ment u along the meridian. the upper side of t>hc element rotates with 

1 In this derivation we observe that the angle between the planes in which the 
moments Me act is equal to cos ‘p d6. 
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respect to the perpendicular to the meridian plane by the amount v/rl. 
As a result of the displacement w, the same side further rotates about 
the same axis by the amount dw/(rl dp). Hence the total rotation of the 
upper side of the element is 

For the lower side of the element the rotation is 

Hence the change of curvature of the meridian is’ 

xp=;i~(~+~) (b) 

To find t,he change of curvature in the plane perpendicular to the 
meridian, we observe t’hat because of symmetry of deformation each of 
the lateral sides of the shell element (Fig. 267) rotates in its meridian plane 
by an angle given by expression (a). Since the normal to the right lateral 
side of t’he element makes an angle (9/2j - COY +!J d0 with the tangent to 
the y axis, t,he rot’ation of t#he right side in its own plane has a com- 
ponent with respect to t.he !/ axis equal to 

- (;+~)eos~d* 
This results in a change of caurvature 

x0 = (; + rf$)!E$ = (7”1 +$)I:! @> 

Using expressions ([I) and (c), we then obtain 

Substituting expressions (313) and (314) into Eqs. (312), we obtain three 
equations with three unknown quant,ities v, w, and Q,. Discussion of 
these equations mill be left to the next article. 

We can also use expressions (314) to establish an important conclusion 
regarding t,he accuracy of the membrane theory discussed in Chap. 14. 
In Art. 108 t,he equations for calculat,ing t,he displacements v and w were 

1 The strain of the middle surface is neglected, and the change in curvature is 
obtained by dividing the angular change by the length TV dp of the arc. 
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established. By substituting the displacements given by these equations 
in expressions (314), the bending moments and bending stresses can be 
calculated. These stresses were neglected in the membrane theory. By 
comparing their magnit,udcs with those of the membrane stresses, a con- 
clusion ca,n be drawn regarding the accuracy of the membrane theory. 

We take as a particular example a spherical shell under the action of its 
own weight (page 436). If the supports are as shown in Fig. 21561, the 
displacements as given by the membrane theory from Eqs. (f) and (b) 
(Art. 108) are 

1 1 
1 + COS Ly - 1 + COS cF + 1% 

1 + cos cp 

> 

. 
1 + cos CY sm P 

w = 21 cot $0 - 1+v 
1 + cos cp 

cos cp 
> 

(4 

Substituting these expressions into formulas (314) for the bending 
moments, we obtain 

n/l,=J[ =gE2+v c 12 1 - v coy p (e) 

The corresponding bending stress at the surface of the shell is numeri- 
rally equal to 

q2fv 2 I--; cos $0 

Taking the ratio of this stress to the compressive stress u given by the 
membrane theory [see Eqs. (257)], we find 

q2fv 
2 i--y cos 'p / 

cl 2+v h 
jql + cos p) = ‘-41 _ v) a (1 + cos ‘p) cos P 

The maximum value of this ratio is found at the top of the shell where . 
C,G = 0 and has a magnitude, for v = 0.3, of 

It is seen that in the case of a thin shell the ratio (f) of bending stresses 
to membrane stresses is small, and the membrane theory gives satisfactory 
results provided that the conditions at the supports are such that the 
shell can freely expand, as shown in Fig. 215~. Substituting expression 
(e) for the bending moments in Eqs. (312), closer approximations for the 
membrane forces N, and No can be obtained. These results will differ 
from solutions (257) only by small quantities having the ratio h2/u2 as a 
factor. 

From this discussion it follows that in the calculation of the stresses in 
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symmetrically loaded shells we can take as a first approximation the 
solution givensby the membrane t’heory and calculate the corrections by 
means of Eqs. (312). Such corrected values of the stresses will be accu- 
rate enough if the edges of the shell are free to expand. If the edges are 
not free, additional forces must be so applied along the edge as to satisfy 
the boundary conditions. The calculation of the stresses produced by 
these latter forces will be discussed in the next article. 

128. Reduction of the Equations of Equilibrium to Two Differential 
Equations of the Second Order. From the discussion of the preceding 
article, it is seen that by using expressions (313) and (314) we can obtain 
from Eqs. (312) three equations with the three unknowns U, w, and Q,. 
By using the third of these equations the shearing force Q, can be readily 
eliminated, and the three equations reduced to two equations with the 
unknowns v and w. The resulting equations xvere used by the first 
investigators of the bending of shells.1 Considerable simplification of 
the equations can be obtained by introducing new variables.2 As the 
first of the new variables we shall take the angle of rotation of a tangent 
to a meridian. Denoting this angle by V, we obtain from Eq. (a) of the 
preceding article 

1 dw 
v=Fl v+- 

( > & (a) 

As the second variable we take the quantity 

U = rzQp (b) 

To simplify the transformation of the equations to the new variables 
we replace the first of the eqmltions (312) by one similar to Eq. (255) 
(see page X%), which can bc obtained by considering the equilibrium of 
the portion of the shell nbovc the parallel circle defined by the angle p 
(Fig. X7). Assuming that there is no load applied to the shell, t,his 
equation gives 

from which 
2aroN, sin P + 27rroQ, cos cp = 0 

1 
N,= -QQ,cotp= -$JcotP (cl 

Substituting in the second of the equations (312), we find, for 2 = 0, 

d(Q,ro) 

l See A. Stodola, “Die Dampfturbinen,” 4th ed., p. 597, 1910; H. Keller, Mitt. 
Forschwzg.sarb., vol. 124, 1912; E. Fsnlthauser, dissertation, Zurich, 1913. 

* This method of analyzing stresses in shells was developed for the case of a spherical 
shell by H. Reissner, ” PItiller-Breslau-Yestschrift,” p. 181, Leipzig, 1912; it was 
gcncralizcd and applied to particular cases by E. Meissner, Ph@k. Z., vol. 14, p. 343, 
1913; and T’ierteljnhrsschr. nntnrforsch. GM. Ziirich, vol. 60, p. 23, 1915. 
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and, observing that TO = r2 sin ‘p, we obtain 

Thus the membrane forces N, and No are both represented in terms of 
t,he quantity U, which is, as we see from not,ation (b), dependent on the 
shearing force Q,. 

To establish the first equation connecting Ti and Ti we use Eqs. (313), 
from which we readily obtain 

dv 
- - w = 2 (N, - VNO) 
& (e) 

v cot P - w = gh (Ns - vN,) (f) 

Eliminating w from these equations, we find 

dv 
- - V cot P = kh [(Q + vrz)N, - (r2 + & 

w)Nol 

Differentiation of Eq. (.f) gives’ 

(h) 

The derivat’ive dv/dq can be readily eliminated from Eqs. (g) and (h) 
to obtain 

dw 
v + -& = r1v = Eh cot [(TI + vrz)N, - (r2 + ul)No] 

- f [ -& (No - .N,)] 

Substituting expressions (c) and (d) for N, and No, we finally obtain the 
foliowing equation relating to U and V: 

rz dh +;Cotp--- 1 dU - 
rlh c&o & 1 7-1 -- [ - cot2 p - 

TI r2 
v - ; 2 cot 9 U = EhV 

I 
(315) 

The second equation for U and V is obtained by substituting expressions 
(314) for M, and MO in the third of the equations (312) and using nota- 
tions (a) and (b). In this way we find 

1 \Yc consider a general case by assuming in this derivation that, the thickness h 
of the shell is variablr. 
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Thus the problem of bending of a shell having the form of a surface of 
revolution by forces and moments uniformly distributed along the parallel 
circle representing the edge is reduced to the integration of the two Eqs. 
(315) and (316) of the second order. 

If the thickness of the shell is constant, the terms containing &/C&D 
as a factor vanish, and the derivatives of the unknowns U and V in both 
equations have the same coefhcients. By introducing the notation 

L( . * 

d( . . . ) 7-l cot2 $0 - 
& TZf"l 

( * * . ) (i) 

the equations can be represented in the following simplified form: 

L(U) + ; u = EhV 

L(V) - ; v = - ; 
(317) 

From this system of two simultaneous differential equations of the second 
order we readily obtain for each unknown an equation of t,he fourth order. 
To accomplish this me perform on the first of the equations (317) the 
operation indicated by the symbol L( . . . ), which gives 

LL(U) + VL z = EhL( V) 
0 

Substituting from the second of the equations (317), 

L(V) = ; v - g = -& 
[ 

L(U) + ; u 
1 

- ; 

we obtain 

In the same manner we also find the second equation 

LL(V)-VL E +kL(v)-$V= -gv 
0 

(31% 

If the radius of curvature r1 is constant, as in the case of a spherical or 
a conical shell or in a ring shell such as is shown in Fig. 220, :I. further 
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simplification of Eqs. (318) and (319) is possible. Since in this case 

by using the notation 
4 E’h ,” 

w-D r”l 

both equations can be reduced to the form 

LL(U) + f.LJU = 0 

(.i) 

(320) 

which can be written in one of the two following forms: 

L[L(U) + $U] - ip2[L(U) + ip2U] = 0 
Or L[L(U) - ip2U] + ip2[L(U) - ip2U] = 0 

These equations indicate that the solutions of the second-order equations 

L(CJ) f i/.L2cJ = 0 (321) 

are also the solutions of Eq. (320). By proceeding as was explained in 
Art. 118, it can be shown that the complete solution of Eq. (320) can be 
obtained from the solution of one of the equations (321). The appli- 
cation of Eqs. (321) to particular cases will be discussed in the two 
following articles. 

129. Spherical Shell of Constant Thickness. In the case of a spherical 
shell of constant thickness rl = r2 = a, and the symbol (i) of the pre- 
ceding article is 

d 
) + cot p - ( ’ j - cot2 ‘F( . . . ) 

dq I 
(a) 

Considering the quantity aQ,, instead of CJ, as one of the unknowns in 
the further discussion and introducing, instead of the constant ,J, a new 
constant p defined by the equation 

we can represent the first of the equations (321) in the following form: 

‘3 + cot ‘p $$ - cot2 p Q, + 2ip”Q, = 0 (322) 

A further simplification is obtained by introducing the new variables’ 

z = sin2 p 
Q z=& 

sin cp Cc? 

1 This solution of the equation was given by Meissncr, op. cit. 
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With these variables Eq. (322) becomes 

541 

5 
x(x - 1) $ + 2 x - 2 

( > 2+ 4 
1 - w x = () (4 

This equation belongs to a known type of differential equation of the 
second order which has the form 

x(1 - x)y” + [Y - (a + P + l)Zl?/’ - 4y = 0 

Equations (d) and (e) coincide if we put 

-y=2 3 f ~“5 + 8ip2 
p 

3 + v’5 + 8ip2 (y=- = 
4 4 

A solution of Eq. (e) can be taken in the form of a power series 

y = Ao + AlX + 242x2 + A3X3 + - . . 

(e) 

(f) 

(9) 
Substituting this series in Eq. (e) and equat,ing the coefficients for 
each power of x to zero, we obtain the following relations between the 
coefficients: 

AI = f$ A,, A, = (a + l)(P + 1) A 
2(r + 1) l 

A, = A,-, (afn-- l)(B+n- 1) 
n(r + n - 1) 

With these relations series (9) becomes 

da + l)P(P + 1) 2 
1.2. Y(Y + 1) 

+ -1 . 2. 3 . y(y + l)(y + 2) 
da + l)(a + a/3(@ + l)(P + 2) x3+ . . . 

(h) 

This is the so-called hypergeometricnl series. It is convergent for all 
values of z less than unity and can be used to represent one of the inte- 
grals of Eq. (d). Substituting for o(, /?, and y their values (f) and using 
the notation 

62 = 5 + 8ip2 = 5 + 4i 12ay I - Y”) -__ _ - 
h2 

y2 

we obtain as the solution of Eq. (d) 

x I (ii’ 7. w(72 - h2) ‘9 + . . . 
162 .FJm (8 

which contains one arbitrary constant Ao. 
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The derivation of the second integral of Eq. (d) is more comp1icated.r 
This integral can be written in the form 

22 = 21 log .2 + ; p(2) @I 

where cp(z) is a power series that is convergent for 1x1 < 1. This second 
solution becomes infinite for x = 0, that is, at the top of the sphere (Fig. 
267), and should not be considered in those cases in which there is no 
hole at the top of the sphere. 

If we limit our investigation to these latter cases, we need consider only 
solution (j). Substituting for a2 its value (i) and dividing series (j) into 
its real and imaginary parts, we obtain 

21 = Sl + is2 (0 

where S1 and Sz are power series that are convergent when jz/ < 1. The 
corresponding solution of the first of the equations (321) is then 

U1 = azl sin cp = II + iIz Cm) 

where I1 and Iz are two series readily obtained from the series S1 andSz. 
The necessary integral of the second of the equations (321) can be 

represented by the same series 11 and I2 (see page 489). Thus, for the 
case of a spherical shell without a hole at the top, the general solution 
of the differential equation (320), which is of the fourth order, can be 
represented in the form 

U = a&, = AI, + BIz (n) 

where A and B are constants to be determined from the two conditions 
along the edge of the spherical shell. 

Having expression (n) for U, we can readily find the second unknown V. 
We begin by substituting expression (m) in the first of the equations (321), 
which gives 

L(I1 + ilz) = -ipy11 + iIz) 
Hence L(I1) = p2I2 L(Iz) = --/.?I1 (0) 

Substituting expression (n) in the first of the equations (317) and apply- 
ing expressions (o), we then obtain 

EhaV = d(U) + VU = (Av - Bap2)I~ + (Aup + Bv)Iz (P) 

It is seen that the second unknown V is also represented by the series 
I1 and Iz. 

1 Differential equations that are solved by hypergeometrical series are discussed in 
the book “ Riemann-Weber, Die partiellen Differential-Gleichungcn,” vol. 2, pp. l-29, 
1901. SW also E. Kamke, “Diffcrentialgleichungen,” vol. 1, 2d ed., p. 465, Leipzig, 
1943. 
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Having the expressions for U and V, we can obtain all the forces, 
moments, and displacements. The forces N, and No arc found from 
Eqs. (c) and (d) of the preceding article. The bending moments M, and 
MO are obtained from Eqs. (314). Observing that in the case of a spheri- 
cal shell r1 = r2 = a and using notation (a), we obtain 

M,= -; 

Mo= -f 
(cl) 

In calculating the components v and w of displacement we use the 
expressions for the strain in the middle surface: 

% = j& W, - vNs) es = & (No - vN,) 

Substituting for N, and Ns their expressions in U and V, we obtain 
expressions for ec and ~0 which can be used for calculating v and w as was 
explained in Art. 108. 

In practical applications the displacement 6 in the planes of the parallel 
circles is usually important. It can be obtained by projecting the com- 
ponents v and w on that plane. This gives (Fig. 267) 

6 = v cos y - w sin p 

The expression for this displacement in terms of the functions U and V is 
readily obtained if we observe that 6 represents the increase in the radius 
r. of the parallel circle. Thus 

6 = asin ye0 = a* (No - vN,) = - $f rg - VU cot P) (T) 

Thus all the quantities that define the bending of a spherical shell by 
forces and couples uuiformly distributed along the edge can be repre- 
sented in terms of the two series 11 and Iz. 

The ease with which practical application of this analysis can be made 
depends on the rapidity of convergence of the series I1 and Iz. This con- 
vergence depends principally upon the magnitude of the quantity 

which, if v2 is neglected in comparison with unity, becomes 

(8) 
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Calculations show’ that for p < 10 the convergence of the series is satis- 
factory, and all necessary quantities can he found without much diffi- 

culty for various edge conditions. 

As an example me shall take the case 
of a spherical shell submitted to the 
action of uniform normal pressure p 
(Fig. 268). The membrane strcsscs in 
this case are 

(a) 

gp = g* = - Pa 
2h 

(t) 

and the corresponding membrane forces 
that keep the shell in equilibrium are 

(u) 

By superposing on the membrane forces 
horizontal forces 

(b) 
FIG. 268 

H = pcosa 
2 

uniformly distributed along the edge of the shell, we obtain the case, represented in 
Fig. 268a, in which the loaded shell is supported by vertical reactions of a horizontal 
plane. The stresses in this case are obtained by superposing on the membrane strcsscs 
(t) the stresses produced by the horizontal forces H. Thcsc latter stresses can be 
obtained by using the general solutions (n) and (p) and dctcrmining the constants 
A and B in these solutions so as to satisfy the boundary conditions 

(Nv)v=a = Ii cos 01 (llI,,,=a = 0 

The strcsscs obtained in this way for a particular case in which a = 56.3 in., h = 
2.36 in., cy = 39”, p = 284 psi, and Y = 0.2 are shown in Fig. 269. 

By superposing on the membrane forces (u) the horizontal forces HI and bending 
moments Ma uniformly distributed along the edge, we can also obtain the case of a 
shell with built-in edges (Fig. 26%). The stresses in this case are obtained by super- 
posing on the membrane strcsscs (t) the stresses produced in the shell by the forces 
HI and the moments Me. These latter stresses arc obtained as before from the 
general solutions (n) and (p), the constants A and U being so determined as to satisfy 
the boundary conditions 

(ts)+e = 0 (V),=, = 0 

The total stresses obtained in this way for the previously cited numerical example are 
shown in Fig. 270. 

From the calculation of the maximum compressive and maximum tensile stresses 
for various proportions of shells submitted to the action of a uniform normal pressure 
p, it was found2 that the magnitude of these stresses depends principally on the 

r Such calculations were made by L. Bolle, Schweiz. Bauztg., vol. 66, p. 105, 1915. 
2 Ibid. 
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magnitude of the quantity 

a . - sina a 
h 

and can he represented by comparatively simple formulas. For the case represented 
in Fig. 26% these formulas for the numerically greatest stress are as follows: 

For 4 sin2 (Y < 1.2 

For 1.2 < i sin2 (Y < 12 

For the case represented in Fig. 268b the formulas are: 

For (r = -p(+)‘[O.iS -0.038(+)zsinzo 

Q = -1.2y For 3 < 
u sir2 01 < I2 

It was assumed in the foregoing discussion that the shell has no hole at the top. If 
there is such a hole, we must satisfy the boundary conditions on both the lower and 
the upper edges of the shell. This requires consideration of both the integrals (j) 
and (k) of Eq. (d) (see p. 541) and finally results in a solution of Eq. (320) which con- 
tains four constants which must be adjusted in each particular case so as to satisfy 
the boundary conditions on both edges. Calculations of this kind show’ that, if the 
angle 01 is not small, the forces distributed along the upper edge have only a very small 
influence on the magnitude of stresses at the lower edge. Thus, since thcsc latter 
stresses are usually the most important, we can obtain the necessary information for 
the design of a shell with a hole by using for t,he calculation of the maximum stresses 
the formulas dcrivcd for shells wit.hout holes. 

The method of calculating stresses in spherical shells discussed in this article can 
also be applied in calculating thermal stresses. Assume that the temperatures at the 
outer and at the inner surfaces of a spherical shell are constant but that there is a 
linear variation of temperature in the radial direction. If t is the difference in the 
temprratures of the outer and inner surfaces, the bending of the shell produced by 
the temperature difference is entirely arrested by constant bending moments 
(see Art. 14): 

In the cast of a complete sphere these moments actually exist and produce bending 
stresses the maximum values of which are 

6,tD(l + V) C&E 
(U,),“,, = (Oo)msx = --hr = ____ 

2(1 - v) 
(WI 

If we have only a portion of a sphere, supported as shown in Fig. 268% the edge is 
free to rotate, and the total thermal stresses are obtained by superposing on stresses 

1 Zbid. 
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(w) the stresses that are produced in the shell by the moments 

uniformly distributed along the edge. These latter stresses are obtained by using 
the method discussed in this article.’ In the cast shotvn in Fig. 26% the thermal 
stresses are given by formula (w), if the temperature of the middle surface always 
remains the same. Otherwise, on the stresses (w) must be superposed stresses pro- 
duced by forces H and moments Ma \vhich must be determined in each part,icular 
case so as to satisfy the boundary conditions. 

130. Approximate Methods of Analyzing Stresses in Spherical Shells. 
In the preceding article it has already been indicated that the application 
of the rigorous solution for the stresses in spherical shells depends on the 
rapidity of convergence of the series entering into the solution. The con- 
vergence becomes slower, and more and more terms of the series must be 
calculated, as the ratio a/h increases, i.e., as the thickness of the shell 
becomes smaller and smaller in comparison with its radius.2 For such 
shells approximate methods of solution have been developed which give 
very good accuracy for large values of a/h. 

One of the approximate methods for the solution of the problem is the 
method of asymptotic integration.3 Starting with Eq. (320) and intro- 
ducing, instead of the shearing force Q,, the quantity 

we obtain the equation 
z = Q, z/sin cp (4 

zIV + az2F + UIZI + (p” + ao)z = 0 @I 
in which 

63 a0 = - 
16 sin4 cp + j&q+; a,=% 

3 ~.- a2 = - 2 sin2 ‘p +; 464 = (1 - 9) (1 + Jg) (c) 

It can be seen that for thin shells, in which a/h is a large number, the 
quantity 4p4 is very large in comparison with the coefficients aO, al, and 
az, provided the angle cp is not small. Since in our further discussion we 
shall be interested in stresses near the edge where cp = 01 (Fig. 268) and 

1 Thermal stresses in shells have been discussed by G. Eichclbcrg, I”orschungsarb., 
no. 263, 1923. For shells of arbitrary thickness see also E. IA McDowell and E. 
Sternbcrg, J. Appl. Mechanics, vol. 24, p. 376, 1957. 

2 Calculations by J. E. EkstrBm in Zng. Vetenskaps. Rkad., vol. 121, Stockholm, 
1933, show that for a/h = 62.5 it is ncccssary to consider not less than 18 terms of the 
series. 

3 See 0. Blumenthal’s paper in Repts. Fifth Intern. Congr. Math., Cambridge, 1912; 
see also his paper in 2. Math. Physik, vol. 62, p. 343, 1914. 
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a is not small, we can neglect the terms with the coefhcients a~, al, and 
a2 in Eq. (b). In this way we obtain the equation 

/z’V + 4/L?% = 0 (4 

This equation is similar to l<q. (276), which WC used in the investigation 
of the symmetrical deformation of circular cylindrical shells, Using the 
gcueral solution of Eq. (d) together with notntioll (a), we obtain 

&, = 2 
dsin cp 

[eov(C, cos pp + C2 sin PP) 

+ eda(C3 cos /3p + C4 sin pq)] (e) 

From the previous investigation of the bending of cyliudrical shells we 
know that the ljending stresses produced by forces uniformly distributed 
along the edge decrease rapidly as the distance from the edge increases. 
-\ similar condition also exists in the case of thin spherical shells. Observ- 
ing that the first two terms in solmion (e) decrease while the second two 
increase as the angle cp decreases, we conclude that in the case of a sphere 
without a hole at the top it is permissible to take only the first two terms 
in solution (e) aud assume 

Q, = 2L (C, cos pp + Cz sin ppj 
z/sin p 

(.f) 

Having this expression for Q, and using the relations (b), (c), and (d) of 
&Yrt. 128 and the relations (p), (q), and (r) of Art. 129, all the quantities 
defining the bendiug of the shell can be calculated, and the constants CL 
and Cz can be determined from the conditions at the edge. This method 
can be applied without any difficulty to particular cases and gives good 
accuracy for thin shcl1s.l 

Instead of working with the differential equation (320) of the fourth 
order, WC can take, as a basis for an approximate investigation of the 
bending of a spherical shell, the two Eqs. (317).2 111 our case these 
equations can be written as follows: 

d2Q, -dT + cot lp d* - (cot2 p - v)Q, = EhT' 

( Cot? (7 + v) 1' = - c!?j!E 
(9) 

1 An example of application of the method of asyn;ptotic integration is given by 
S. Timoshenko; XC H~lll. Sot. Eag. ‘l’ech., St. Petersburg, 1913. In the papers by 
Blumenthal, previously mentioned, rncnns are given [or the improvement of the 
approxnnate solution by the calculation of a further approximation. 

2 This method was proposed by J. W. Geckcler, Forschungsarb., no. 276, Berlin, 
1926, and also by I. Y. Staerman, Bull. Polytcch. Inst. Kieu, 1924; for a generaliza- 
rion see Y. P\‘. Rnhotnov, nokZnd:/ Bkad. Naulc S.S.S.R., n.s., vol. 47, p. 329, 1945. 
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where Q, is the shearing force and V is the rotation of a tangent to a 
meridian as defined by Eq. (n) of Art. 128. In the case of very thin 
shells, if t#he angle cp is not small, t>he quantities Q, and I’ are damped out 
rapidly as the distance from the edge increases and have the same oscilla- 
tory charact’er as has the function (f). Since /3 is large in the case of thin 
shells, t’he derivative of the function (f) is large in comparison Tvith the 
function itself, and the second derivative is large in comparison w&h the 
first. This indicates that a satisfactory approximation can be obtained 
by neglecting the terms containing the func- 
tions Q, and V and their first derivatives 
in the left-hand side of Eqs. (g). In t’his 
way Eqs. (g) can be replaced by t,he follow- 
ing simplified system of equations:’ 

I:----: 
q 

d20 2 = fihj7 
dq? 
c12v u2 
-= -- 
dPp2 n Q, Lh) t*3 

Hy eliminating V from these equations, we fb) 
obtain 

$$” + 4x4Qp = 0 

2 where 

(i) H F-c t-i 

The general solution of this equation is 

Q, = Clexp cos Xp + C2eXq sin Xv + C,e6q cos X+9 + C4ebXP sin Xv (k) 

Considering the case in iyhich there is no hole at the top (Fig. 271~) and 
the shell is bent by forces and moments miiformly distributed along the 
edge, we need consider from the general solution (1;) only the first two 
terms, which decrease as the angle p decreases. Thus 

Q, = Clc xY cos Xp + C2eAp sin he (0 

The t.wo constants C1 and Cz are to be determined in each p:Lrticular case 
from the conditions at the edge (‘p = cy). In discussing t,he edge con- 
ditions it is advantageous to int’roduce the angle # = a! - cp (Fig. 271). 
Substituting o( - # for p in expression (I) and using t,he new constants 

1 This sirnplificat,ion of the problem is equivalent to the replacement of the portion 
of the shell near the edge by a tangent conical shell and application to this conical 
Shell ‘of the equation that was developed for a circular cylinder (Art. 114) : we E. 
Meissner, “A. Stodola Fcstschrift,” p. 406, Ziirich, 1929. 
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C and y, we can represent solution (I) in the form 

&, = C&q sin (X$ + -y) Cm> 

Now, employing Eqs. (b), (c), and (cl) of Art. 128, we find 

N, = -&, cot cp = - cot (Q - $)Ce+J’ sin (X# + y) 

NO= -f$$= --hv%Ce-gsink#+r--$ (323) 

From the first of the equations (h) we obtain the expression for the angle 
of rotation 

j,7 = 1 d”WF - 2x2 
Eh dp2 

~ - - Fh Cc-X+ cos (Xl+4 + y) (324) 

The bending moments can be determined from Eqs. (n) of the preceding 
article. Neglecting t’he terms containing V in these equations, we find 

M =2dv= P a dp 
*a Ce+* sin X+ + y + $ 

> (325) 
Me = vM, = +A Ce+* sin X# + y + : 

Finally, from Eq. (r) of the preceding article we find the horizontal com- 
ponent of displacement to be 

6 
sin cpd7J z _ - - = - g sin (CY - $)A z/z Cc”* sin 
Eh dp A$ + Y - i (32G) 

With the aid of formulas (323) to (326) various particular cases can 
readily be treated. 

Take as an example the case shown in Fig. 271b. The boundary con- 
ditions are 

(M&z = Ma (N&o=, = 0 (n) 

By substituting $ = 0 in the first of the equations (323), it can be con- 
cluded that the second of the boundary conditions (n) is satisfied by 
taking the constant y equal to zero. Substituting y = 0 and # = 0 in 
the first of the equations (325), we find that to satisfy the first of the 
conditions (n) we must have 

M,=&C 

which gives 

Substituting values thus determined for the constants y and C in expres- 
sions (324) and (326) and taking # = 0, we obtain the rotation and the 
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horizontal displacement of the edge as follows: 

4X3M, 
(V),=o = - Eah (6)+0 = Eh 

2X2 sin Q( M 
Q (327) 

In the case represented in I’ig. 271c, the boundary conditions are 

(al,),_, = 0 (iv&, = -H cos a (0) 

To satisfy the first of these conditions, we must take y = -a/4. To 
satisfy the second boundary condition, we use the first of the equations 
(323) which gives 

-Hcosa = Ccotcusin; 

from which we determine 
c = _ 2H sin LY 

z/z 
Substituting the values of the constants y and C in (324) and (326), 
we find 

2X2 sin cy 
Wh=o = E’h H (%=o = - Bh 

2aX sin2 LY H 
(328) 

It can be seen that the coefficient of M, in the second of the formulas 
(327) is the same as the coefficient of H in the first of the formulas (328). 
This should follow at once from the reciprocity theorem. 

Formulas (327) and (328) can readily be applied in solving particular problems 
Take as an example the case of a spherical shell 
with a built-in edge and submitted to the action 
of a uniform normal pressure p (Fig. 2i2a). 
Considering first the corresponding membrane 
problem (Fig. 2726), we find a uniform compres- 
sion of the shell 

N P EN,,= -?la 
2 

The edge of this shell experiences no rotation and 
undergoes a horizontal displacement 

(P) 

To obtain the solution of the given problem we 
superpose on the membrane forces of Fig. 272b 
forces and moments uniformly distributed along 
the edge as in Fig. 272~. These forces and mo- 
ments are of such magnitude that the corrcspond- Fro. 272 
ing horizontal displacement is equal and opposite 
to the displacement (p), and the corresponding rotation of the edge is equal to zero. 
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In this way, by using formulas (327) and (328), we obtain the following equations for 
the determination of M, and H: 

from which 

The negative signs indicate that M, and H have directions opposite to those shown 
in Fig. 271. 

‘l’lrc approximate equations (h) wcrc obtained by neglecting the unknown functions 
Q, and V and their first derivatives in the exact equations (g). A better approxima- 
tion is obtained if lvvc introduce the new variables’ 

Q1 = Q, Z/sin ‘p VI = V Z/sin ‘p 

Substituting 

in Eqs. (g), WC find that the terms containing the first derivatives of Q1 and 81 vanish. 
Hence, to obtain a sirnplihed sy-stem of equations similar to Tqs. (h), we have to 
neglect only the terms containing the quantities Q1 and T’l in comparison with the 
terms containing the second derivatives of the same quantities. This gives 

The solution of these equations can be obt,ained in the same manner as in the case of 
Eqs. (h). Returning to the original variables Q+, and V, we then obtain, instead of 
expressions (m) and (324), the following solutions:2 

(329) 

Proceeding now in csactly the same way as in our previous discussion, we obtain thr 
following expressions in place of formulas (323), (325), and (326): 

1 This is the same trnnsformetion as was used by 0. Blumenthal; see Eq. (a), p. 547. 
2 The closer approximation was obtained by M. HetPnyi, Pubis. Intern. Assoc. 

B,idge Slmcturul Engrs., vol. 5, p. 173, 1938; the numerical example used in the 
further discussion is taken from this paper. 
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N, = - cot (a - ti)C 
e-w 

d/sin (a - $) 
sin (W + Y) 

No = c 
Xe-“* 

2 l/sin (CX - +) 
[2 cos 04 + Y) - (kl + k2) sin (W + 711 

M,=;C 
e-x$ 

dsin (a: - $) 
Lb cm 04 + Y) + sin (A$ + r)] 

([(I + lJ)(kl + kr) - 2kz] CO8 (A$ + y) 

(330) 

+ 29 sin (X$ + y) ] 

6 = a sin (a - $) c XecX+ 

Eh dGqv) 
bs 04 + Y) - k2 sin (A+ + r)l 

where ki = l- 
1 - 2v 
~~ cot (a - +) 

2x 

1 +2u 
k2=l-- 

2x 
cot (a - $J) 

Applying formulas (330) to the particular cases previously discussed and repre- 
sented in Fig. 2716 and c, we obtain, instead of formulas (327) and (328), the follow- 
ing better approximations: 

(332, 

Meridional bending moments MIP inch Ibs./inch 

25 Kg. 15 10 5 0 
p, 

FIG. 273 
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By applying these formulas to the particular case shown in Fig. 272a, second 

approximations for the reactive moments M, an d reactive forces H are readily 
obtained. 

To compare the first and second approximations with the exact solution, we shall 
consider a numerical example in which u = 90 in., h = 3 in., LY = 35”, p = 1 psi, and 

1 Y = F. The first and second approximations for M, have been calculated by using 
the first of the equations (325) and the third of equations (330) and arc represented by 
the broken lines in Fig. 273. For comparison the exact solution’ has also been calcu- 
lated by using the series of the preceding article. This exact solution is represented by 
the full line in Fig. 273. In Fig. 274 the force NQ as calculated for the same numerical 

50 

--- --‘L --_-_ ___ j-J-~.-.J 

/ ‘\\ Hoop forces due to bendinq N, Ibs./inch I 

I / 

‘“35 30 
, 

;0 
I 1  I I 

25 15 IO 5 0 
P Deg. 

FIG. 274 

example is shown. From these two figures it can bc concluded that the second 
approximation has very satisfactory accuracy. Observing that in our example the 
ratio n/h is only 30 and the angle OL = 35” is comparatively small, it can be concluded 
that the second approximation can be applied with sufficient accuracy in most cases 
encountered in present structural practice.2 

I It was necessary to take 10 terms in the series to obtain sufficient accuracy in 
this case. 

2 In the case in which the angle CY is small and the solution (329) is not sufficiently 
accurate, the shell may be considered “shallow” and treated accordingly (see Art. 
132). Application of the equations of finite differences to the same problem has been 
made by P. Pastern&, 2. nngeu>. Math. !lfech., vol. 6, p, 1, 1926. The case of non- 
isotropic shells is considered by E. Stcuermann, 2. angew. Math. Me&., vol. 5, p. 1, 
1925. One particular case of a spherical shell of variable thickness is discussed by 
M. F. Spotts, J. Appl. Mechanl:cs (Trans. ASME), vol. 61, 1939, and also by F. Tiilke, 
Zngr.-Arch., vol. 9, p. 28’2, 1938. For the effect of concentrated loads, see F. Martin, 
Ingr.-Arch., vol. 17, p. 107, 1949, and Art. 132. The problem of nonsymmetrical 
deformation of spherical shells is considered by A. Havers, Zngr.-Arch., vol. 6, p. 282, 
1935. Further discussion of the same problem in connection with the stress analysis 
of a spherical dome supported by columns is given by A. Aas-Jakobsen, Zngr.-Arch., 
vol. 8, p. 275, 1937. 
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131. Spherical Shells with an Edge Ring. In order to reduce the effect of the 
thrust of a dome in its action upon the supporting structure, an edge ring (Figs. 275~ 
and 276~) is sometimes used. The vertical deflection of this ring, supported either 
continuously or in a number of points, may be neglected in the following analysis. 

(b) (cl 

Cd) 

FIG. 275 

Let us consider the conditions on the edge p = a of the dome carrying some dis- 
tributed, symmetrical load. The membrane forces N,, NO due to this load would 
produce, according to Eq. (T) (page 513) an increase of the radius TO = a sin 01 equal to 

60 = 2 (Ns - vN,)c+, (a) 

This displacement will be accompanied by a rotat,ion of the edge tangent 

cot ~(1 + Y)(N~ - Ns) - d (Ns - vN, d@ 1 (b) ,4--a 
according to results obtained on page 538, and by a thrust 

Ho = --OS a(Nq)r+, (cl 

HU0 
The corresponding tension force in the ring is Hero, and the elongation is CO = Eb;p 

where E denotes Young’s modulus of the material of the ring. The increase of the 
radius ~0 due to the action of HO will be 

(4 
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In order to bring the edge deformation of the shell in accordance with the deforma- 
tion of the ring, let us apply along the circumference of both the edge and the ring 
uniformly distributed couples of an intensity M, and radial forces of an intensity H 
(Fig. 275b). Using the results (327) and (328), we obtain the following expressions 
for the horizontal displacement of the edge and the rotation V: 

2X2 sin CY 6= __- Al, - ___ 
Eh 

2uX sin2 a Ii 

Eh 

4x3 
v= -g$Lx+~ 

2X2 sin LY H (e) 

where A’ = 3(1 - G)(a/h)” 

The action of M, and H upon the ring is statically equivalent to the combined 
action of the overturning couples 

2’ = M, + He (f) 

and of forces H applied on the level of the centroid of the ring section (Fig. 275~). 
These latter cause a radial displacement of the ring equal to 

as follows from Eq. (d), but no rotation. 
It still remains to consider the deformation of the ring due to the couples T. An 

element of the ring of length ds = TO cl0 is held in equilibrium by the action of an 
overturning couple T ds and two bending couples Me = T ds/de = Tro (see Fig. 275d, 
where all three couples are represented by equivalent vectors). Thus, the maximum 
hoop stress in the ring due to the couples T is 

LT = +6Mg/bd= = 5 6Tn,/bd2 

The corresponding unit elongation of the top and bottom fibers of the ring is seen 
to be e = f6Tro/Ebd2, respectively. Hence the rotaCon of the transverse section 
of the ring becomes 

where /e/ denotes the absolute value of the largest unit elongation. 
Now, the total horizontal displacement of the shell edge must be equal to that of thr 

ring, and the same holds for the rotation. This yields the following relations: 

60 + 6 = 61 + 62 + V2e (4 
vo + v = v-2 0’) 

in which the term Vze represrnts the effect, of the rotation on the radial displacement 
of the ring at the level of the edge of the shell. After substitution of the expressions 
(a) to (h) for the displacement and the rotation in (i) and (j), we obtain two linear 

equations for the unknown values of &I, and H. These values also define the con- 
&ants of integration of the approximate solution, as shown in Art. 130. The total 
stress resultants and deflections of the shell can be found then by combining the effect 
of membrane forces with the effect of bending, this latter being expressed, for example, 
by Eqs. (323), (324), and (325). 

.4s an illustrative example, let us consider a spherical dome (Fig. 276~) with a = 
76.6 ft, cx = 40”, 1’” = 49.2 ft, h = 2.36 in., and the cross-sectional dimensions of the 



SHELLS FORMING SURFACE OF REVOLUTION 
-r 
.)a 7 

(b) 
FIG. 276 

ring b = 1.97 ft, d = 1.64 ft, and e = d/2; the modulus E is the same for the shell 
and the ring, and the constant Y is assumed equal to zero. The dome is submitted 
to the action of its own weight p = 41 psf of the surface of the dome. The membrane 
forces due to this load are given by Eqs. (257), and the procedure of computation 
indicated above leads to the following values of the edge forces:’ 

M, = -24.84 lb-in. per in. 
H = -8.95 lb per in. 

The corresponding values of bending moment M, are shown in Fig. 2763. 
In the foregoing the simplified differential equation (i), Art. 130, has been employed 

1 The details of computation may be found in K. Girkmann, “Fllchentragwcrke,” 
4th ed., p. 442, Springer-Verlag, Vienna, 1956. The diagram Fig. 2763 is repro- 
duced here by courtesy of Professor K. Girkmann and the Springer-Verlag, Vienna. 
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to determine the effect of the edge forces. The reasoning and the procedure remain 
substantially the same, however, if a more exact differential equation is used. 

132. Symmetrical Bending of Shallow Spherical Shells. Let the middle surface 
of a spherical shell (Fig. 277~) be given in the form 

z= &q-(a-ZO) 

If we have to deal with a “shallo\v ” spherical shell, we put 

(4 

&/&- = -r/ -\/‘a2 - r2 = -r/a 

and take for symmetrical’ load distribution the radius T (Fig. 277~) as the sole inde- 
pcndent variable. The diffcrcntial equa- 
tions of equilibrium (312) then become 

2 
d (rN,) 

.-~ - N, - ; QT + rp, = 0 
dr 

(b) 

d(G) 
7 + f (NV + Ns) + TP = 0 (cl 

; \ 
\ 
\ 

0 \ \ \ 

d(rM,) 
~ - MO - r&r = 0 (d) 

dr 

\ 

.- ‘1 

FIG. 277 

where p and p, designate the load inten- 
sity in the normal and in the meridional 
direction, respectively. The relations 
between the stress resultants, the strain 
components, and the displacements w 
and II (in the directions p and pV) are the 
following: 

in which 

61 = ih (N, - 
dv 

YNB) = z - f 

B8 = %bh (Ns - vNr) = ” - 2u 
r a 

Eh3 

D = 12(1 - Y”) 

(e) 

(f) 

Now we take the fact into account that the effect of transverse shear QV on mem- 
brane forces in Eq. (5) can be neglected in the case of a shallow shell. Assuming, 
furthermore, that the load term p, is derivable from a load potential st, so that p, = 
-&/dr, we satisfy Eq. (5) by setting 

1 The general theory of shallow spherical shells, due to E. Reissner, is free from this 
limitation; see J. Math. and Phys., vol. 25, p. 80, 1946; vol. 25, p. 279, 1947. 
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(h) 

where F is a stress function. It is easy to verify also that the relations (e) between the 
strain and the displacement components correspond to the equation of compatibility: 

in which A = d2/dr2 + (l/r)(d/dr). 
Combining Eqs. (e) and (i), WC arrive at the following fundamental equation for 

F and w: 

AAF+?Aw = -(I -v)AD 
0, (A 

In order to obtain a second fundamental relation between the same functions, we 
substitute Qr from (d) in Eq. (c). 17’~ obtain 

d d(rM,) 

dr dr i 
MO 

I 
+ ; (N, + No) + rp = 0 

Using now the expressions (S) and (h) in combination with Eq. (k), we find 

Finally, let us write the expressions for the vertical shearing force Qu and the horizontal 
displacement 6, both of which may be 11sed in formulating the edge conditions of the 
shell. We obtain 

Qv = Q, + ; N, 6zv--rw 
a (m) 

in which the expression for the transverse force 

d 
Qr = --I) - (Am) dr 

is of the same form as in the theory of plates. 
In the case p = ~2 = 0, the integration of the simultaneous equations (j) and (I) can 

1~ carried out by multiplying Eq. (j) by a factor --X and adding the result to Eq. (I). 
This yields 

AA(w - At’) - h(&h/a)A(w + F/Ah DE) = 0 (0) 

From (0) we obtain an equation for asingle function 20 - hF by putt,ing x = -l/Ah DE; 
that is, 

x = g- d/12(1 - 9) 2 (P) 
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where i = -\/- 1. Let us also introduce a characteristic length 2 defined by the 
relation XEh/a = i/P, so that 

v% _____ 
1 = +12(1 - Y’) 

(n) 

The differential equation (0) then assumes the form 

AA(w - x6’) - ; A(w - XF) = 0 

Next, setting 
w--XF=*+* 

we obtain + and P as the general solution of the equations 

b-1 

(s) 

A+ = 0 

The respective solutions arc of the form 

Q, = A, + Az log x (u) 
* = A&I(X) + ith(x)I + Ad11’1b) + i&b)1 (v) 

where x=T 
1 (WI 

A,, are arbitrary complex constants and $,(z), . . . , #*(z) are functions defined on 
page 490 and tabulated in Table 86. Using the solutions (u) and (v) and a set of real 
constants C,, and separating in Eq. (s) real and imaginary parts after substitution, 
we can obtain the following general expressions for the normal deflection w and the 
stress function F:’ 

w = Cdl(X) + C24uz) + C34w) + C4$4(2) + cs (2) 

To illustrate the use of the foregoing results, let us consider a shallow shell with a 
very large radius subjected to a point load P at the apex T = 0. 

In such a case we have to satisfy the obvious condition 

Q,, = - & = - .2qx 
T ?r (2) 

while W, dw/dr, N,, and No must be finite at T = 0, and UJ, M,, and Ms must vanish for 
r= m. Using the first of the expressions (m) to satisfy IZq. (z), we obtain 

c _ Pa 412(1 - 9) 
f.- 27r Eh2 

and for the other constants we get the values 

1 It can be shown that a term C7 log x must be omitted in expression (z), while a 
constant term Cs can be suppressed as immaterial in expression (9). 
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Ca = 0 c, = f c, 

Cl = c, = c, = 0 

Accordingly, the final results are 

Since $a(O) = 0.5 we obtain for the deflec- 
tion of the shell at the point of the appli- 
cation of the load the value 

The distribution of the membrane stresses 
c1 = N,/h and 00 = No/h and that of the 
bending stresses g: = T6M,/h2 and 
CL = f BMe/h2 on the upper surface of 

+0.1 

+0.2 
0 0.4 0.8 1.2 1.6 2.0 2.4 2.; 

i 
FIG. 278 

I 
3 3.2 

the shell (for which the upper signs must be taken) are shown in Fig. 278. 
When the central load P is uniformly distributed over a circular area of a small 

radius c, the following results hold at the center of the loaded area T = 0: 

I 

Since the expressions (2) and (1~) contain six arbitrary constants in all, any symmet- 
rical conditions at the center and on the outer edge of the shell could be fulfilled. 

It should be noted also that, as far as bending is concerned, a shallow spherical shell 
behaves somewhat like a plate on an elastic foundation. This time the characteristic 
length is given by Eg. (q) instead of expression (a), page 260, which we had in the 
case of the plate. Thus, when 1 as defined by Eq. (n) is small compared with the 
radius of the edge, this is ecluivalent to the case of a plate on a very rigid foundation. 
The deflections and the bending moments at the center of such a shell are affected 
very little by the respective conditions on the outer edge, which only govern the 
state of the edge zone of the shell.* 

1 For inextensional deformations of shallow elastic shells see M. W. Johnson and 
E. Reissner, J. Math. and Phys., vol. 34, p. 335, 1956; singular solutions were considered 
by W, Fltigge and D. A. Conrad, Stanford Univ. Tech. Rept. 101, 1956. Some of the 
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133. Conical Shells. To apply the general equations of Art. 128 to the particular 
case of a conical shell (Fig. 279a), we introduce in place of the variable p a new vari- 
able y which defines the distance from the apex of the cone. The length of an infini- 
tesimal clement of a meridian is now dy, instead of ri dv as was previously used. As a 

FIG. 279 

result of such changes in the variables, the following transformations of the deriva- 
tives with respect to ‘p are ncccssary : 

d2 dr, d zx T;- +-- 
dy2 & &/ 

With these transformations, the symbol (i) in Art. 128 bccomcs 

L( . . * ) = Tp “i&~ 2 + $ + r? cot Q 
(, 7.1 > 

“‘;i,’ _ ! rot* Q( . . . 1 (a) 
2 T? 

Observing that for a cone the angle ‘p is constant and using notation (Y for r/2 - Q 

(Fig. 279), we obtain 

rp = y tan o( d” = tan a 
dy 

previous rrsults were already given by J. \Y. Geckeler, Ingr.-Arch., vol. 1, p. 255, 1930. 
General differential equations for curved plates (shallow shells) were established by 
K. Marguerre, Proc. Pi@ Intern. Congr. Spp(. Me&., 1938, p. 93. For bending of 
shallow shells of translation, see G. AF. Oravas, dsterr. Ingr.-Arch., vol. 11, p. 264, 1957, 
and for nonlinear bending of shallow spherical shells, R. RI. Simons, J. Math. aad 
Phys., vol. 35, p. 164, 1956. For bending of shallow helicoidal shells see E. Reissner, 
J. Appl. dfwhanics, vol. 22, p. 31, 1955. Helicoidal shells were also considered by 
R. Malcor, l’ravaxc, vol. 32, p. 605, December, 1948, and by L. Solomon, Priklad. 
Mat. Mekhan., vol. 18, p. 43, 1954. For shallow ahclls see V. %. Vlasov, “A General 
Theory of Shells,” Moscow, 1949. 
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Substituting the expressions into (a) and putting TI = m, the symbol L( . . . ) 
becomes 

Equations (321) of Art. 128 arc then 

or, with U = r2Qp = Y tan a QII, * 

Using the notation (j) of Art. 128 and introducing the new notation 

@ Eh 120 - 8 Cot2 oL ),” = tan2-~ = - cot2 oI = ____ 
n h2 

we finally obtain 
d2(yQ,) ,- d(yQv) 

’ dy2 
~ - Q, f ix2yQ, = 0 

&Y 
Cc) 

Considering the first of these equations, we transform it into the known Bessel equa- 
tion by introducing, in&ad of y, a new variable 

which gives 

d2(yQJ + l d(y?,! + 
d>12 q dv 

(e) 

A similar equation has already been discussed in the treatment of a cylindrical shell of 
nonuniform thickness (Art. 118). The functions $,, . . . , +4 which were introduced 
at that time and whose numerical values are given in Table 86 can also be applied in 
this case. The general solution for yQ, which satisfies both of the equations (e) can 
then be represented in the following form:’ 

(f) 

where $ = 2X >‘i, and the primes denote derivatives with respect to E. Fro111 our 
previous discussion and from the values of Table 86 we know that the functions $1 

* The subscript y is used instead of ‘p in the further discussion of conical shells. 
1 A comprehensive discussion of conical shells is given in F. Dubois’ doctoral 

dissertation “iiber die Festigkeit der Kegelschale,” Ziirich, 1917; this paper also 
contains a series of numerical examples with curves illustrating the stress distribution 
in conical shells having various angles at the apex. The case of an arbitrary loading 
has been considered by N. J. Hoff, J. Appl. Mechanics, vol. 22, p. 557, 1955, and 
thermal stresses by J. H. Huth, J. Aeronaut. Ski., vol. 20, p. 613, 1953. 
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and $z and their derivatives $i and $i have an oscillatory character such that the 
oscillations are damped out rapidly as the distance y dccrcases. These functions 
should he used in investigating the bending of a conical shell produced by forces and 
moments distributed uniformly along t,hc edge y = 1. The functions $a and tig with 
their derivatives also have an oscillatory character, but their oscillations increase 
as the distance y dccrcases. Hence the third and fourth terms in solution (j”), which 
contain these functions and their derivatives, should be omitted if we are dealing with 
a complete cone. The two constants C1 and C2, which then remain, will be determined 
in each particular case from the boundary conditions along the edge y = 1. 

In the case of a truncated conical shell there will be an upper and a lower edge, and 
all four constants Cl, . . . , C, in the general solution (f) must be considered to satisfy 
all the conditions at the two edges. Calculations show that for thin shells such as 
are commonly used in engineering and for angles a: which are not close to r/2, the 
forces and moments applied at one edge have only a small effect on the stresses and 
displacements at the other edge.l This fact simplifies the problem, since we can use a 
solution with only two constants. We use t’lie terms of the integral (.f) with the con- 
stants C1 and Cz when dealing with the lower edge of the shell and the terms with 
constants C3 and Cq when considering the conditions at the upper edge. 

To calculate these constants in eac!i particular cast n~:c need tile cspressions for the 
angle of rot,ation V, for the forces N, and NO, and for the moments Al, and ATo. From 
Eqs. (c) and (d) of 4rt. 128 we have 

A,, = -Q,, tan a 

dTJ 4eQJ 
N5=-zJ=-- dlJ 

= _ d(yQ,? tzn o1 
dy 

‘ (9) 

From the first of the equations (3 IT) we obtain the rotation 

The bending moments as found from Eqs. (814) are 

(h) 

By substituting y tan n for a in Eq. (T) of Brt. 129 we find 

Thus all the quantities that define the bending of a conical shell arc expressed in terms 
of the shearing force Q,, which is given by the general solution (f). The functions 

h . . . 7 Gq and their first derivatives are given in Table 86 for E < 6. For larger 
values of t the asymptotic expressions (296) (page -196) of these functions can be used 
with sufficient accuracy. 

IFor a = 84”, F. Dubois found that the stress distrihution in a truncated conical 
shell has the same character as that in a circular plate with a hole at the center. This 

indicates that for such angles the forces and the moments applied at both edges must 
be considered simultaneously. 
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As an example we take the case represented in Fig. 27%. We assume that t,he 
shell is loaded only by its weight and that the edge (y = I) of the shell can rotate 
freely but cannot move laterally. Considering first the corresponding membrane 
problem (Fig. 279b), we find 

No = -qy sin (Y tan (Y 

N =-.-K (k) 
ZI 

2 cos a 

where q is the Jveight per unit, area of the shell. As a result of thrse forces there wih 
be a circumferential compression of the shell along the edge of the amount 

EO = & (No - VN,) = - 2 ,oiL Eh (2 sin2 LY - Y) 

To satisfy the bouudary conditions of the actual problem (Fig. 279a) we must super- 
pcsc on the mcrnbranc stresses given by Eqs. (k) the strcsscs produced in the shell by 
horizontal forces H (Fig. 27%) the magnitude of which is determined so as to eliminate 
tht- compression (I). To solve this latter problem we USC the first two terms of solution 
(j) and take 

Y&U = Cl $,(4) +; 42(E) + C? 
[ I L 

k!(E) - iIC:(E) 
1 

(ml 

The constants C1 and C2 will now be determined from the boundary conditions 

in which expressions (i) and (j) must be substituted for M,, and 6. After the introduc:. 
tion of esprcssion (m) for yQ,, expressions (i) and (j) become 

(0) 

( P )  

Substituting 2X 2/Z for E in expressions (0) and (p) and using Table 86 or cxpres- 
sinns (2961, we obtain the left-hand sides of Eqs. (n). \Ye can then calculate C’, and C’Z 
front these equations if t,he load q and the dirncnsions of the shell are given. Calcula- 
tions show that for shells of the proportions usually applied in engineering practice 
the yunntjity E is larger than 6, and the asymptotical expressions (296) for the func- 
tions entrrirlg in Eqs. (0) and (p) can be used. An approximate solution for conical 
shells, similar to that given in the preceding article for spherical shells, can also 
readily bo developed. 
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The case of a conical shell the thickness of which is proportional to the distance 2/ 
from the apex can also be rigorously treated. The solution is simpler than that 
for the case of uniform thickness.1 

134. General Case of Shells Having the Form of a Surface of Revolu- 
tion. The general mct>hod of solution of thin-shell problems as developed 
in -4rt. 128 can also be applied to ring shells such as shown in Fig. 220. 

(b) 
FIG. 280 

<l this may the dcformatioii of a 
ring such as shown in Fig. 280a 
can be discusscd.2 Combining sev- 
eral rings of this kind, the problem 
of compression of corrugated pipes 
such as shown in Fig. 2800 can be 
treated.” Combining several coni- 
cal shells, we obtain a corrugated 
pipe as shown in Fig. 280~. The 
compression of such a pipe can be 
investigated by using the solution 
developed for conical shells in the 
previous article. The method of 
Art. 128 is also applicable to more 
gcueral surfaces of revolution pro- 
vided that the t,hickness of the 
wall varies in a specific manner, 
that the general equations (315) 

and (316) obtain the forms (317).4 The solution of these equations, 
provided it can be obtained, is usually of a complicated nature and 
cannot readily be applied in solving practical problems. 

1 Meissner, Viertcljahrsschr. naturforsch. Ges. Ziirich, vol. 60, p. 23, 1915; see also 
E. Honegger, “Festigkeitsberechnung von Kegelschalen mit linear VerRnderlicher 
\Vandst&rke,” doctoral thesis, Ziirich, 1919. For the case of an arbitrary loading see 
H. Nollnu, 2. arzg~fi. Math. Me&., vol. 24, p. 10, 194.1. 

2 Problems of this kind are rigorously treated in the paper by H. Wissler, “Festig- 
keitsberechnung von Ringfl$chenschalen,” doctoral thesis, Ziirich, 1916. For toroidal 
shells see also R. A. Clark, J. Ala/h. and F’hys., vol. 29, p. 146, 1950; for those with an 
elliptical cross section, see R. A. Clerk, T. I. Gilroy, and E. Reissncr, J. Appl. 
Jfechanics, vol. 19, p. 37, 1952. Short axisymmetrical shells under edge loading have 
been considered by G. Horvay, C. I,inkous, and J. S. Born, J. Appl. Mechanics, vol. 23, 
p. 68, 1956. For calculation of annular, conical, and spherical shells in combination 
with a flat bottom, see G. Horvay and I. M. Clausen, J. Appl. Mechanics, vol. 22, 
p. 25, 1955. 

3 Such corrugated pipes were considered by K. Stange, Imp.-Arch., vol. 2, p. 47, 
1931. R. A. Clark and E. Reissner have considered some corrugated pipes as “nearly 
cylindrical shells “; see .J. dppl. Mechanics, vol. 23, p. 59, 1956. For the theory of 
such shells see also E. F. Burmistrov, I’riklad. Mat. Mekhan., vol. 13, p. 401, 1949. 

* See Meissner paper, Zoc. cit. 
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At the same time, all the existing solutions indicate that, for thin shells 
for nhich the angle cp is not small, the stresses produced by forces and 
moments uniformly distributed along the edge are of a local character 
and die out rapidly as the distance from the edge increases. This fact 
suggests the use in more general cases of the same kind of approximate 
solut’ions as mere discussed in the case of spherical shells. St’arting with 
the general equations (315) and (XIG) (page 538)) we neglect on the left- 
hand sides of these equations the functions U and V and their first deriva- 
t’ives in comparison with the second derivatives.1 This results in the 
following simplified system of equations : 

r2 d2V u --=-_ 
r; dy2 D 

Differeutiating the first of these equations twice, we obtain 

= $ (EhV) @I 

If after differentiation we again retain on each side only one term con- 
taining the derivative of the highest order of the functions U and I’, 
we obtain 

After the introduction of the notation 

(cl 

1 This method of obtaining an approximate solution in a general case is due to J. 11’. 
Ckdreler, Forschungsarb., no. 276, p. 21, Berlin, 1926. An extension of Blumenthal’s 
method of asymptotic integration on the general case of shells in form of a surface of 
revolution was given by E. Stcuermann, Proc. l’hird Intern. Congr. Appl. Mech., ~01. 2, 
p. 60, 1930. For the method of asymptotic integration see also F. H. Hil&brand, 

Proc. Symposia Appl. Math., vol. 3, p. 53, 1950. For tile general theory of shells and 
the limits of its application see F. B. IIildebrand, E. Reissner, and G. B. Thomas, 
SACd il’cch. Note 1833, 1949; W. .Zerna, Ingr.-Arch., vol. 17, p. 149, 1949; A. E. 
Green ad W. Zerna, Quart. Mech. Appl. Math., vol. 3, p. 9, 1950; H. Parkus, 6stwr. 
Ir~yr.-Brch., vol. 4, p. 160, 1950; J. K. Knowles and E. Reissner, J. Math. and l’hys., 
vol. 35, p. 351, 1957; H. Neuber, Z. angew. Math. Mech., vol. 29, p. 97, 1949. The 
effect of transverse shear deformation on shells of revolution has been considered by 
I’. N. Xaghdi, Quart. Appl. Math., vol. 15, p. 41, 1957. Advances in the nonlinear 
theory of shells are especially due to X. A. Alumyae, K. Z. Galimov, and K. RI. 
Mushtari; see bibliography in A. S. Volmir, “Flexible Plates and Shells,” Moscow, 
1956. See also %. Parszcwski, I’roc. n’inth Intern. Congr. Appl. Me&., vol. 6, p. 280, 
Brussels, 1957; G. Schxuzr, Ingr.-Arch., vol. 25, p. 278, 1957. 
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Eq. (c) becomes 

dg + 4X4U = 0 (e) 

This is of the same form as Eq. (i) in ,Irt. 130, which was obtained for 
spherical shells. The difference bet’ween t’he two equations consists only 
in the fact that t,hc factor X, given by expression (d), is no longer con- 
stant in the general case but varies wit,h the angle C,D. Since the function 
I/’ dies out rapidly as the distance from t’he edge increases, we call obtain 
a satisfactory approximate solution of Eq. (e) by replacing X by a cert’ain 
constant average value. The approximate solution previously obtained 
for a sphere can then be directly applied here. 

To obtain a more satisfactory result the shell can hc divided by parallel 
circles into scvcral zones for each of which a certain constant average 
value of X is used. Beginning Cth the first zone at the edge of the shell, 
the two constants of t’he general solution (329) are obtained from the 
conditions at the edge in the same manner as was illustrated for a spheri- 
cal shell. Then all quantities definin, v the deformations and stresses in 
this zone are obtained from Eqs. (330). The valuw of these quantities 
at the end of the first zone give the init.inl values of the same quantit,ies 
for the second zone. Thus, after changing the numerical value of X for 
the second zonr, we can continue t,he calculations by again using the 
gcncral solut,iori (:t2!1) 1 

If the factor X C:LIL 1~ represclltcd by the expression 

in which cc and b arc constants, a rigorous solution of 15q. (e) can bc 
obtjuined.2 However, since Is:q. (c) is only an approximate relation, such 
a rigorous solution apparently has little advantage over the previously 
described approximate calculatiom3 

1 An application of this method to the calculation of stresses in full heads of pres- 
sure vessels is given in the paper by W. M. Coates, Trans. ASME, vol. 52, p. 117, 1930. 

2 See Geckeler, op. cit. An application of this solution to the calculation of 
stwsscs in a steep-sided dome is given by W. Fliigge; see “Statik und Ijynamik der 
Schalen,” 2d ed., p. 194, Berlin, 1957. Shells with varying thickness were also con- 
sidered by C. N. DeSilva and T’. M. Naghdi, Quurt. L4ppl. Math., vol. 15, p. 160, 1957. 

3 For bibliography regarding shells, see also the books of W. I;liigge, op. cit.; K. Girk- 
mann, op. cit.; and R. L’Hcrmitc, “Resistance des mati:riaus th&ricluc ct expbri- 
mentale,” Paris, 1054. The theory of prismatic and pyramidal shells is considered in 
the above-rrlerltioned books, and also by J. Born, “Faltwcrke,” Stuttgart, 3954. For 
bibliography in the &Id of roof shells see especially A. ilas-Jnkobsen, op. cit., and 
Pm-. Symposium on Comrete Shell Roof Construction, Cement and Concrete Associa- 
tion, London, 1954. 
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bending of, strain energy in, 377 
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Approximate investigation of bending, of 
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Asymptotic integration of equation for 
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plate, 378 

having initial curvature, 27, 3Q3 
influence surfaces in, 328, 329, 332 

cylindrical (see Cylindrical bending) 
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methods in, approximate, 325 
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to cylindrical surface, 4 
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with clamped cdgcs, 55, 6S, 290 
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stress 

and forces in middle plane of plate, 

concentrlrtion around, 321 

391 

Circular inclusion, 323 
Circular plates, circular hole in, 58, 61, 
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corrugated, 404 
critical load for, 392 
dcflrctions of, large, 3% 
differential equation for, 53, 54, 283 
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under linearly varying load, 285 
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eccentrically, 290 
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pure (see Pure bending of plates) 
rigorous theory of, 98 
singularities in, 325 
to spherical surface, 43 
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(See also Approximate investigation of 

bending; Strain energy in bending; 
specific types of plates) 
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supI)orted at several points, 293 
symmetrical bending of, 51 
theory of bending, corrections to, 70, 
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of variable thickness, 2’38, 304 
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8’3 171 

exp&scd in finite differences, 361 
cir&lar platrs with, 55, GS, 290 
rectangular mates with, l!JT 

Columns~ equidistant, plates supported 
hp ro\vs of, 245 

Comb’ined action of lateral load and 
forces in middle plant of plxte, 378 

circular plates under, 391 
rectnngJrlar platx under, 380, 387 
strain energy in case of, 383 

Complcs variable rnl%hod nppliwl in 
bending, of an;sotropic plates, :3i7 

of isotrouic ulatcs. 3-W 
. _  I  

Concentratetl load! cantilever l)late 
under. 210. 327. 336 

I  

cylindrical sllcll rrntler, 505 
eccentrically aJJJ)lictl, ciwuhrr plate 

under, 390 
footing slab untlcr. 221 1 307 

of infinite length, 144 
with simply supported edges, 1 II, 

1 I. 

Corrugated plntls, flcxurnl rigidity of, 
:31;7 

Critirai load, for circular plate, 392 
for rcctangrJlar plate with supported 

cdgc~s, 389 
c11rvat11rr, a:-cragc, 35 

initial, bending of plates having, 27,393 
measured with reflected light, 363 
principal, 3G 
of slighl ly bent platt~s, 33 

Curved plates, initially, bending of, 27, 
393 

Curvilinear boundary, conditions for, 87 

Cylindrical aeolotropy in plates, 377 
Cylindrical bending, of bottom plates in 

hull of ship, 21 
of p1:ttcs; 4 

with built-in edges, 13 
differential equation for, 4 
on elastic found:r tion, 30 
ai 111 cl:tstic:ally built-in edges, 17 
xv-it11 simply supported edg&,‘G 

Cylindrical roof shells, 460, 519, 52-l 
houndary conditions for, 518, 527 

Cylindrical shells, 1)cnding of, approsi- 
mate investigation of, 519 

bent by forces distributed along edges, 
,178 

dctlcction of, general equation for, 514 
dcfiection of uniforJiJly loaded portion 

of, 516 
dcfornnr tion of, incxtcnsional, 501 
under hydrostatic pressure, supported 

at ends, 51-l 
reinforced by rirJgs, 479 
stress and strain function in investiga- 

tion of, 522 
symmrtrically loaded, 406 
tt1cory of, general, 4% 

membrane, 457 
therlnal stresses in, ‘19’7 
under uniform internal pressure, 475 

Cylindrical tanks, witlr nonuniform wall 
thickness, 488 

wit,11 uniform wall t,lJickriesa, 485 

of Iat~rally ioatletl platq i9 
differential eouation for. 82 
large (sw Large tlcflectidns) 
1iuJitntions regarding, 47, 72 
small, T!J 

of plates under combined lateral load- 
ing and forces in middle plane, 3% 

of portion of cylindrical shell, 516 
of rectnngJJl:tr plstcls with simply sup- 

ported edges, 105 
under concentrated load, 111, 141 
due to tcmpcrnture gradient, 162 
under hydrostatic load, 124 
of infinite length, 4, 149 
part,iallv loaded, 135 
under sYnusoitla1 load, 105 
under triangular load, 130 
uniformly loatird, lO<J, 113 
of variable thick&s, 173 
with various edge conditions, 180 

(See also l~ectangulnr plates) 
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DcHection, strain energy method in cal- l’inite-difference equation, for dcflcction 
cttlating, 342, 100, 41% of rectangular plates, 351 

of triangular plates simply supported, for large deflections, 398, -419 
bent by momrnts uniformly dis- operators used in formuhrting, 360 
tributcd along boundary, 94 for skewed plates, 357 

under roncentratcd load, 31-1, 316 Flat slabs, 245 
due to tcmpcratnrc gradient, !Ki circular, 29% 
uniformly loaded, 3 13, 3 17 rectangular, 215 

Deformation of shells bvithout !rentling, in form of strip, 255 
-129 over many panrls, 245 

Developnbln surface, bending of pl:tt,c: to, over nine panels, 2.53 
47, 418 reversed, 276 

Diaphragms under uniform pressrnc, rigid connection with column, effect 
eonical, 562 of, 257 

sphcricnl, 544 Flexural rigidity, of plntcs, 5 
Differential equation, for bending of of anisotropic material, 365 

plates, anisotropic, :‘,C,:i cYmugntetI, sti7 
under combined lateral loads and of slwlls, 432 

loading in middle plant of pla t P, Free ctlgc, boundary conditions for, 83, 
379 171 

to cylindrical surfnce, 4 exprrssed iu finite dit?erenccs, 361 
with lnrgc deflections, 3!JS, 417, 418 
under lateral loads, 8% 

for bending of sJ)ht~rical sl~cils, ,5MJ (;rwn’s function in berrding of plates, 
for dcllrction of m~mbr:tncs, 41!J 112, 328, 334 
for syrnrnctricnl bcntlirig of c:.-lintlricxl Gridwork system, bending of, 369 

shrlls, 468 
Discontinuity strcswa, in c~llipsoidal 

boiler ends, 48.1 Helicoidal slrolls, 56% 
in pressure vessels, 48:3 Ho!c (see Circular hole) 

Displawmcnts in symmrtrically loadctl IIull of ships, bencling of bottom platw 
shells, -1-15 of, 21 

Dome, conkal, 451 Hyperbolic paraboloid, shell iu form of, 
spherical (see Spherical dome) 46-l 

Elastic inclusion, 323 lmngcs, m&hod of, 1.56: 225, 314 
Elastic properties of plywootl, 367 Inrlusion, elastic, 32:1 
Elastic solid, semi-infinite, plate resting rigid, in plntc, :%23 

on, 278 Inextensional tl~~formntion, of ryliudrical 
Ellipsoidal ends of boiler, 484 shrlls, 501 
Ellipsoidal shrlls, 4-10 of plates v ill1 large detlwtions, -118 
Elliptic functions, use in theory of plates, Infinite length, plntr of, 4, 1 l!J 

341 TnH~lcnrc slirfacw in bcntling of plates, 
Elliptic paraboloid, shell in form of, d28 

‘162 csnrr1plc of IISC, for ~irc~rll:\r plnlcs, 
Elliptic plates, uniformly loaded, \vith 329 

clamped edges, :<lO for continnolts phrics, Xi? 
with simply supported edges, 312 for rcctan&lr p1atrs, ::“!I 

Elongations due to bending of plates, 38, Initial curvature, lwn~liirg of plntcs jyith, 
361 27, 393 

Energy method, applied in bending, of 
cylindrical shells, 505 

of p1:ttcs, 3 22, 317 Large dcflcctious, 396 
in calculating large dcflwtions, 412, 419 approsimatc formuhls for, 400, 410, 416 

Exact theory of plntcs, 98 ealculat,ion of, strain-energy method in, - 
hkperimcntnl rrJcthods, 362 400, 412 
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Large deflections, of circular plates, 306 
under concentrated load, 412 

Nonlinear problems in bending of plates, 
308 

under edge moments, 3!k 
uniformly loadrd, 400, 404, 408 

differential cuuations for. 398. 417. 418 
of rectangular plates, nniformiy lorlded, 

421, 125 
clamped, 421 
simply supported, 425 

Lateral vibration of plates, 334 
Limitations on application of customary 

theory, 47, 72, 165 
Local strcsscs under concentrated load. 69 
Long r&angular plates, 4, 149 

bcntling of, to cylindrical surface, 4 
v,ith built-in cdcres, 13 
under conwntr:ited load, 144 
on elastic foundation, 30 
with clnsticnlly built-in edges, 17 
wit.h simply supported edgc~s, 6 
small initial cylindrical cxvature in, 27 

Rlcmbrane cquat ion, nppknt ion in bend- 
ing of plates, 92, 351 

iYIembmne forces in shells, 433 
rxpreas~~l in terms of disI)liiccnlonts, 

523, 5.34 
uw of stress function in calculating, -161 

Afelnbrnne !Iicor\- of shells. 429 
cylintlric:~l, 457 
in form of surfare of rcvollrtion, 433 

Xcwlbranw, circular, deflection of, 403 
difl’c~rcwtial equation for deflection of, 

.I19 
square, tlefle~~tion of, 420 

Methods, approximate, in bending of 
plntcs, 325 

Middle plnnc of plate, 33 
iUidtlle sllrfacc, of plntc, 33 

of shell, $29 
JIohr’s circle for determination, of curva- 

tures, 36 
or m0111cnts, 40, 359 

~fonrr:nts, l,pnding and twisting, of shells, 
GO 

expwsscd in terms of displacements, 
523, 535 

dctwmincd by hlohr’s circle, 30, 359 
of plates, relation with curvature, 81, 

283 
kisting, 39, 41, 81 

Navier solution, for portion of cylindrical 
shell, 516 

for simpl:.r slIpported plates, 108, 111 
Seut ral surface, 38 

Nonsymmetrically loaded shells, 447 

Orthotropic plates, 364 

l’hotoelasticity in bending of plates, 
application of, 362 

“ Photostrcss” method, 362 
Plane-stress analogy with bcntling of 

plates, 363 
Plates (see specific types of plates) 
Plywood, elastic properties of, 367 
Poisson’s ratio, effect on stresses in plates, 

97 
numerical value of, 97 

Polar coordinates, in bending of plates, 
282 

bending and twisting moments ex- 
pressed in, 283 

differential equation for deflection in, 
53, 54, 283 

for large deflections in, 418 
strain energy exprrssed in, 345, 346 

Polygonal p1atcs, 93, 341 
Pressure vessels, 481 

discontinuity stresses in, 483 
Principal curvature, 33, 36 

planes of, 36 
l’urc bending of plates, antic&tic: surface 

in, 44 
limitation of deflection in, 47 
particular cases of, 42 
relation between bending momenta and 

curvnturr in, 30 , . 
slope and curvature in, 33 
strain energy of, 46 

Rcact;ons at boundary of plates, relation 
with deflection. 84 

of simply supported rectangular platrs, 
under hydrostatic load, 125. 132 

under triangular load, 13a ’ 
nnder uniform load, 120 

l<t~ctnngular plnt,es, anisotropic, 371 
with clamped edges, 197 
under concentrated load, 111, 141, 144, 

203 
continuous, 229, 236, 245 
deflection calculation, by energy 

method, 3.12, 347 
by finite difference method, 351 
by method of reversion, 349 
(See also Deflection) 
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Rectangular plates, under hydrostatic 
pressure, 124 

of infinite length, 4, I49 
long (see Long rectangular plates) 
partially loaded, 135 
semi-inflnitc 221 225 
simply sup&-ted: 105 

under uniform load, 109, 113 
under sinusoidal load, 105 
under triangular load, 130 
under uniform load, 109, 113, 240 
of variable thickness, 173 
with various edge conditions, 180 

all edges built-in, 197, 245 
all edges elastically supported or free 

and resting on corner points, 218 
all edges simply supported, 105, 240 
three edges built-in, one edge free, 

211 
one edge simply supported, 205, 

244 
three edges simply supported, one 

edge built-in, 192, 241 
two adjacent edges simply sup- 

ported, other edges built-in, 207, 
243 

two opposite edges simply supported, 
one edge free, fourth edge built- 
in or simply supported, 20s 

two others built-in, 185, 24% 
two others free or sllpportcd elas- 

tically, 214 
Reflected light, measuring of curvatures 

with, 363 
Relaxation method, 362 
Reversion method, 349 
R,igid inrlusion in plate, 323 
Rigidity, flexural, of plates, 5 

anlsotropic, 365 
of shells, 432 

Rigorous theory of plates, 98 
Ring, reinforcing, of spherical dome, 555 
Ring-shaped plates, 58, 303 
Roof shells, cylindrical, 460, 519, 524 

Sector, plates in form of, 295 
Semicircular plate, clamped, 298 

simply supported, 295 
Semi-infinite rectangular plates, 221 

under concentrated load, 225 
under uniform load, 221 

Shallow spherical shells, 558 
Shear (see Transverse shear) 
Shearing forces, of cylindrical shells ex- 

pressed in terms of displacements, 
523 

Shearing forces, of plates, relation with 
deflection, 82, 284 

Shearing strain in plate, 41 
Shearing stress in plate, 41 
Shells, conical, 439, 451, 562 

conoidal 465 
of cons&t strength, 442 
cylindrical (see Cylindrical shells) 
deflections of, strain energy method of 

calculating, 505 
deformation of, without bending, 429 
ellipsoidal, 440 
flexural rigidity of, 432 
in form, of elliptic paraboloid, 462 

of hyperbolic paraboloid, 464 
of surfnce of revolution (see Surface 

of revolution) 
of torus, 441, 566 

nonsymmetrically loaded, 447 
spherical, 436 

wind pressure on, 449 
symmetrically loaded (see Symmetri- 

cally loaded shells) 
Simply supported edges, boundary condi- 

tions for, 83, 171 
circular plates with, 56, 68 
rectangular plates with, 105 

Singularities in bcncliag of plates, 325 
Skewed plates, 318, 3.57 
Spherical dome, under action of its 

wright, 436 
bending of, approximate analysis, 

547 
bending stress calculation for, example, 

554 
with edge ring, 555 
membrane forces in, 136 
shallow, 558 
supported at isolated points, 4.53 
under wind pressure, 449 

Strain energy in bending, of anisotropic 
plates, 377 

of isotropic plates, 88 
expressed in polar coordinates, 345, 

346 
for large deflections, 400, 412 
in pure bending, 47 

Strain cncrgy method in calculating dc- 
flections, of plates, large, 400, 412 

small, 34% 
of shells, 505 

Stress function, in calculating membrane 
forces of shells, 461 

in general theory of cylindrical shells, 
522 

in resolving equations for large deflec- 
tions, 413, 417 
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Strrwcs in plate, normal, 42 Triangular load, rectangular plates under, 
Poisson’s ratio effect on, 97 130 
shearing, -11, -12 Triangular plates, clamped in all or two 
(&P nlso Thermal strcsws) sides, 3 I5 

Sucwssire appro~imntion in calculating equilatera!, simply suyportetl, 313 
bending atwsscs in sl!clls, 552 bending, by conccntratr,l load, 31 1 

Surface of revolulion, whrlls having form by edge monic~nt,s, !11 
of, 433, 533 by uniform load, 313 

bending st,rcsses in, 5(X thvrrtral stresses in, 95 
symmrtrirally loaded, 433, 5:K% in fornl of isosceles right triangle, 316 

dis~krccments in, -4-15 Twist of surface, Y.5 
equations for tl~~tcrrnining mem- T\visting momrnt, 3’3 

branc forw*4 in -X3-1 1 
particular cases of, -146 

in terms of deflection, 41, 81 

Symmetrically loaded shells, 433, 533 
spherical, 436, 540, 547 Uniforn load, platrs under, circular, 5.1 

Synclastic surface, 37 rectangtrlar, c!arnped, JO7 
c:orltiiluoll,s, %L’!), “:jG 
simply suplwrtrti, ! 09, 113 

Tarrl<s, of constant atrrngth, 443 portion of cylirrdricai shell under, 51 (i 

cylindrical, \vith nonnniforn~ wall on spherical shrll, 544 

thickness, 385 
with uniform \v:t:l lhickncss, 486 

spherical, 537 
Variable thickness, plates of, circular, 

Thcrmnl st rcsscs, in cylindrical shc!ls, 197 
298, :305 

in plates \vith clamped edges, 49 
rcctnngillar, 173 

irl simply supported rectangular plates, 
ring-shaped, 303 

1G2 
Vibration, lateral, of plates, 334 

in spherical shells, ,546 
Virtual displncrmcnts, application of 

in triangular platrsj 9.5 
principle in bending, of plates, 342, 

Thick plates Go, 72, 9s 
38T 

‘I’oroidal hheils, ,111, 566 
of shells, 505 

‘Transforms, uw in theory of platrs, 330 
Th-an:;~c~rnr shear, cffr<.t of, on deflections Wedge-shnpctl l:lates, :3:;7 

of pl:11rs, ;2, IG.5 Wind prrstrrr on tlomL~, conical, 451 
on strrsars ;rrolulcl IKk, 322 spherical, 449 
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